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Abstract

Weakly supervised learning aims at coping with scarce la-
beled data. Previous weakly supervised studies typically as-
sume that there is only one kind of weak supervision in data.
In many applications, however, raw data usually contains
more than one kind of weak supervision at the same time.
For example, in user experience enhancement from Didi, one
of the largest online ride-sharing platforms, the ride comment
data contains severe label noise (due to the subjective factors
of passengers) and severe label distribution bias (due to the
sampling bias). We call such a problem as ‘compound weakly
supervised learning’. In this paper, we propose the CWSL
method to address this problem based on Didi ride-sharing
comment data. Specifically, an instance reweighting strategy
is employed to cope with severe label noise in comment data,
where the weights for harmful noisy instances are small. Ro-
bust criteria like AUC rather than accuracy and the validation
performance are optimized for the correction of biased data
label. Alternating optimization and stochastic gradient meth-
ods accelerate the optimization on large-scale data. Experi-
ments on Didi ride-sharing comment data clearly validate the
effectiveness. We hope this work may shed some light on ap-
plying weakly supervised learning to complex real situations.

Introduction

Conventional supervised learning has achieved great success
in various applications. Most successful techniques, such as
deep learning, require ground-truth labels to be given for a
big training data set. In many real-world applications, how-
ever, it can be difficult to attain strong supervision due to
the fact that the hand-labeled data sets are time-consuming
and expensive to collect. Thus, it is desirable for machine
learning techniques to be able to work well with weakly su-
pervised data (Zhou 2017).

Compared to the data in traditional supervised learning,
weakly supervised data does not have a large amount of
precise label information. Typically, three types of weakly
supervised data exist: incomplete supervised data (Oliver

∗This work was supported by the National Natural Science
Foundation of China (61772262) and Didi research fund. Yu-Feng
Li is the corresponding author of this work.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2018), i.e., only a small subset of training data is
given with labels whereas the other data remains unla-
beled; inaccurate supervised data (Frénay and Verleysen
2014), i.e., the given labels have not always been ground-
truth and inexact supervised data (Carbonneau et al. 2018),
i.e., only coarse-grained labels are given. Weakly super-
vised learning (WSL) has attracted considerable attention,
which has consequently resulted in a large number of WSL
methods, e.g., (Liu and Ziebart 2014; Oliver et al. 2018;
Hendrycks et al. 2018).

In previous studies on weakly supervised learning, a basic
assumption is that there is only one kind of weak supervision
in training data. However, in many real-world applications
such as ride-sharing user experience enhancement, such an
assumption is difficult to hold. In Didi ride-sharing comment
data, it suffers from severe label noises, i.e., collected labels
from comment questions in ride-sharing user experience are
low-quality since they can easily be influenced by subjec-
tive factors (e.g., emotions) and many misoperations of the
passengers. Meanwhile, there is also severe label distribu-
tion bias, i.e., label distributions between training and testing
data are different, because the negative comments in ride-
sharing user experience are rare and they are dynamically
changing with time.

It is evident that single type weakly supervised learning
could not tackle the problem concerned in this paper. For
example, label noise learning methods ignore the label dis-
tribution bias which may seriously hurt the performance in
practice; while label distribution bias correction methods as-
sume that the ground-truth label is accessible to each in-
stance, which is not the case in our situations. Note that the
data scenario studied in this paper is quite different from the
previous weakly labeled studies. We call such a problem as
‘compound weakly supervised learning’.

In this paper, a novel method named CWSL is proposed
and verified on Didi ride-sharing comment data, where the
goal is to pre-detect negative comments and help improve
ride-sharing user experience. It is crucial to decrease the in-
fluence of noisy instances in the training stage at the same
time correct the label distribution bias to make the model
work well in practice. In our method, an instance reweight
strategy is employed to cope with severe labeling noise by
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assigning a small weight to noisy instances. To make the
learned model performs well on the test distribution, the in-
stance reweight process is under the guidance of validation
performance which is evaluated by a robust AUC criteria.
The idea is formulated as a novel bi-level optimization. An
alternating optimization and stochastic gradient method is
adopted to make the method adapt to large-scale data. Ex-
periments on Didi ride-sharing comment data clearly vali-
date the effectiveness.

Related Work
The problem focused in this paper, i.e. compound weakly su-
pervised learning, more specifically, is the intersection of la-
bel noise learning and label distribution bias problem. Both
can be regarded as weakly supervised frameworks where la-
bel information conveyed by training instances is incorrect
or biased with true distribution.

The performance of machine learning models has been
shown to degrade noticeably in the presence of label
noise (Frénay and Verleysen 2014). Considerable efforts
have been made to correct or learn with noisy labels (Natara-
jan et al. 2013; Biggio, Nelson, and Laskov 2011; Frénay
and Verleysen 2014; Li, Guo, and Zhou 2019). (Mnih and
Hinton 2012) allow for label noise robustness by modifying
the model’s architecture. (Northcutt, Wu, and Chuang 2017)
propose to reweight the noisy instances according to the pre-
dicted probability. (Patrini et al. 2017) make use of the for-
ward loss correction mechanism, and propose an estimate of
the label corruption estimation matrix. There are also meth-
ods that correct labels with small clean validation data. For
example, (Veit et al. 2017) use validation data to train a la-
bel cleaning network by estimating the residuals between
the noisy and clean labels. (Hendrycks et al. 2018) use val-
idation data to estimate a label correction matrix. However,
these methods are not sufficient to conquer the studied prob-
lem well, because they ignore the label distribution bias that
may cause performance degradation seriously in practice.

One kind of strategy to correct label distribution bias is to
develop bias robust models. (Liu and Ziebart 2014) develops
a framework that can learn a robust bias-aware probabilistic
classifier using a minimax estimation formulation. (Chen et
al. 2016) propose a label distribution bias robust regression
method by minimizing conditional Kullback-Leibler diver-
gence and considering the worst-case performance. Another
kind of strategy attempts to correct label distribution bias
by reweighting training instances. (Huang et al. 2007) pro-
poses to reweight instances by matching distributions be-
tween training and testing sets in feature space. (Zhang et
al. 2013) proposes to estimate the weights by reweighting
data to reproduce the covariate distribution on the test distri-
bution. There are also methods aim to correct label bias via
domain adaptation methods (Azizzadenesheli et al. 2019).
However, these methods assume that the ground-truth label
is accessible to each instance, which is not the case in our sit-
uations and can influence the model performance severely.

Our method is also related to other ‘mixed’ cases un-
der weakly supervised learning frameworks such as multi-
instance multi-label learning (Zhou et al. 2012), semi-
supervised label noise learning (Zhang et al. 2019), semi-

Notation Meaning
x ∈ R

d Feature vector of instance
y ∈ {0, 1} Label of instance
n Number of training instances
m Number of validation instances, m � n
{xt

i, y
t
i}ni=1 Training instances

{xv
i , y

v
i }mi=1 Validation instances

θ Model parameters
ŷ = f(x, θ) Prediction of model θ on instance x
w ∈ W Weights for training instances
wi Weight for the i-th training instance
�(·, ·) Training loss function
L(·, ·) Validation loss function
λθ Step size for θ
λw Step size for w

Table 1: Summary of important notations used in this paper.

supervised multi-label learning (Wei et al. 2018), semi-
supervised weak label learning (Dong, Li, and Zhou 2018)
and semi-supervised partial label learning (Wang, Li, and
Zhou 2019). It is worth noting that our paper is different
from these works as we focus on the mix of severe label
noise and biased label distribution.

The Proposed Method

Problem Setting and Notations

Let (x, y) ∈ X × Y be the feature-label pair where x ∈
R

d is the feature vector including driver features, passenger
features, order specific features and comment question, y ∈
{0, 1}n is the label where 1 indicates positive comment and
0 indicates negative comment. {(xt

i, y
t
i), 1 ≤ i ≤ n} is the

training set and {(xv
i , y

v
i ), 1 ≤ i ≤ m} is a small clean

unbiased validation set verified by domain experts. In reality,
m � n. Hereafter, we will use superscript t to denote the
training set and superscript v to denote validation set.

Let ŷ = f(θ,x) be the prediction of model θ on in-
stance x, �(·, ·) be a loss function to be minimized during the
training procedure. Following the classical ERM (Empirical
Risk Minimization) framework, we aim to minimize the ex-
pected loss for the training set: 1

n

∑n
i=1 �(f(θ,x

t
i), y

t
i) =

1
n

∑n
i=1 �i(θ) where each training instance is weighted

equally, and �i(θ) stands for the loss function associating
with instances (xt

i, y
t
i). The important notations and mean-

ings used in this paper are summarized in Table 1.

Instance Reweight Mechanism

The difficulty of CWSL is to learn with severe noisy labels
and at the same time making the learned model works well
on real distribution. One intuitive solution to handle noisy
instances is to assign a small weight to noisy instances to
decrease their influence (Northcutt, Wu, and Chuang 2017),
i.e., a weighted loss is minimized during the training proce-
dure:

θ∗ = argmin
θ∈Θ

1

n

n∑

i=1

wi�i(θ) (1)
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Figure 1: Illustration of the proposed algorithm.

where wi is the weight for each instance, Θ is the space
of model parameter, θ∗ is the optimal model learned by the
ERM procedure.

However, wi is unknown upon beginning. Previous la-
bel noise learning studies typically calculate the instances
weights based on the training loss for the reason that when
the noisy instances are fewer than clean instances, the
clean instance is more likely to have a smaller training
loss (Frénay and Verleysen 2014). In our method, to make
the learned model performs well on test distribution, a small
clean unbiased validation data is introduced. It is usually
acceptable to collect small validation data with small ex-
pense in real applications. For example, in Didi, an anno-
tation team can collect accurate labels for a small dataset via
telephone interview.

We argue that the optimal weight is that the model trained
with this weight should maximize the validation perfor-
mance since the validation performance acts as a good ap-
proximation of the generalization performance. Specifically,
once the model trained with w owns a good validation per-
formance, it can possibly perform well on the general data
distribution. Formally, we consider the following optimiza-
tion,

w∗ = argmax
w

perf(θ∗,xv,yv) (2)

where perf(θ∗,xv,yv) is the task specific performance
measure (e.g., AUC, Accuracy, F1-Score) of model θ∗ on
validation set (xv,yv).

Therefore, by combining the above considerations, the
objective of our weight learning algorithm is formulated as:

max
w∈W

perf(θ∗,xv,yv) (3)

s.t. θ∗ = argmin
θ∈Θ

1

n

n∑

i=1

wi�i(θ)

where the weight w is from a convex set W that is typically
set as W = {w|0 ≤ w ≤ 1}. Figure 1 illustrates the frame-
work of our method.

The proposed formulation Eq.(3) is a bi-level optimiza-
tion problem where one optimization problem is nested
within another problem (Bard 2013). The lower-level op-
timization is to find a weighted empirical risk minimizer
model given the training set whereas the upper-level opti-
mization is to maximize the validation performance given
the learned model. The effectiveness of bi-level optimiza-
tion (Bard 2013) has been recently demonstrated in the ma-
chine learning community. For example, (Franceschi et al.
2017; 2018) propose hyper-parameter optimization meth-
ods based on bi-level formulation. (Zhang, Zhu, and Wright
2018) introduce validation data and debug the training set la-
bels according to validation performance. (Ren et al. 2018)
propose to reweight examples for robust deep learning based
on bi-level optimization meta-learning.

Robust AUC Criteria

To conquer the bias label distribution, where the label dis-
tributions in the training data and testing data are different
since negative comments in ride-sharing user experience are
much fewer than that of positive comments while they are
dynamically changing with time in test data. This means di-
rectly training a binary classifier in terms of accuracy will
predict almost all incoming instances to be positive ones,
which obviously does not make sense. So we adopt AUC
as the performance measure as AUC is not sensitive to the
class ratio (Liu, Wu, and Zhou 2008), which has been shown
effective for many applications, such as website ad click pre-
diction (McMahan et al. 2013) where only a very small frac-
tion of web history contains ads clicked by visitors.

Specifically, let x+,x− be positive and negative instances
generated from distribution P+ and P−. The AUC is de-
fined as:

AUC = Ex+∼P+

x−∼P−
[I{f(θ,x+)− f(θ,x−) > 0}] (4)

where I(·) is the indicator function which returns 1 if the
argument is true and 0 otherwise. This expectation is the
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probability that a positive instance is ranked higher than a
negative instance.

Owing to its non-convexity and discontinuous, direct op-
timization of AUC often leads to a NP-hard problem (Gao
et al. 2013). To make a compromise for avoiding computa-
tional difficulties, we propose to optimize a convex surrogate
loss function (Gultekin et al. 2018).

Replacing I{f(θ,x+) − f(θ,x−) > 0} in Eq.(4) with
the surrogate loss φ(f(θ,x+) − f(θ,x−)), we now aim to
minimize:

Ex+∼P+

x−∼P−
[φ(f(θ,x+)− f(θ,x−))] (5)

In this paper, we adopt the pairwise squared loss φ(t) =
(1−t)2 as the surrogate loss function, for the reason that it is
convex differentiable and we can easily prove its consistency
with the original AUC according to Theorem 2 in (Gao and
Zhou 2015).

Denote the positive and negative instances in valida-
tion set xv as S+ = {xv+

1 , · · · ,xv+
m+

} and S− =

{xv−
1 , · · · ,xv−

m−} where m+ and m− are number of pos-
itive and negative instances. For a model θ, the surrogate
validation loss can be written as:

L(θ) = 1

m+m−

m+∑

i=1

m−∑

j=1

[(1− (f(θ,xv+
i )− f(θ,xv−

j )))2]

=
1

m+m−

m+∑

i=1

m−∑

j=1

[(1− (θ�xv+
i − θ�xv−

j ))2]

= 1− 2θ�[
1

m+m−

m+∑

i=1

m−∑

j=1

(xv+
i − xv−

j )]

+ θ�[
1

m+m−

m+∑

i=1

m−∑

j=1

(xv+
i − xv−

j )(xv+
i − xv−

j )�]θ

= 1− 2θ�μm + θ�Σmθ (6)

where

μm =
1

m+m−

m+∑
i=1

m−∑
j=1

(xv+
i − xv−

j ) (7)

Σm =
1

m+m−

m+∑
i=1

m−∑
j=1

(xv+
i − xv−

j )(xv+
i − xv−

j )� (8)

Gradient Descent Updating

By combining the forms Eq.(3) and Eq.(6), the final objective of
the optimization is formulated as:

min
w∈Ω

L(θ∗) (9)

s.t. θ∗ = argmin
θ∈Θ

1

n

n∑
i=1

wi�i(θ)

where L(θ∗) = −2θ∗�μm + θ∗�Σmθ∗ and the negative log-
likelihood is adopted as the loss function in our task: �i(θ) =

−yt
iθ

�xt
i + log(1 + eθ�xt

i ).

Notice that the lower-level problem can be replaced equivalently
with its Karush-Kuhn-Tucker (KKT) condition (Boyd and Vanden-
berghe 2004):

g(w, θ) ≡ 1

n

n∑
i=1

wi
∂�i(θ)

∂θ
= 0 (10)

According to the implicit function theorem (Nakasho, Futa, and
Shidama 2017), we have the following Jacobian matrix:

J =
∂θ

∂w
= −

⎡
⎢⎢⎣

∂g1
∂θ1

· · · ∂g1
∂θd

...
...

∂gd
∂θ1

· · · ∂gd
∂θd

⎤
⎥⎥⎦

−1 ⎡
⎢⎢⎣

∂g1
∂w1

· · · ∂g1
∂wn

...
...

∂gd
∂w1

· · · ∂gd
∂wn

⎤
⎥⎥⎦ (11)

Referring to Eq.(10), we can compute ∂g
∂θ

and ∂g
∂w

as:

∂g

∂θ
= w�

(
∂2�(θ)

∂θ∂θ�

)
,

∂g

∂w
=

∂�(θ)

∂θ
(12)

The gradient and Hessian of the training loss are posed as:

∂�(θ)

∂θ
=

1

n

n∑
i=1

xt
i(−yt

i + p(xt
i; θ)) (13)

∂2�(θ)

∂θ∂θ�
=

1

n

n∑
i=1

xt
ix

t�
i p(xt

i; θ)(1− p(xt
i; θ)) (14)

where p(xt
i; θ) = Pr{ŷ = 1|xt

i, θ}.
The matrix J tells us how the model parameters θ varies with

respect to an infinitesimal change to w. Now, we can apply the
chain rule to get the gradient of the whole optimization problem
w.r.t. w:

∂L(θ∗)
∂w

=
∂L(θ∗)
∂θ

∂θ

∂w
(15)

Finally, we can solve the bi-level optimization problem with
gradient-based methods and the iteration rule is:

wt = wt−1 − λw
∂L(θ∗)
∂w

∣∣∣∣
w=wt−1

(16)

where λw is the step size for w.
Notice that to solve the gradient w.r.t. w, we need to compute the

inverse of the Hessian matrix and in practice, the matrix inverses is
not pleasing. Here, we propose an alternative method. We compute
−( ∂g

∂θ
)−1 ∂g

∂w
as it is the solution to ( ∂g

∂θ
)x = − ∂g

∂w
. The linear

system can be solved conveniently and only requires matrix-vector
products, that is we do not have to materialize the Hessian.

Efficient Alternating Optimization

Calculating the optimal w requires two nested loops of optimiza-
tion, to further accelerate the optimization for large-scale data, we
propose an alternating optimization method by updating w and θ
iteratively. Instead of updating w based on the optimal θ∗, we up-
date w after each iteration of the optimization of θt, i.e.,

θt = θt−1 − λθwt−1
∂�(θ)

∂θ

∣∣∣∣
θ=θt−1

(17)

wt = wt−1 − λw
∂L(θt)
∂w

∣∣∣∣
w=wt−1

(18)

Then, compared to regular optimization methods, our method only
needs 2× training time. The overall optimization procedure is sum-
marized in Algorithm 1.
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Algorithm 1 Alternating Optimization Procedure of CWSL.
Input: Training set {xt

i, y
t
i}ni=1, validation set {xv

i , y
v
i }mi=1,

current values of weights w0 and model parameters θ0.
Output: Learned instance weights w and model parameters
θ.

1: for t = 1 to T do

2: θt = θt−1 − λθwt−1
∂�(θ)
∂θ

∣∣∣
θ=θt−1

3: Compute ∂g
∂θ ,

∂g
∂w with Eq.(12)

4: Compute J with Eq.(11).
5: Compute ∂L(θt)

∂w with Eq.(15).

6: wt = wt−1 − λw
∂L(θt)
∂w

∣∣∣
w=wt−1

.

7: Project wt to the constrained set W .
8: end for
9: return wT and θT .

Experiments

In this section, we conduct experiments to demonstrate the effec-
tiveness of the proposed method. We first conduct experiments on
UCI dataset breast cancer with synthetic noisy labels to show the
instance weights evolution during the training procedure. Then, we
present the evaluation settings on real ride comment user experi-
ence data in Didi ride-sharing platform include data set prepara-
tion, feature transformation, a brief description of the related com-
parison method and the detail parameter settings. Finally, extensive
results of different methods are presented along with the analysis.

Synthetic Data

To understand how our proposed algorithm contributes to decreas-
ing the influence of noisy labels, we conduct an experiment on UCI
dataset breast cancer 1 with synthetic noisy labels to show how the
instance weights evolved during the training procedure.

Breast cancer is a classic binary classification dataset with 569
instances and 32 attributes. We split the dataset into 3 parts: 469
training data, 50 validation data, and 50 test data. For the training
data, we randomly select 100 instances and reverse their labels as
noisy instances.

For this experiment, we adopt a two-layer neural network as the
classification model and binary cross-entropy loss to evaluate the
validation performance instead of the AUC we described before, as
this is no label distribution bias problem. The training epoch is set
to 100 and the initial weights of all instances are set to 0.5.

Figure 2 shows the instance weights evolution during the train-
ing procedure. Figure 2(a) shows that our method can separate the
noisy and clean instances after only 1 epoch. After 10 epochs, the
weight of clean instances has been mainly concentrated in 1.0. Af-
ter 100 epochs, as expected the algorithm nicely separates the two
sets and correctly pushes all 100 noisy instances into zero weight
while keeping the clean instances into one weight. Finally, the al-
gorithm can achieve 100% accuracy on the test data. These demon-
strate that our proposal is able to reliably decrease the influence of
noisy instances by assigning them small weights.

Real Didi Ride-Sharing Comment Data

Didi is one of the largest online ride-sharing platforms that offer
peer-to-peer ride-sharing services. Once passengers enter start lo-
cation and destination, the platform will match a driver nearby to

1https://archive.ics.uci.edu

pick up the passenger. The platform provides a comment question
to passengers after each order, e.g., “Was the car smelly?” or “Did
your driver detour?”. The goal is to rank these candidate comment
questions according to the probability that may receive negative
comments because negative comments can help discover the needs
of users and the deficiency of services, thus improving service qual-
ity and user experience.

The benchmark ride-sharing comment user experience data set
was constructed from the real comments in the main city zone of
ride-sharing orders within the time period from Mar 1st, 2019 to
Apr 1st, 2019. We sample 600,000 instances as the training data
and the training data have severe label noise as we mentioned be-
fore. To construct validation and test data, we sample 15,000 data
from Apr 2st, 2019 according to the real distribution, and verified
their labels by domain experts. Class ratio of negative to positive
in the real distribution is approximately 1:30. The verified data is
equally split into the validation set and test set. Thus, we have pre-
pared the training data set and clean unbiased validation and test
data set.

Feature Engineering Each instance in the data set is described
with hundreds of raw features including driver features, passen-
ger features, order specific features and comment question. For ex-
ample, driver and passenger features include age, gender, number
of negative reviews for a comment question, etc. Order specific
features include cities, price, destination, etc. Different comment
question is also described with different numerical features.

The raw feature contains both continuous and categorical fea-
tures, simply train models on the raw feature will leading to poor
performance and manual feature engineering is time-consuming.
Inspired by (He et al. 2014), we propose to transform the input
features of the classifier in order to improve its performance by
boosted decision trees. The boosted tree is a powerful and very
convenient way to implement non-linear and tuple transformations
and has been widely used in Click-Through Rate (CTR) predic-
tion (Richardson, Dominowska, and Ragno 2007).

Specifically, we treat each individual tree as a categorical feature
that takes as value the index of the leaf an instance ends up falling
in, then we normalize the transformed feature into zero mean and
unit variance. The boosted decision tree we used follows the XG-
Boost (Chen and Guestrin 2016).

Label Bias Learning Methods To demonstrate the effective-
ness of our proposal, we compare the proposed method with three
classical classification methods with label distribution bias correc-
tion:

• XGBoost (Chen and Guestrin 2016): which is a scalable ma-
chine learning system for tree boosting (Friedman 2001). The
effectiveness of XGBoost has been widely recognized in a num-
ber of machine learning and data mining challenges, like Kaggle
competitions. For XGBoost, we set the weight of positive class
into 4 and other parameters are set as default.

• LR (Logistic Regression): which is a baseline method that com-
monly used in classification tasks. For the Logistic Regression,
we adopt the implementation in Sklearn 2 and the parameters are
set as default.

• DNN (Deep Neural Network): We also design a DNN struc-
ture including three hidden layers and a prediction layer, where
ReLU (Glorot, Bordes, and Bengio 2011) is adopted as the acti-
vation function for each hidden layer. The hyper-parameters are
tuned based on the validation set. For instance, the number of
units for each hidden layer is set to 64. Dropout rate is set as

2https://scikit-learn.org
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(a) After 1 Epoch (b) After 10 Epochs (c) After 100 Epochs

Figure 2: Instances weights distribution after 1 Epoch, 10 Epochs, and 100 Epochs. The instances weights evolution shows that
our proposal successfully identifies noisy instances and can reduce their influences by assigning them low weights.

0.5. We adopt the binary cross-entropy loss and SGD algorithm
with learning 0.01 to train the DNN model.

For these methods, we correct the predicted probability to deal with
the label distribution bias problem. According to probability cal-
ibrating method (Dal Pozzolo et al. 2015) which is a commonly
used method to correct label distribution bias, let β be the sampling
ratio of the positive instances in training data, 0 < β < 1, the pre-
dicted probability of instance x belong to negative class is ps, the
probability can be corrected with p = psβ

psβ−ps+1
.

Label Noise Learning Methods We also compare our pro-
posal with three state-of-the-art label noise learning methods:

• Rank Pruning (Northcutt, Wu, and Chuang 2017): Rank prun-
ing is a novel label noise learning method that can estimate the
fraction of mislabeling in both the positive and negative train-
ing instances and can be applied to any probabilistic classifier.
Rank Pruning achieves perfect noise estimation and equivalent
expected risk as learning with correct labels in theoretical and
achieves nearly the same performance as learning with correct
labels. For rank pruning method, we adopt the XGBoost as the
basic classification model.

• GLC (Gloden Loss Correction) (Hendrycks et al. 2018): Sim-
ilar to our proposal, GLC also introduces a small set of trusted
data and estimate a noise correction matrix based on the vali-
dation data. The GLC method achieves state-of-the-art perfor-
mance on varies real-world dataset, e.g., CIFAR-10 and IMDB.
For GLC, we adopt the DNN as the basic model with structure
as we described before.

• LTR (Learning to Reweight Examples) (Ren et al. 2018): LTR
aims to reweight training instances based on the validation loss.
Different from our proposal, LTR simply optimizes the cross-
entropy loss on validation data based on a trivial optimization
method while our method optimizes the robust AUC. For LTR
method, we adopt the same architecture as the DNN method.
However, due to the validation data is class imbalance, simply
using LTR will obtain a degenerate solution, i.e., predict the la-
bels of all instances as positive. Therefore, we rescale the val-
idation loss based on ratio 1:30 according to the idea of cost-
sensitive learning (Zhou and Liu 2006).

For methods that fail to utilize validation data (e.g., XGBoost,
LR, DNN, Rank Pruning), we add the validation data into the train-
ing set to ensure fairness. All methods are trained on the trans-
formed feature. The model structure we adopted is same with DNN
and the hyper-parameters of the proposed method are tuned accord-
ing to the AUC score on the validation set. The initial weights of

all instances are set to 0.5, and the training epochs are set to 100.
The other two hyper-parameters (step sizes λθ and λw), are fixed
to 0.1 and 0.4, respectively.

Table 2: Comparison results of the compared methods. For
each method, we report the average AUC score and the run-
ning time of 10 runs on the test set.

Methods AUC Time Cost (s)
LR 78.64 ± 1.23 47.8

DNN 77.85 ± 1.17 90.4
XGBoost 79.55 ± 1.13 324.3

Rank Pruning 82.22 ± 0.53 601.4
GLC 82.63 ± 0.49 300.5
LTR 85.45 ± 0.51 211.6

Proposal 91.24 ± 0.47 107.1

Comparison Results Table 2 shows the experimental results
of our proposal and compared methods. From Table 2, we can see
that our proposal significantly outperforms all the compared meth-
ods. Compared with XGBoost, we achieve more than 12% perfor-
mance gain and compared with LTR we also achieve nearly 6%
performance gain. These show that the previous works that con-
sider only one weak supervision can not deal with the complex
compound situations well. Moreover, training models using valida-
tion data only cause poor performance (AUC 60.98 with XGBoost)
as the validation data is insufficient to train a good model, so we do
not report the result in Table 2. We also try to correct label bias for
label noise learning methods but do not achieves performance im-
provement. One possible reason is that these methods modify the
priors of the training set and consequently simply adopt the label
bias correction method is not useful. These results demonstrate the
effectiveness of our proposal.

Validation Set Previously, experiments are conducted based on
clean unbiased validation data. It is interesting to study how the
performance influenced by the validation data bias. We conduct ex-
periments with the ratio of positive to negative class in the valida-
tion set varied from 1:1 to more than 40:1 on three methods based
on the validation set, i.e., LTR, GLC, and our proposed method.
The AUC on test data is reported in Figure 3. From Figure 3, we can
see that, as the change of validation set bias, our proposal is con-
sistently better than the other two well-performed methods. This
demonstrates that our proposal is robust to the validation set bias.
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Figure 3: AUC on test data with the varied ratio between
positive to negative class in the validation set

Running Time We also report the running time of compared
methods in Table 2. The training of our proposal is implemented in
Pytorch 3 and all the code are run on a single machine with 10cores
2.20GHz Intel Xeon(R) CPU and 32GB main memory.

From the results, we can see that our proposal is the fastest
method compared with label noise learning methods whereas Rank
Pruning that based on XGBoost is the slowest algorithm and our
proposal only cost a half time compared with LTR, though these
two algorithms are all based on bi-level optimization. Compared
with the three baseline methods, our proposal is also comparable
with DNN and faster than XGBoost. These demonstrate that our
proposal is efficient to handle large-scale dataset.

Table 3: Performance results of our proposal and compared
methods on Precision, Recall and F1-Score metrics.

Methods Precision Recall F1-Score
LR 24.08% 34.69% 26.43%

DNN 23.26% 35.34% 25.71%
XGBoost 9.51% 69.80% 16.73%

Rank Pruning 12.26% 54.73% 18.27%
GLC 24.13% 34.24% 26.79%
LTR 8.63% 87.35% 15.70%

Proposal 16.50% 80.82 % 27.41%

Performance Measures It is meaningful to study whether
the proposal is effective in other performance measures. Table 3
presents the experimental comparison on Precision, Recall, and F1-
Score metrics, that are commonly used measures to evaluate the
ranking quality.

Specifically, denoting all ground-truth positive instances as G
and all predicted positive instances as T , then precision and recall
are defined as follows:

precision =
|G⋂

T |
|G| , recall =

|T ⋂
G|

|T |
and the F1-Score is defined as:

F1 =
2 ∗ precision ∗ recall
precision+ recall

3https://pytorch.org/

From the results, we can see that LTR achieve the best recall
while the lowest precision, DNN, LR, and GLC achieve similar
results on these three metrics. Our proposal trades off precision and
recall best and achieves the best result on F1-Score. These results
reveal that although the proposal is designed to optimize AUC, it
has a certain degree of robustness to the change of performance
measures.

Figure 4: Training Loss v.s. Epoch (left) and Validation AUC
v.s. Epoch (right) of our proposal and DNN.

Convergence We also conduct experiments to study the con-
vergence property of our proposed alternating optimization method
compared with the normal gradient method. The training loss and
validation AUC v.s. training epoch of our proposal and deep neu-
ral network are reported in Figure 4. From Figure 4, we can see
that the number of epoch required to converge of our proposal is
comparable with the naive DNN based on single-level gradient de-
scent method. This demonstrates the efficiency of our proposed op-
timization method.

Conclusion
In this paper, we study compound weakly supervised learning moti-
vated by real application, i.e., user experience enhancement in Didi,
one of the largest online ride-sharing platforms. This is an inter-
section of two kinds of weak supervision, i.e., severe noisy label
and distribution biased label happen simultaneously. This is a new
kind of weakly supervised learning problem that to the best of our
knowledge, has not been thoroughly studied before. To address this
problem, we propose the CWSL method. An instance reweighting
strategy is employed to cope with severe label noise. Robust criteria
AUC and the validated performance are optimized for the correc-
tion of biased data label. Efficient algorithms accelerate the opti-
mization on large-scale data. Experiments on real data sets validate
the effectiveness of CWSL in handling with compound weakly su-
pervised data. In the future, we will consider extending this work
to dynamic scenarios with an automatic model update.
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