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Abstract
We propose an agent model capable of actively and selec-
tively communicating with other agents to predict its envi-
ronmental state efficiently. Selecting whom to communicate
with is a challenge when the internal model of other agents is
unobservable. Our agent learns a communication policy as a
mapping from its belief state to with whom to communicate
in an online and unsupervised manner, without any reinforce-
ment. Human activity recognition from multimodal, multi-
source and heterogeneous sensor data is used as a testbed to
evaluate the proposed model where each sensor is assumed
to be monitored by an agent. The recognition accuracy on
benchmark datasets is comparable to the state-of-the-art even
though our model uses significantly fewer parameters and in-
fers the state in a localized manner. The learned policy re-
duces number of communications. The agent is tolerant to
communication failures and can recognize unreliable agents
through their communication messages. To the best of our
knowledge, this is the first work on learning communication
policies by an agent for predicting its environmental state.

I. Introduction
This paper investigates how an agent can optimally use other
agents for predicting the state of its environment. The as-
sumption is that, interacting agents might have distinct goals
but can still benefit from each other’s knowledge. We pro-
pose an agent model that learns to communicate selectively
with other agents to predict its environmental state.1

We model communication as active perception (Bajcsy,
Aloimonos, and Tsotsos 2018). This allows an agent to ac-
tively and selectively sample (or communicate with) other
agents. Communication makes causal knowledge acquistion
efficient by allowing to: (1) share causal knowledge regard-
ing the same event even though the observations are from
different sensors in space, time or modality, and (2) acquire
high-level causal knowledge directly from another agent in-
stead of from the low-level sensory environment. Hence,
communication by an agent is inevitable for predicting its
environmental state efficiently.

Learning with whom to communicate is crucial. Full com-
munication does not scale well with the number of agents
(Hoshen 2017). Predefined protocols cannot adapt to envi-
ronmental changes or capture dynamic changes in agents’
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1Analysis of the properties of multiagent interaction to achieve
a common goal using our proposed model, albeit interesting, is be-
yond the scope of this paper.

interactions (Han et al. 2018). Not all agents are equally in-
formative in a situation (Kapourchali and Banerjee 2018a).
Communication with a less-informative agent increases cost
and might reduce the agent’s confidence and accuracy.

Partially-observable Markov decision processes
(POMDPs) have been widely used to learn a state-to-action
mapping, referred to as policy, which requires a reward func-
tion dependent on the agent’s goal. Predictive coding is a
more general framework for modeling an agent, with no ex-
plicit reward function (Friston, Daunizeau, and Kiebel 2009;
Banerjee and Dutta 2014). We propose an agent model in
the predictive coding framework with a unified objective
– minimization of variational free energy (VFE) – for
inference, learning, and action. Using the same objective,
our agent learns a communication policy as a mapping from
its belief state to with whom to communicate.

Human activity recognition from multimodal, multi-
source and heterogeneous sensor data is used as a testbed
to evaluate the proposed model. To test the model for larger
number of agents, we use Kinect skeleton data from UTD-
MHAD (Chen, Jafari, and Kehtarnavaz 2015) and KARD
(Gaglio, Re, and Morana 2015) datasets where each joint in
the skeleton is monitored by an agent. The learned policy
is compared to a myopic policy as well as a decision-level
fusion method where all agents send their messages to a cen-
tral node. When all agents send reliable messages, an offline
and myopic approach performs as good as the learned pol-
icy. However, when the probability of failure of each agent
increases, online decision-making using the learned policy
maintains the same accuracy by increasing the number of
communications. If agents’ behaviors change over time, the
policy adapts to select other agents for communication.

The model is also applied to activity recognition from mu-
timodal UTD-MHAD dataset (Kinect skeleton, inertial and
depth video). Each sensor is assumed to be monitored by an
agent. A policy is learned for each activity class. Communi-
cation enhanced efficiency by using a subset of observations.
The estimation accuracy is comparable to the state-of-the-art
even though our model uses significantly fewer parameters
and infers the state in a localized manner (i.e. it communi-
cates neither with a central/global controller nor with all the
agents all the time).

The rest of the paper is organized as follows. Sec. II intro-
duces the necessary concepts. The problem statement and
proposed model are described in Sec. III and IV, respec-
tively. The experimental results are discussed in Sec. V. A
brief literature review is provided in Sec. VI.
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II. Background and Notations
This section introduces the relevant terms and concepts.

Table 1: Symbols and notations.

Variable Description
I Number of states.
J Number of agents.
�ϕ(e) ∈ �M Feature vector.
�ϕ(msg) ∈ �I Communication message.
�μ(v) ∈ �I Belief vector about environmental states.
�μ(u) ∈ �J Belief vector about control states.
�εϕ(e) ∈ �M Sensory prediction error.
�εϕ(msg) ∈ �I Communication message prediction error.
�εp(e) ∈ �I Prior prediction error.
�vp ∈ �I Mean of prior density.
Θge ∈ �M×I Parameters for agent’s model of environ-
ΘgA

j′
∈ �I×I ment and other agent Aj′ respectively.

Θgπ ∈ �J×I Parameters for encoding optimal policy.
Σχ Covariances of random fluctuations

where χ = {�ϕ(e), �ϕ(msgj′ ), π, p(e)}.

Definition 1. (Agent) An agent is anything that can per-
ceive its environment through sensors and act upon that en-
vironment through actuators (Russell and Norvig 2016). The
agent estimating its environmental state will be referred to as
the primary agent.

Definition 2. (Markov decision processes) Sequential
decision problems in uncertain environments, also called
Markov decision processes (MDPs) are defined as tuple
(Russell and Norvig 2016): 〈Ψ, A, Ta, ra〉 where Ψ is a fi-
nite set of states, A is a finite set of actions. Ta(ψ′|ψ, a) =
P ({Ψt+1 = ψ′|Ψt = ψ,At = a}) is the transition prob-
ability. ra is the reward received at state ψ′. The goal is
to find a policy π : Ψ → A that maximizes the cumula-
tive rewards. The objective of MDP can be expressed as the
Bellman optimality equation (Bellman 1952): V alue(ψ) =
ra + max

a∈A
∑
ψ′ Ta(ψ

′|ψ, a)V alue(ψ′) where V alue(ψ) is

the utility or value of state ψ.
Definition 3. (Partially observable MDPs) Partially ob-

servable MDPs (POMDPs) is an extension of MDP when the
states are partially observable. A POMDP can be converted
to a MDP using beliefs about the current state. The belief
can be recursively computed from the observations and ac-
tions using Bayes rule. POMDP based approaches can pro-
vide a closed-loop non-myopic solution for agents’ optimal
decision-making problem (Russell and Norvig 2016).

Most of existing POMDP solvers are designed for pur-
poses when reducing uncertainty is a subtask and not a goal.
They fail for active perception due to requiring a long time
for computing policy or underlying assumptions (e.g. piece-
wise linearity) that do not hold for a belief based reward
function required for active perception (Satsangi et al. 2018).

Definition 4. (Predictive coding) Predictive coding (PC)
is a brain-inspired framework for solving the problem of in-
ferring the causes from sensations (Rao and Ballard 1999).
Inspired by linearly solvable MDPs (Todorov 2007) and path
integral control frameworks (Kappen, Gómez, and Opper

2012), a version of PC proposes an alternative approach for
modeling an agent which is efficient and does not require
a reward function to compute optimal policy (Friston, Dau-
nizeau, and Kiebel 2009). By modeling action as inference
and maximizing marginal likelihood of observations under a
generative model, the optimal policy can be computed as a
Kullback-Leibler (KL)-divergence minimization problem. A
formal proof is provided in Friston, Daunizeau, and Kiebel
(2009) to show that these policies are equivalent to the ones
computed using Bellman optimality equation (Def. 2). Hence
PC is a generalization of optimal control or POMDPs.

An agent in PC framework is defined as the tuple
〈Ψ, A, ϑ,G,Q,R,Φ) where Ψ is a set of states, A is a set
of actions. ϑ is a set of real valued parameters. G and Q are
generative and recognition densities. R is sampling proba-
bility and Φ is a set of sensory states (Friston, Samothrakis,
and Montague 2012). The agent’s objective is to minimize
VFE which is a measure of salience based on the diver-
gence between the recognition density Q(ψ) and genera-
tive density p(ϕ, ψ) (Friston, Daunizeau, and Kiebel 2009):
F = −〈ln p(ϕ, ψ)〉Q + 〈lnQ(ψ)〉Q where 〈.〉Q denotes the
expectation under density Q.

Definition 6. (Recognition density) Recognition den-
sity is a probabilistic representation of environmental states
which is encoded by internal states μ. Probabilistic repre-
sentation of environmental states is the agent’s belief vec-
tor. Assuming a Gaussian density allows Laplace approx-
imation (Friston, Daunizeau, and Kiebel 2009): Q(ψ) =
N (ψ;μ, ζ) = 1√

2πζ
exp(−(ψ − μ)2/2ζ). Sufficient statis-

tics of a Gaussian density are mean and variance.
Definition 7. (Generative density) Generative density

p(ϕ, ψ) is a joint probability density relating environmental
states and observations. It includes a sensory mapping ϕ =
g(ṽ, ũ, θg)+ω̃1 and equation of motion ˙̃v = f(ṽ, ũ, θf )+ω̃2

(Friston, Daunizeau, and Kiebel 2009), where ω̃i(i = 1, 2)
are Gaussian noise. The latter contains the policies encoded
in the parameters θf . It is a joint probability distribution over
states, control states and the learned parameters. v and u are
environmental hidden states and control states, respectively.
X̃ shows the generalized coordinates of the variables. We
use second order generalized coordinates consisting of state
and change of state.

Definition 8. (Sampling probability) Sampling proba-
bility R(ϕ′|ϕ, a) = p({ϕt+1 = ϕ′|ϕt = ϕ, at = a}) is
the probability that the observation ϕ′ ∈ Φ follows action
a ∈ A given ϕ (Friston, Samothrakis, and Montague 2012).

III. Problem Statement
State estimation can be formulated as Bayesian inference
(Knill and Richards 1996): p(Ψt|Φ1:t) ∝ p(Φ1:t|Ψt)p(Ψt).
Active perception is defined as (Denzler and Brown 2002)
p(Ψt|A1:t,Ψ1:t), in which the previous actions are causes
for the current observation. Such problems are traditionally
solved by POMDPs for non-myopic decision-making. We
consider other agents as active parts of an agent’s environ-
ment so that it can change its control states via communica-
tion which is an action. The problem is formulated as:
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p(Ψt|A1:t,Φ1:t) =
p(Φ1:t|Ψt, A1:t)p(Ψt, A1:t)

p(Φ1:t, A1:t)
(1)

A number of challenges need to be addressed: (1) the
size of action space grows exponentially with the number of
agents, rendering standard POMDP solvers infeasible (Sat-
sangi et al. 2018); (2) since all agents are not equally infor-
mative and their internal models are unobservable and time-
varying, the problem needs to be solved online, without su-
pervision or reinforcement; (3) an agent has to assign a de-
gree of trust to each message received and update its belief
accordingly.

IV. Models and Methods
We consider Ψ as a collection of causal environmental states
that influences observations. It includes V as the uncontrol-
lable aspects of environment and U which can be controlled
by an agent. We model communication as an action using
which an agent changes other agents’ control states. We dis-
tinguish between A and U as an action may fail to control
other agents. The action reveals a new observation, commu-
nication message Φ(msg) that depends on U and V . There-
fore, the random variable Φ collects two types of observa-
tions: Φ(e) generated by the shared environment and Φ(msg)

generated by other agents as controllable parts of environ-
ment. The goal is to infer V at time t, efficiently, by acti-
vating the optimal sequences of U1:t. Obviously, Φt is con-
ditionally independent of action A, given Ψ which consists
both U and V . Accordingly, the problem of with whom to
communicate is converted to inferring the optimal sequence
of control states U1:t. Rewriting the above discussion as
p(Ψ1:t|Φ1:t), the problem is a Bayesian inference where ex-
act computation is intractable for large distributions.

We approximate the posterior belief using variational in-
ference (Fox and Roberts 2012), by minimizing divergence
between a recognition density and the posterior density to
reachDKL(Q(Ψ1:t)||p(Ψ1:t|Φ1:t)) = F +ln p(Φ1:t) where
F is the VFE in Def. 4. Hence we can formulate our agent’s
model in the PC framework (Def. 4). We then provide an
algorithm for sequentially optimizing perception and action,
and updating agents’ model as well as optimal policy. Ψ, Φ
and A are defined above so rest of the elements are defined:
• ϑ represents real valued internal states of the agent which

parameterize a conditional density.
• Generative density G = p(Φ1:t,Ψ1:t) relates environ-

mental states and sensory data. It can be specified in
the form of a likelihood and a prior. In our model, it is
defined as: p(Φ1:t,Ψ1:t) = p(Φ1:t|Ψ1:t)p(Ψ1:t) As in
POMDPs, the Markovian assumption implies that Φt de-
pends only on Ψt, so the likelihood term can be written
as p(Φ1:t|Ψ1:t) =

∏
t p(Φt|Ψt). The transition probabil-

ities depend on the parameters ϑ. They are defined as:
p(Ψ1:t) = p(Ψ0)

∏
t p(Ψt|Ψt−1, ϑ). The prior expecta-

tions over trajectory of controlled states include policy
(see Def. 7).

• Sampling probability R = p(Φt+1|Φt, at) is agent’s pre-
diction of its action’s consequences. The agent needs to

learn an internal model of other agents to predict their re-
sponses to communication. The received message can be
different from agent’s prediction so the model is updated
using prediction error.

• Recognition density Q(Ψ1:t, ϑ|μ1:t), is an approximate
posterior over states and parameters encoded with its suffi-
cient statistic μ1:t, in the agent’s internal model. The den-
sity is assumed to be Gaussian for Laplace approximation.

The unified objective of each agent for inference (percep-
tion), learning and communication (action selection in gen-
eral) is to minimize the VFE (Def. 5).

SinceQ(Ψ1:t) is a Gaussian, with Laplace approximation,
F converts to:

F = − ln p(μ1:t,Φ1:t) + C (2)

where ln p(μ1:t,Φ1:t) is the generative density in which the
environmental states are approximated by sufficient statis-
tics of recognition density (agent’s belief) and C is a con-
stant which will be eliminated from rest of the equations
for brevity. An intuitive interpretation of the above equation
is that the agent interprets the external states of the envi-
ronment (including both sensory states and hidden environ-
mental states), in terms of its hidden internal states μ1:t. See
(Buckley et al. 2017) for a formal proof.

A block diagram of our model in Fig. 1 provides an
overview. Details of the blocks are as follows.

IV-A. Independent inference by an agent. In our model,
an agent starts with an independent estimation based on its
private sensory signals �ϕ(e). Vector sign indicates that the
observation is multivariate. Since at this time only �ϕ(e) is
available, the objective function is simplified to:

F (e) = − ln[p(�ϕ(e)|�μ(v))p(�μ(v))] (3)

where p(�ϕ(e)|�μ(v)) = p(�ϕ(e)|�v)+ω1 and p(�μ(v)) = �vp+ω2.
�μ(v) denotes the belief vector regarding the aspect of en-
vironmental states �v, which should be estimated. Gaus-
sian assumptions about error terms wi(i = 1, 2), specify
likelihood and priors as N (�ϕ(e); ge(�μ

(v),Θge),Σϕ(e)) and
N (�μ(v);�vp,Σp(e)), respectively. Mean of likelihood density,
ge(�μ

(v),Θge) = Θge�μ
(v), is the generative function which

maps agent’s belief to the environmental observations �ϕ(e).
In this paper, it is assumed to be a linear function, however,
there is no limitation for using non-linear functions as long
as they are differentiable. In our model, ge is initialized us-
ing a limited number of samples and updated by observing
each new sample in an online manner (details in Sec. VI).
Plugging the Gaussians in Eq. 3, the best guess can be found
by stochastic gradient descent:

�̇μ(v) =
∂F (e)

∂�μ(v)
= −�εp(v) +

∂ge(�μ
(v),Θge)

T

∂�μ(v)
�εϕ(e) (4)

where �εϕ(e) and �εp(v) are auxiliary variables representing
Σ−1
ϕ(e)(�ϕ

(e) − ge(�μ
(v),Θge)) and Σ−1

p(e)
(�μ(v) − �vp), respec-

tively. These terms describe prediction errors weighted by
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Figure 1: Block diagram of the proposed agent model for state estimation.

precision (inverse of variance). The former expresses devi-
ation between agent’s prediction ge(�μ

(v),Θge) and actual
observation �ϕ(e), while the latter denotes deviation of es-
timation �μ(v) from prior expectation �vp. Multiplying with
precision terms weigh the influence of each error term in the
inference. These weights define the relative degree of agent’s
attention to its prior knowledge and current sensory input.

IV-B. Selecting whom to communicate with. For each
data sample, the agent ought to refine its initial and prob-
ably imprecise guess �μ(v) through actions. Agents’ actions
change the control states of the environment, and hence the
observations. Since communication is an action, the other
agent’s message will be an additional observation given that
its control state is activated by the primary agent’s action (re-
quest for communication). In this paper, we assume that the
other agent sends its belief vector as the message. Taking
into account the conditional independencies in our model,
optimal action is selected as:

at = argmin
a

∑
Φ

p(�ϕ
(msg)
t+1 |�ϕt, a)︸ ︷︷ ︸

1

[
ln p(�ϕ(e)|�μ(v)

t )︸ ︷︷ ︸
2

+

t∑
τ=1

ln (�ϕ(msg)
τ |�μ(u)

τ , �μ(v)
τ )︸ ︷︷ ︸

3

+ ln p(�μ
(v)
t )︸ ︷︷ ︸

4

+

t∑
τ=1

ln p(�μ
(u)
τ+1|�μ(u)

τ , �μ(v)
τ )︸ ︷︷ ︸

5

]
(5)

where �μ(v)
t=1 is the agent’s best guess calculated from Eq.

4. Eq. 5 implies agent Aj chooses to communicate with
agent Aj′ (a = j′) whom Aj believes would maxi-
mally decrease the VFE. The second and fourth terms
are defined in the last section, following Eq. 3. The
third term contains model of another agent. An agent
needs to learn a model of other agents from their mes-
sages, in order to interpret the observations generated
by them. This model has the same form as the gener-
ative function of environment ge but with different pa-
rameters: N (�ϕ(msgj′ ); gAj′ (�μ

(v), �μ(u),ΘgA
j′
),Σ

ϕ
(msg

j′ ))

where gAj′ (�μ
(v), �μ(u),ΘgA

j′
) = μ(uj′ )ΘgA

j′
�μ(v) where

μ(uj′ ) = 1 means that control state of Aj′ is activated by
action. The parameters ΘgA

j′
, are learned over time by the

samples of communication provided by Aj′ to Aj and are
unique for each agent in the environment.

The fifth term represents agent’s prior beliefs about tran-
sition among states. It depends on the parameters ϑ. Optimal
priors over these parameters make this term equivalent to op-
timal policy (Friston, Samothrakis, and Montague 2012). In
other words, p(�μ(u)

τ+1|�μ(u)
τ , �μ

(v)
τ ) = T (Ψτ+1|Ψτ , π(Ψτ )) +

ω3 = T (Uτ+1|Uτ , Vτ , π(Ψτ )) + ω3, where Vτ does not
change over Δτ → 0 so Vτ+Δτ ≈ Vτ . Therefore, the
fifth term is a Gaussian N (�μ

(u)
τ+1; gπ(�μ

(u)
τ , �μ

(v)
τ ,Θπ),Σπ).

In this paper, the next control state �μ(u)
τ+1 needs to be in-

ferred since the agent should choose the communication tar-
get. The agent knows with whom it has already communi-
cated so �μ

(u)
τ = �uτ . Thus it will communicate with Aj′

if μ
(uj′ )
τ = uj′ = 0. The generative function for trajec-

tory of control states (priors on the dynamics) is defined as:
gπ(�μ

(u), �μ(v),Θπ) = (�1−�μ(u))	 (Θπ�μ
(v)) where �1 ∈ �J

and 	 is element-wise product. Finally, the first term in Eq.
5 is the sampling probability. It allows the agent to predict
other agents’ behaviors given the current evidences. �ϕ(msg)

t+1
is Aj’s prediction about the next observation.

IV-C. Updating belief using communication message.
The received communication message (�ϕ(msg)

t+1 ) is a new ob-
servation. It is interpreted through agent’s internal model
in the same way �ϕ(e) is processed. This helps the
agent to reason whether it wants to update its belief
or not based on the reliability of the sender. Reliability
of Aj′ ’s messages are measured by the precision term,
Σ−1

ϕ
(msg

j′ ) . The agent’s belief is updated by minimizing

F ({�ϕ(e), �ϕ
(msg)
1 , ..., �ϕ

(msg)
t+1 }):

�̇μ
(v)
t+1 =

∂F

∂�μ
(v)
t+1

= −�εp(v) +
∂ge(�μ

(v)
t+1,Θge)

T

∂�μ
(v)
t+1

�εϕ(e)+

t+1∑
τ=1

∂gAj′ (�μ
(v)
τ , �μ

(u)
τ ,ΘgA

j′
)T

∂�μ
(v)
τ

�ε
ϕ

(msg)
τ

+

t+1∑
τ=1

∂gπ(�μ
(u)
τ , �μ

(v)
τ ,Θπ)

T

∂�μ
(v)
τ

�επ (6)

where �επ = Σ−1
π (�μ(u) − gπ(�μ

(u), �μ(v),Θπ)) and �εϕ(msg) =

Σ−1

ϕ
(msg

j′ )(�ϕ
(msgj′ ) − gAj′ (�μ

(v), �μ(u),ΘgA
j′
)). Since now
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t+1 is the current time, ϕ(msg)
t+1 is the observation and not a

prediction.
IV-D. Updating the agent’s internal model. Updating the

model, in an online and unsupervised manner, helps the
agent to progressively adapt itself to minimize VFE on suc-
cessive exposure to the same stimulus. In our model, after
each communication sequence, if the VFE has converged,
the agent updates its model. Here we provide the update
rules for parameters and hyperparameters of the model. Pa-
rameters of ge are updated as:

∂F

∂Θge

= Σ−1
ϕ(e)(�ϕ

(e) − ge(�μ
(v),Θge))�μ

(v)T

T = �εϕ(e)�μ
(v)T

T

where superscript T refers to the matrix transpose operation
while subscript T stands for the total communication time
(i.e. T = J or total number of agents communicated with
when ΔF < ε). Model of agent Aj from each agent Aj′
where j′ ∈ {1, ...J} and j′ 
= j is updated as:

∂F

∂ΘgA
j′

= �ε
ϕ

(msg
j′ )�μ

(v)T

T (7)

Parameters of optimal policy after taking each action at

time t, where μ
(uat−1

)

t = 1, is updated as:

∂F

∂Θπ
= (1− �μ

(u)
t−1)	 �επ�μ(v)T

t−1 (8)

The update rules for covariance matrices are:

∂F

∂Σχ
=

1

2
(�εχ�ε

T
χ −Σ(−1)

χ ) (9)

where χ is replaced with the �ϕ(e), �ϕ(msgj′ ), π and p(e).

V. Experimental Results
The model is evaluated for human activity recognition. Sen-
sors generate high-dimensional multivariate time-series. We
use a convolutional sparse coding model (Kapourchali and
Banerjee 2018b) to learn a dictionary of features from data.
The sequence of indices of the detected feature (om�d ) and
corresponding shift (omτ ) for each variable constitutes the
sensory feature vector (the agent’s sensory observation):
�ϕ(e) = [o1�d, o

1
τ , o

2
�d
, o2τ , ..., o

M ′
�d
, oM

′
τ ]T , whereM ′ is the num-

ber of variables. Our model is applied to two experiments:
(1) skeleton-based activity recognition to evaluate the model
for larger number of agents, and (2) multimodal activity
recognition to evaluate the model on heterogenous data.

Skeleton-based human activity recognition. Benchmark
datasets for activity recognition rarely exceed a few sensors.
So the model is evaluated on two benchmark datasets for
activity recognition using Kinect skeleton data where each
joint is assumed to be monitored by an agent. KARD dataset
(Gaglio, Re, and Morana 2015) comprises of 18 activities
performed by 10 individuals. Each person repeated each ac-
tivity three times. The dataset includes 540 sequences. The
skeleton has 15 3-D joints. UTD-MHAD (Chen, Jafari, and
Kehtarnavaz 2015) is a multimodal dataset which also in-
cludes skeleton data. It has 27 activities performed by eight

subjects. Each subject performed each activity four times.
After removing three corrupted sequences, the dataset in-
cludes 861 sequences. The skeleton has 20 3-D joints. Each
agent observes only its 3-D signals and the communication
messages from other joints (agents) upon request. It does not
have access to the observations and internal models of other
agents. In order to compare with baselines, the “new person”
setup, as in Gaglio, Re, and Morana (2015), is used where
data of one subject is reserved for testing while the model is
trained on data of other subjects.

First, a dictionary of 50 features is learned from the
training set. Inference starts with the head (primary) agent
(the joint representing the head of the person) though this
does not have to be the case. From the index of the best
matched feature for each of the three coordinates and their
corresponding optimal shifts, the posterior probability dis-
tribution over all possible states (activity categories) is in-
ferred by the primary agent, independently. The agent iter-
atively refines the belief using the steps shown in the Fig.
1. Communication stops if the change in VFE is less than
ε (= 10−3). The internal model of the primary agent is up-
dated based on the final inference.

Fig. 2 shows the learned policies for a particular subject
for two activity classes. The learned policy for different ac-
tivities are different. The head agent relies on the agents lo-
cated in parts of the body with more variations in the envi-
ronmental signals during that activity. Fig. 3 shows the final
learned policy for a situation where the head agent fails to
distinguish between two activities: Lunge and Bowling. The
head agent inferred Lunge as Bowling half of the times. A
sample frame of a subject’s posture for each of these ac-
tivities are shown. The largest circle belongs to the wrist
agent (hand agent is not visible in the figure due to its small
size). Based on information theory, it is expected that the
head agent chooses the agents in the most salient parts of
the body during a particular activity (i.e. the signals with less
mutual information) (Russell and Norvig 2016). Saliency of
an agent is measured by the KL-divergence between its be-
lief distribution and that of the head (primary) agent’s.

(a) Walking (b) Waving

Figure 2: The learned policies for two activity classes. Num-
ber of training iterations (from left to right): 1, 100, 500,
1000. Length of a circle’s radius is proportional to the proba-
bility of communicating with the corresponding joint-agent.

Fig. 3(b) compares the saliency of different agents’ be-
liefs. A circle’s radius is proportional to KL-divergence be-
tween distributions. However, this saliency is with respect
to the head (primary) agent at the initial step without con-
sidering the pairwise similarity between the beliefs of other
agents. Two agents might convey the same information so
that once the head agent communicates with one of them, the
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other one is no longer salient. A non-myopic approach takes
the conditional saliency into account. It can be seen that only
a subset of the most salient joints are in the learned policy. To
visualize this, we grouped the agents’ beliefs using k-means
clustering and plotted the joints in the same cluster with the
same color. The number of clusters is decided based on aver-
age number of times the agents communicated for this activ-
ity class. The silhouette coefficients indicate the clusters are
reasonably compact and homogeneous (ref. Fig. 3(c)). Even
though the saliency of the hip-center agent is less than some
of the others, in the policy distribution it has a higher weight
because it is alone in its cluster and no other agent’s belief
is similar to its. Among the more salient joints, at least one
from each cluster is present in the learned policy.

(a) (b) (c) (d)

Figure 3: (a) Policy when desired state is Lunge but the head
agent infers Bowling from its environmental observations.
(b) Saliency of each joint (colors show clusters). (c) Silhou-
ette coefficient. (d) A sample frame from each activity.

Fig. 4 shows an example of sequential decision-making
by an agent for whom to communicate with. It shows how
the head agent decides on a sequence of actions to decrease
the uncertainty. We have intentionally chosen an activity re-
garding which the head agent is highly uncertain and ends up
communicating with six other agents before reaching the fi-
nal decision. The activity is Knocking. First, the head agent
infers it as Jogging. Refer to the first top left subfigure in
Fig. 4 and the corresponding belief. This belief has high en-
tropy, so the agent communicates with the wrist agent to
reduce uncertainty. It can be seen that the maximum be-
lief is changed to the 21st activity which is Pick up and
Throw (note that throwing involves wrist movement similar
to knocking). The communication continues by requesting
belief from the hip agent. It reduces the uncertainty in belief
by decreasing the second maximum probability. That is, by
asking the hip agent, the agent recognizes the activity is not
Lunging. Finally, the agent reaches the correct state by com-
municating with shoulder agent and becomes more certain
by communicating with elbow and shoulder center agents.

For quantitative evaluation, two cases are considered: (1)
the probability of each agent sending random responses is
non-zero, and (2) a fixed set of agents, drawn from a uniform
distribution, generate random beliefs for a number of tri-

als. We compare our model with two widely-used decision-
making methods: (1) an information theoretic technique,
Value of Information (ref. Chapter 16 of (Russell and Norvig
2016)), as a myopic and offline decision-making, and (2) fu-
sion where the posterior probability is computed at a cen-
tral node as weighted mean of all agents’ beliefs. Results
are shown in Fig. 5. When agents randomly fail to provide
informative messages, online non-myopic decision-making
helps to maintain accuracy by increasing the number of com-
munications. However, when the same agents fail to send
informative messages for a long time, updating the agents’
models helps the primary agent to adapt its policy; the in-
crease in number of communications is less compared to a
non-adaptive approach.

Table 2 shows the head agent’s inference accuracy us-
ing different communication protocols. Using learned pol-
icy, the accuracy of recognition is increased. The head agent
communicated 63.54% of the time for KARD and 61.32% of
the time for UTD-MHAD dataset which is a significant sav-
ing in time and resources. Accuracies from references are
provided as a baseline. Note that the accuracy of our model
also depends on the nature of the chosen generative func-
tion, number of parameters, and dimension of hidden state
vector. Accuracy can be improved by replacing our linear
generative function with a more sophisticated one.

Table 2: Recognition accuracy(%) for the two datasets. “No
Comm” and “Full Comm” refer to accuracy of the agent
alone and when the agent communicates with all other
agents. “Policy” refers to our model. “Ref.” provides base-
line accuracy for the new person setup in (Gaglio, Re, and
Morana 2015) and (Chen, Jafari, and Kehtarnavaz 2016) for
KARD and UTD (Kinect alone).

No Comm Full Comm Policy Ref.
KARD 24.2±1 88.1±1 90.2±3 84.6

UTD-MHAD 18.6±2 73.1±4 80.1±4 74.7

Multimodal human activity recognition. The proposed
model is evaluated for multimodal activity recognition on
UTD-MHAD dataset which is introduced in the last section
where only Kinect skeleton was used. In this section, data
from different modalities, namely, depth, skeleton and iner-
tia are used where each sensor modality is assumed to be
monitored by an agent. The frame size in depth data is re-
duced by a factor of 10 to enhance depth agent’s efficiency.
The agents’ generative functions are learned using data from
four subjects (subjects 1 through 4) which are excluded from
rest of the experiments. These subjects are considered in
(Chen, Jafari, and Kehtarnavaz 2015) as training set, so us-
ing them for training allows appropriate comparison.

The inertia (primary) agent starts the communication pro-
cess since it has the least number of variables (three vari-
ables leading to a 6-D feature vector) which incurs lower
computational cost. After an independent inference, it com-
municates with an agent based on the optimal policy and
decides to further communicate until the convergence crite-
rion is satisfied. Recognition accuracy for different kinds of
communication are shown in the bottom three rows of Table
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Figure 4: Sequential decision-making for with whom to communicate. Red circle denotes the agent Aj′ selected for communi-
cation. Primary agent Aj’s belief vector (probability of each environmental state or activity) after communication is shown.

Figure 5: Advantages of online, non-myopic decision-making, as well as online updating of agents’ model are shown in these
figures. Top and bottom rows are the results from UTD-MHAD and KARD datasets, respectively. The two left plots from each
row shows the accuracy and number of communications when each agent has a probability of failure at each point of time. The
two right plots from each row show the same metrics but a fixed number of agents, sampled from a uniform distribution, change
their behavior and send random messages for a long time. Nonad and VoI stand for Non-adaptive and Value of Information (a
myopic and offline planning method) methods, respectively.

3. Results show the benefit of communication. However, full
communication does not guarantee highest accuracy.

Our model is compared with existing methods that have
used the same cross-subjects setup for training. The results
show that even though our model has significantly fewer
parameters, communicating using a learned policy yields
higher accuracy than most of these methods (see Table 3).
ConvNets (Hou et al. 2016) is slightly (1.86%) more accu-
rate than our model; it has 60×106 parameters as compared
to 67 × 103 in our model. The inertia agent communicated
for 301 and 129 of the test samples with skeleton and depth
respectively, but only three times with both.

VI. Related Work
Prior work on active perception has primarily focused on one
agent controlling its sensors (Butko and Movellan 2009) or
selecting a subset of sensors (Li et al. 2016; Satsangi et al.
2018). Research has been reported on controlling multiple
sensors in which, whom to communicate with is either pre-
defined (Zivan et al. 2015; Kapourchali and Banerjee 2019)

or decided by a fusion center (Stachura and Frew 2017). In
other areas, such as distributed AI and multiagent systems,
some recent works (Hoshen 2017) have investigated the im-
portance of learning with whom to communicate where the
goal is coordination between agents. They use a single net-
work for controlling a multiagent system (i.e. communica-
tion policies are globally learned) and lack the ability to
handle heterogeneous agent types (Peng et al. 2017). In our
model, policy is learned and executed locally; the task is ac-
tive perception. Challenges of policy learning for such a task
are discussed in (Satsangi et al. 2018).

VII. Conclusions
We propose an agent model for efficiently predicting its en-
vironmental state via selective communication with other
agents. The agent is modeled in the predictive coding frame-
work. It learns a communication policy as a mapping from
its belief state to with whom to communicate in an online and
unsupervised manner, without any reinforcement. The pro-
posed model is evaluated for activity recognition from mul-
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Table 3: Comparison of proposed and existing methods for
recognizing 27 actions in the UTD-MHAD dataset.

Method Accuracy %
ELC-KSVD (Zhou et al. 2014) 76.19

Chen, Jafari, and Kehtarnavaz (2015) 79.10
Cov3DJ (Hussein et al. 2013) 85.58
ConvNets (Hou et al. 2016) 86.97

Dawar and Kehtarnavaz (2018) 86.3
Our model 85.11
No Comm 29.2
Full Comm 84.6

timodal, multisource and heterogeneous sensor data. The
accuracy is comparable to the state-of-the-art even though
our model uses significantly fewer parameters and infers the
state in a localized manner. The learned policy reduces num-
ber of communications and enhances tolerance to communi-
cation failures. To the best of our knowledge, this is the first
work on learning communication policies by an agent for
predicting the state of its environment.
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