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Abstract

Learning accurate low-dimensional embeddings for a net-
work is a crucial task as it facilitates many network an-
alytics tasks. Moreover, the trained embeddings often re-
quire a significant amount of space to store, making stor-
age and processing a challenge, especially as large-scale net-
works become more prevalent. In this paper, we present a
novel semi-supervised network embedding and compression
method, SNEQ, that is competitive with state-of-art embed-
ding methods while being far more space- and time-efficient.
SNEQ incorporates a novel quantisation method based on a
self-attention layer that is trained in an end-to-end fashion,
which is able to dramatically compress the size of the trained
embeddings, thus reduces storage footprint and accelerates
retrieval speed. Our evaluation on four real-world networks of
diverse characteristics shows that SNEQ outperforms a num-
ber of state-of-the-art embedding methods in link prediction,
node classification and node recommendation. Moreover, the
quantised embedding shows a great advantage in terms of
storage and time compared with continuous embeddings as
well as hashing methods.

Introduction

Network embedding methods learn an encoder system that
converts nodes into low-dimensional float-valued vectors,
aiming at preserving the original network information as
much as possible. It has a wide range of applications and
has attracted significant attention. Many algorithms have
been proposed, including DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), LINE (Tang et al. 2015), Node2vec (Grover
and Leskovec 2016), and NetMF (Qiu et al. 2018), among
many others. Many of these methods (Perozzi, Al-Rfou,
and Skiena 2014; Lian et al. 2018; Qiu et al. 2018) are
trained in an unsupervised manner, completely disregard-
ing the valuable node label information, leaving significant
room for improvement on node classification performance.
Graph2Gauss (G2G) (Bojchevski and Günnemann 2018) is
an unsupervised method that embeds each node into a Gaus-
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sian distribution and achieves good performance in link pre-
diction and node classification.

Label information has also been incorporated in embed-
ding methods. HCGE (Dos Santos, Piwowarski, and Gal-
linari 2016) is a supervised method for node classification
with good improvement. Kipf and Welling (2017) first pro-
posed an end-to-end semi-supervised graph convolutional
network (GCN) architecture via a localised first-order ap-
proximation. H-GCN (Hu et al. 2019) explored a hierar-
chical GCN that aggregates nodes with similar neighbour-
hood structure into hypernodes. Graph Attention Network
(GAT) (Velic̆ković et al. 2018) is an attention-based graph
convolutional network, focusing on weighted aggregation of
neighbourhood information. A major drawback of most ex-
isting graph embedding methods is the high computational
cost on retrieval tasks such as node recommendation. Re-
trieval tasks rely on expensive distance measures on float-
valued vectors such as dot product. On large networks with
hundreds of thousands or millions of nodes, retrieval be-
comes prohibitively expensive. At the same time, it also im-
poses a significant storage overhead.

Embedding vectors usually contain a large amount of
redundant information. Hashing and quantisation meth-
ods (Lian et al. 2018; Du and Wang 2014; Zhang et al. 2014)
have been proposed to compress such learned features. The
main idea of quantisation is to learn a series of codebooks
to approximate the actual embeddings. In other words, the
original embeddings are represented by their closest cen-
tres. Although quantisation and hashing methods introduce
additional information loss, they significantly reduce stor-
age footprint and retrieval time. By pre-generating a lookup
table, recent quantisation methods (Cao et al. 2017a) can
achieve a retrieval speed similar to hashing. With the ad-
ditional codebooks, quantisation also achieves a better re-
trieval accuracy than hashing.

In this paper, we present SNEQ, a novel semi-supervised
network embedding method combined with quantisation
learned through a self-attention layer. The embedding com-
ponent utilises both node labels, network proximity infor-
mation, as well as node attributes. Meanwhile, our self-
attention based quantisation learns a compact and accurate
codebook in an end-to-end fashion. SNEQ takes all of the
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above properties into account and jointly optimises on them.
Our experiments on four real-world datasets with diverse
characteristics show that SNEQ outperforms existing state-
of-the-art embedding methods on the tasks of link predic-
tion, node classification, and node recommendation. Com-
paring to well-known hashing methods, SNEQ also achieves
substantially better performance on these tasks while main-
taining a comparable storage footprint and time cost for re-
trieval. In summary, our main contributions are fourfold:
• We propose a semi-supervised embedding scheme, se-

mantic margin, to preserve the supervised information
into the embedding space while maintaining the network
structure information as much as possible.
• We develop an adaptive margin component, which can

precisely preserve more discriminative neighbour infor-
mation, compared with a fixed margin.
• We explore a self-attention-based quantisation compres-

sion method that drastically reduces the size of learned
embedding and can be optimised via a continuous way.
• In our extensive experiments on link prediction, node

classification, and node recommendation, our method out-
performs state-of-the-art methods, including both contin-
uous embedding methods and discrete hashing methods.

Methodology
In this section, we will present our network embedding and
quantisation technique in detail. The overall architecture of
SNEQ is shown in Fig. 1.

Problem definition. Let G = (V,X,E, Y ) represent an
attributed network. V = {v1, v2, . . . , vN} is a set of N
nodes. X ∈ R

N×D represents D-dimensional node at-
tributes. E = {ei,j}Ni,j=1 denotes the edge set of the net-
work. Specifically, ei,j = 1 if vi has a connection to vj ,
otherwise ei,j = 0. Y = {y1, y2, . . . , yN} is the label set
of each node. To simplify the notation, we use an adjacent
matrix A ∈ R

N×N to represent the edge connections of
a network. Our embedding goal is to embed the nodes of
the network G into low-dimensional vectors Z ∈ R

N×L,
where L � D. Simultaneously, the quantisation module
is responsible for encoding the real-valued vectors Z into
short compact codes Q ∈ R

N×M and a set of codebooks
C = {C1,C2, . . . ,CM}, where Ci ∈ R

K×L. M is the
number of codebooks in the embedding space Z, K is the
number of centres in each codebook Ci, where L = M ∗K.

Graph Structure Embedding via Adaptive Margin

Our method preserves the network structure information by
learning and optimising an adaptive margin loss. For an at-
tributed network G, our model takes the attributes X as the
input. We use a multi-layer perceptron (MLP) to encode
each node vi, initialised with node attributes xi for an at-
tributes network.

h
(1)
i = f(w

(1)
i xi + b

(1)
i ) (1)

where i denotes the hidden layer and f(.) is the activation
function. For notational convenience, the output of the last
layer of the encoder is denoted by Z.

Intuitively, in a homogeneous network, the shorter dis-
tance between two nodes is, the more similar they are. In this
paper, we propose to use the shortest distance between two
nodes (in terms of hops) to measure their structural similar-
ity. Theoretically, we can regard embedding as a procedure
to project the shortest distance information in the original
network into the embedding space. Our motivation is how
to precisely preserve the different shortest distance into the
embeddings. We adopt the widely-used metric learning tech-
nique, which has been successfully applied in computer vi-
sion tasks such as person re-identification (Dong et al. 2018),
face recognition (Schroff, Kalenichenko, and Philbin 2015),
and hashing-based image retrieval (Song et al. 2018), whose
main goal is to ensure that data points in the feature space
have consistent distance with their original data distribution
space. In this work, we leverage the triplet loss to learn node
distances. The adaptive margin loss �a is defined as below:

�a =
1

N
min
We

(
N∑

tr(a,p,n)

max(D(a,p) −D(a,n)+

δa,n − δa,p, 0))

(2)

where We denotes the parameters of the encoder; D(.) is the
distance function to measure two nodes in the embedding
space, for which we chose Euclidean distance (L2 norm);
and δi,j denotes the shortest distance from node vi to node
vj . The function tr(.) is a triplet sampling function that,
given an anchor node, selects a positive node vp and a neg-
ative node vn. Concretely, given an anchor node va, vp and
vn are sampled under the condition of δa,p < δa,n.

In Eq. 2, the adaptive margin, δa,n − δa,p, is the key term
that defines the disparity between two shortest distances,
that is, the anchor node to the positive node and the nega-
tive node. To model the difference between a node’s neigh-
bours, we adopt an adaptive margin to present it. Specif-
ically, the distant neighbour is divided by a large margin
while the close neighbour is clustered by a small distance.
There are many different algorithms to calculate the shortest
distance δ, including Dijkstra’s and Floyd’s algorithms. In
this paper we adopt a fast strategy based on matrix multipli-
cation (Sankowski 2005).

Semi-supervised Semantic Embedding

In many situations, a subset of the nodes in a network
are given labels, and intuitively, nodes with the same la-
bel should be closer in the embedding space than otherwise.
Based on this intuition, we explore a semi-supervised strat-
egy to preserve label information into embeddings Z. The
goal is to cluster same-label nodes with a small margin but
separate those with different labels by a large margin. The
general idea is explained in Figure 1, where the differently
labelled nodes (different colours) should be separated by
large margins.

A key optimisation of our semi-supervised learning pro-
cedure is that we do not need to use all labelled nodes to
train the model. This is due to the hypothesis that nodes
with a small shortest distance are more likely to belong to
the same class. Generally, as long as a small part of nodes
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Figure 1: The high-level architecture of our framework. SNEQ consists of three main parts: (1) network structure preserva-
tion through adaptive margin learning, (2) semi-supervised semantic margin learning, and (3) self-attention-based quantisation
learning. The adaptive margin loss aims at forcing the embedding space to preserve the original neighbourhood information.
The semantic margin loss is responsible for separating nodes with different labels. The self-attention-based quantisation loss
guarantees the reconstructed embeddings close to the original one.

in the same class are adequately separated, other nodes with
small shortest distances to those separated nodes can also
be separated. We only need to ensure that the semantic mar-
gin is large enough because if too small, the adaptive mar-
gin will conflict with it and degrade the performance of the
classification. Instead, provided that the semantic margin is
large enough, we can think that the semantic margin divides
the embedding space into several discriminative subspaces,
each of which stands for a community with the same class
label, in which the adaptive margin is applied to preserve
their neighbours structure information. The formulation of
our semantic margin loss �c is given as the following:

�c =
1

T
min
We

T∑
i,j=1

(D(i,j) − Si,j)
2 (3)

where T is the sample size for semi-supervision; D(.) is the
same distance function as in Eq. 2; and Si,j represents the
constant semantic margin and is formulated as below:

Si,j =

{
0, if yi ∩ yj �= ∅
Mc, otherwise

(4)

where yi is the label of node vi and Mc is a constant defining
the semantic margin.

The aim of Eq. 3 is to force the same-labelled nodes to
be close each other, but nodes with different labels to be
at a distance of Mc. It is worth noting that the value of T
is important to node classification performance, as a large
T value generally improves node classification result, due
to more supervised information added. At the same time,
a larger T could negatively affect graph structure learning
due to the fact that some nodes which are supposed to be
neighbours are separated by a large margin of Mc, leading
to a degradation in link prediction performance. Hence, the

choice of T is a trade-off between two competing factors:
structural and semantic information. In the experiments, we
test the impact of different T.

Self-attention for Deep Quantisation

As we motivated previously, our quantisation strategy aims
at reducing the size of the embedding vectors. Ideally, this
reduction would improve both space and time efficiency
while preserving task performance. Product quantisation
(PQ) (Jégou, Douze, and Schmid 2011) is a well-known
quantisation technique. PQ quantises node embedding vec-
tors Z into M codebooks C = {C1,C2, . . . ,CM}, and
each codebook Cj consists of K centres(codewords), which
can be seen as K subspaces in the embedding space. For
each codebook Cj , we use a 1-of-K indicator vector bij ∈
{0, 1}1×K to assign one centre to zi. It is worth noting that
there is only one 1 in each bij , which represents the clos-
est centre to zi, while all the other values of bij are 0. The
general quantisation loss �q is calculated by:

�q =
1

N
min
We,C

N∑
i=1

∥∥∥∥∥∥zi −
M∑
j=1

bijCj

∥∥∥∥∥∥
2

(5)

This loss function aims at reducing the reconstruction loss
between the embedding vector zi and its quantisation codes.
A smaller �q means better reconstruction performance from
the quantisation codes. Nevertheless, the optimisation of
Eq. 5 becomes a discrete code search problem, that is, we
need to find M binary codes b in order to approximate z
as much as possible, similar to the learning to hash prob-
lem (Wang et al. 2018). The direct optimisation is an NP-
hard problem, and many recent works (Li, Wang, and Kang
2016; Zhang et al. 2014) have proposed to use relaxation
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strategies to approximate the learned binary codes. Thus, we
can rewrite Eq. 5 in a continuous form:

�q =
1

N
min
We,C

N∑
i=1

∥∥∥∥∥∥zi −
M∑
j=1

uijCj

∥∥∥∥∥∥
2

such that (6)

uij ∝ bij , ∀j = 1, 2, . . . , N

uij ∈ [0, 1]
K
, ∀j = 1, 2, . . . , N

bij ∈ {0, 1}K , ‖bij‖1 = 1, ∀j = 1, 2, . . . , N

The drawback of this approach is that the relaxation will in-
troduce large quantisation error (Cao et al. 2017b; Song et al.
2018). Recently, self-attention (Zhang et al. 2018), aimed at
informing the model what is important, also gains signifi-
cant success in computer vision and natural language pro-
cessing. Inspired by the attention mechanism, we propose
a continuous optimisation method based on a self-attention
mechanism. Concretely, in Eq. 6, the ideal case is that the
largest number in uij is extremely close to 1 while all the
other dimensions are close to 0. The attention mechanism is
naturally suitable for this case as it amplifies the important
part and lessens the unimportant. Specifically, our goal is to
convert each uij into an approximate one-hot vector as bij .
To achieve it, we multiply the continuous vector uij with
an attention weight vector rij in a pointwise manner, where∑

jrij = 1. Then, we apply the L1 norm to regularize the
approximate results. The self-attention formation is given as
follows:

uij = ‖uij ⊗ rij‖1 (7)

where ⊗ is the Hadamard product (matrix pointwise mul-
tiplication) and rij is the attention weights. Consequently,
Eq. 6 becomes:

�q =
1

N
min

We,Wa,C
(

N∑
i=1

∥∥∥∥∥∥zi −
M∑
j=1

‖uij ⊗ rij‖1Cj

∥∥∥∥∥∥
2

) (8)

where Wa denotes the parameters of the self-attention mod-
ule. The attention weight rij is calculated in an attention
layer by the following formulation:

rij = softmax(f(Wszij + bs)) (9)

where Ws and bs are the weight and bias parameters of the
self-attention layer, Wa = Ws ∪ bs for notational conve-
nience, and zij denotes the j-th block when we divide zi into
M blocks each of which is of dimension K. Since all the pa-
rameters in Eq. 8 are continuous, we can optimise Eq. 8 by
continuous optimisation methods.

Out-of-sample Extension

During the test stage, due to the fact that the approximate
code uij is not completely equal to the one-hot vector bij ,
we choose the index of the maximum element of (zij ⊗ rij)
as the approximate codeword and the formulation is follow-
ing:

bij = argmax(zij ⊗ rij) (10)

where the argmax(.) function is used to set the index of the
maximum element in a vector to 1 and other indices to 0.

After obtaining the quantised codes, we can reconstruct
the approximate embedding vectors by adding M code-
words:

z∗i =

M∑
j=1

bijCj (11)

where bij is obtained by Eq. 10. z∗i can be seen as the ap-
proximation of zi.

Distance Computation

Similarity-based retrieval methods for quantisation (Du
and Wang 2014) and hashing (Song et al. 2018) such as
the approximate nearest neighbour (ANN) algorithm can
be applied on z∗i to significantly reduce retrieval time.
For product quantisation, Symmetric Distance Computation
(SDC) (Jégou, Douze, and Schmid 2011) is a powerful sim-
ilarity metric that calculates the inner-product similarity be-
tween a query point q and a database points zi. The SDC
computation is defined as the following:

SDC(q, zi) =

M∑
j=1

(bqjCj) ∗ z∗i (12)

In fact, in Eq. 12, many computations are repetitive as
the codebooks C are fixed and only consist of M ∗K code-
words. Hence, we can pre-compute the similarity among
those codewords and store them in a lookup table. At test
time, the similarity computation can be done with O(M)
time complexity.

Learning

SNEQ learns network embedding and quantisation in an
end-to-end architecture, which integrates adaptive margin
loss (Eq. 2), semi-supervised semantic margin loss (Eq. 3),
and self-attention-based quantisation loss (Eq. 8) into a joint
optimisation problem:

� = min
We,Wa,C

(�a + α�c + β�q) (13)

where α and β are the balance parameters to trade-off the
importance of each part. All the parameters in Eq. 13 are
continuous and trained by mini-batch stochastic gradient de-
scent. The update rules are formulated as follows:

W e ←W e − η × (
∂La

∂W e
+ α

∂Lc

∂W e
+ β

∂Lq

∂W a
× ∂W a

∂W e
)

W a ←W a − η × (β
∂Lq

∂W a
) (14)

C ←C − η × (β
∂Lq

∂C
)

where η is the learning rate.

Experiments

Datasets. We evaluate our method on four real-world net-
works. Brief statistics of the datasets are shown in Table 1. It
is worthing noting that cDBLP (Yang and Leskovec 2015) is
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a large-scale unattributed network. We conduct experiments
on the standard tasks of link prediction, node classification
and node recommendation. We also evaluate the efficiency
and effectiveness of quantisation.

Table 1: Brief statistics of the datasets.

G Cora ML Citeseer DBLP cDBLP

|V | 2,995 4,230 17,716 317,080
|E| 8,416 5,358 105,734 1,049,866
Attr. Yes Yes Yes No
Labels 7 6 6 5,000

Implementation Details. Our encoder consists of two dense
layers of 512 units and 128 units respectively1. The dimen-
sion of the network embeddings is set to 128. The learning
rate η is set as 0.001, and batch size is 100. Hyperparameters
α and β are not fixed but tuned in an unsupervised way sim-
ilar to (Xie et al. 2018). Specifically, α = 0.1

1+e−(ωμ) , where
ω is a constant value 0.5, and μ is the training progress from
0 to 1, while β is set as 1.0− 1

1+e−(ωμ) . For quantisation, we
set M = 16 and K = 8 by default, but also test the impact
of different values of M and K, which can be seen in exper-
iments below. The amount of labelled nodes T used in semi-
supervised training (as defined in Eq. 3) is set to 10% of
|V | by default. For a fair comparison with learning to hash
methods, these methods’ dimension is set as 48 bits, equal to
our quantisation code length, i.e. 48 = 16∗log(8). All exper-
iments were performed on a workstation with 256 GB mem-
ory, 32 Intel(R) Xeon(R) CPUs (E5-2620 v4 @ 2.10GHz)
and 8 GeForce GTX 1080Ti GPUs. For each model a maxi-
mum approx. 100 GB of memory was allocated.
Baselines. We compared our method with some recent
state-of-the-art graph embedding methods, including both
semi-supervised and unsupervised methods. We divide them
into two groups: continuous embeddings and discrete em-
beddings. The continuous group includes the following
semi-supervised methods: SEANO (Liang et al. 2018),
GAT (Velic̆ković et al. 2018) and H-GCN (Hu et al. 2019),
a hierarchical extension of GCN; as well as unsupervised
methods: DeepWalk (DW) (Perozzi, Al-Rfou, and Skiena
2014), TADW (Yang et al. 2015), Graph2Gauss (G2G) (Bo-
jchevski and Günnemann 2018), and ONE (Bandyopadhyay,
Lokesh, and Murty 2019).

The discrete methods include SH (Datar et al. 2004),
DCF (Zhang et al. 2016), NetHash (Wu et al. 2018) and
BANE (Yang et al. 2018). The discrete variant (with quanti-
sation) of our model is denoted SNEQ#. In addition, we also
test a more efficient setting of our model, denoted SNEQ#

8×16, with M = 8 and K = 16 bits respectively.

Link Prediction

Link prediction is a standard task to evaluate the perfor-
mance of network embedding methods, aiming at measur-
ing the preservation of the network structure. Specifically,
we randomly select 5% and 10% edges as the validation and

1Our code is released at https://github.com/htlsn/SNEQ.

test set respectively, similar to Graph2Gauss (Bojchevski
and Günnemann 2018). Following the convention, we use
AUC as the performance metric.

Table 2 summarises the link prediction results of the con-
tinuous embedding methods (upper block) and of the dis-
crete methods (lower block). N/A denotes the algorithms
that did not finish within 24 hours or within 100GB mem-
ory. From the upper block of Table 2, it can be observed that
our method consistently outperforms other continuous net-
work embedding methods, except lower than G2G by 0.42
percentage points on the Cora ML dataset but on the large
dataset cDBLP, SNEQ exceeds G2G by 3.94 percentages.

In the lower block of the table, it can be seen that our
quantisation embedding is substantially superior to all the
others, with at least 2∼3 percentage points better than the
second best method BANE. The possible reason is that as the
embedding dimension is relatively low, hash-based methods
suffer larger loss on structure information without an addi-
tional schema (codebooks). In contrast, with the same di-
mension, the code words of our quantisation are able to pre-
serve much global information. We can also observe another
advantage of our method, that SNEQ can handle large-scale
networks such as cDBLP while many hashing methods, in-
cluding DCF and BANE, cannot. This is because all of them
depend on SVD, which incurs high memory usage.

Table 2: Link prediction results of the continuous methods
(top) and discrete methods (bottom). Best results in each
block are bolded.

Models Citeseer Cora ML DBLP cDBLP

DW 82.14 81.26 71.67 66.84
TADW 85.58 84.40 78.81 71.32
GAT 90.43 92.03 89.19 81.89
SEANO 83.36 85.25 88.43 80.15
H-GCN 90.51 91.69 89.17 82.57
ONE 93.56 92.73 93.62 N/A
G2G 96.39 97.63 97.71 88.18
SNEQ 96.47 97.21 97.74 92.12

SH 80.42 85.10 82.31 80.57
DCF 79.47 80.17 83.12 N/A
NetHash 85.14 86.84 87.61 83.18
BANE 90.09 91.05 90.63 N/A
SNEQ#

8×16 91.35 92.85 93.15 90.79
SNEQ# 92.72 93.18 93.60 91.24

Node Classification

We tested our method on three attributed datasets: Citeseer,
Cora ML, and cDBLP. We use the one-vs-the-rest logistic
regression as the classifier, repeat the prediction for 10 times,
and report the average of Macro-F1 and Micro-F1 results.
Figure 2 shows the results, where figures (a)∼(c) are the re-
sults of the continuous embedding methods while (d)∼(f)
present the discrete results. In each experiment, a varying
percentage (e.g. 2, 4, 6, 8, 10%) of nodes are sampled for
training the classifier. From Figure 2, we can make the fol-
lowing observations:
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(a) F1 score on Citeseer (b) F1 score on Cora ML. (c) F1 score on DBLP.

(d) F1 score on Citeseer. (e) F1 score on Cora ML. (f) F1 score on DBLP.

Figure 2: Node classification results on the three attributed networks. The top row shows the results of continuous embeddings
while the bottom row shows the results of discrete embedding results.

(1) From figures (a)∼(c), we can find that our continu-
ous embeddings are superior to the counterparts on all of
the three datasets. Specifically, SNEQ is about 1∼2 per-
centage points higher than the second best method G2G.
H GCN generally outperforms GAT because H GCN per-
forms a graph coarsening operation grouping the nodes with
same neighbours into one node. However, the node refin-
ing operation in H-GCN highly depends on the initial net-
work structure and the complexity or sparsity of networks.
In contrast, our semantic margin module does not depend on
the neighbourhood structure and only considers the pairwise
distance between different nodes, and thus can generalise
better for more complex networks.

(2) In the discrete embedding results, our quantisation
shows a great advantage compared with the hashing-based
methods. Specifically, SNEQ outperforms the best hashing
method BANE about 2∼4 percentage points on the three
datasets. The possible reason is that the short binary codes
lead to large loss of information in hashing methods. Mean-
while, as node attributes are binary and can be regarded as
hash codes, we also test the classification performance of the
attributes via a logistic regression classifier, denoted as LR.
It can be observed that LR exceeds many hash methods such
as NetHash and DCF. This is because the dimensions reduce
significantly from ∼ 3, 000 to 48 bits and many meaningful
features are abandoned.

Besides, SH is trained by our continuous embeddings.
However it suffers a hug performance degradation, com-
pared from the continuous embeddings, of nearly 30 per-

centage points. We conjecture that there are two main rea-
sons: (1) the dimension reduces to about one third, leading
to information loss; and (2) the procedure of learning to hash
is not an end-to-end procedure, i.e., first learning embed-
ding vectors and then training the hash function. In contrast,
SNEQ avoids these issues in two ways: (1) the codewords
can preserve as much information as possible, even though
the quantised code is short; and (2) the embedding and learn-
ing to quantise steps are unified in one network and jointly
trained by the back propagation scheme.

Node Recommendation

In node recommendation, given a node, an embedding
model ranks all nodes according to a distance measurement
and recommends the closest node. This task is widely ap-
plied in social and commercial networks, specially for the
recommendation scenario. Following the settings of INH-
MF (Lian et al. 2018), 90% of neighbours of each node are
used to train each embedding model while the remaining
10% neighbours are reserved for testing. We use NDCG@50
as the evaluation metric, and the final results are averaged
over 10 runs. Table 3 shows the results of node recommen-
dation, where we can obtain the following observations:

(1) In terms of the continuous embedding methods, our
method outperforms others on the four dataset. Specifically,
our method is superior to the most competitive methods H-
GCG and G2G about 2∼3 percentage points. G2G adopts a
rank loss to preserve neighbour information, but one differ-
ence from ours is that we learn adaptive margins for different
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neighbours: more distant neighbours will result in a larger
margin, i.e., a larger penalty, while closer neighbours are
separated by a relative small margin. Hence, our method is
more advantageous for the preservation of first-order prox-
imity.

(2) In the second part of Table 3, our method shows even
larger superiority, averagely 4∼7 percentage points higher
than the best hash method NetHash. SH exhibits worst per-
formance, and the reason is that hash codes are learned sep-
arately in a two-step way. It is worth noting that because of
excessive memory usage by DCF and BANE, we did not
obtain their results on cDBLP.

Table 3: Node recommendation results on the four networks,
measured by NDCG@50. The upper block shows the results
of original continuous embedding methods while the lower
block contains results are calculated from embeddings re-
constructed from discrete codes. Best results in each block
are bolded.

Method Citeseer Cora ML DBLP cDBLP

DW 35.15 41.22 11.42 16.62
SEANO 56.27 47.17 12.05 17.26
GAT 58.48 46.29 10.82 19.37
ONE 54.62 46.87 13.13 N/A
G2G 58.51 48.42 12.07 18.63
H-GCN 59.11 47.07 10.73 20.53
SNEQ 61.25 50.40 14.79 23.62

SH 36.54 35.39 3.56 10.32
DCF 21.64 20.05 4.74 N/A
NetHash 41.28 37.54 4.62 12.39
BANE 35.64 37.05 8.74 N/A
SNEQ#

8×16 42.49 40.02 9.03 18.75
SNEQ# 43.41 41.82 9.79 19.05

Space and Time Efficiency of SNEQ#

The space and time efficiency results are shown in Table 4
and 5. Empirically, it can be observed in Table 4 that, the
larger the network, the more reduction in storage quanti-
sation brings: for cDBLP, the original embeddings are ap-
prox. 60 times larger than SNEQ# (row four). It can be seen
that the alternative setting of our quantisation (row three),
where M = 8 and K = 16, incurs much less space foot-
print, and even less than that of hashing for the large net-
works but it is inferior on other tasks, as can be seen in
Table 2 (lower block) and Table 3. Compared to hashing
methods such as SH, it can be figured out that quantisation
uses slightly more space as it stores M codebooks. However,
the evidence from the other tasks in the previous three sub-
sections, we can observe hashing methods’ inferior perfor-
mance to quantisation. In fact, the additional storage cost of
quantisation over hashing is the codebooks, at approx. 64KB
for SNEQ#. Therefore, for larger networks hashing meth-
ods’ savings in storage are minuscule and negligible given
modern hardware.

Table 5 shows the average retrieval time of node rec-
ommendation in milliseconds. For real-valued embeddings,

we use the Euclidean distance to measure node similarity,
while for quantised codes we use SDC in Equation 12 to
measure their similarity. Quantisation achieves up to 70 ×
retrieval speedup over the real-valued embeddings. Similar
to our analysis on storage, setting M = 8 and K = 16
can further reduce retrieval time by 50%, though its link
prediction performance declines slightly. Hashing methods,
represented by SH, are more time-efficient than our model
SNEQ#. However, as we noted above, this is achieved with
degraded task performance.

Table 4: Storage cost (MB) of different embeddings.

Method Cora ML Citeseer DBLP cDBLP

Float 2.145 1.513 9.562 155.31
SH 0.031 0.026 0.153 2.524
SNEQ#

8×16 0.082 0.077 0.138 1.382

SNEQ# 0.098 0.089 0.211 2.697

Table 5: Average retrieval time cost (ms) of different embed-
dings.

Method Cora ML Citeseer DBLP cDBLP

Float 42.7 71.2 191.2 3,923.5
SH 0.7 1.0 2.7 34.7
SNEQ#

8×16 0.5 0.8 2.3 26.1

SNEQ# 1.0 1.5 4.4 59.6

Conclusion

In this paper, we propose SNEQ, an end-to-end network
embedding and quantisation method. SNEQ is trained in
a semi-supervised manner, which simultaneously preserves
network structure and semantic information into the em-
bedding space while compressing the embeddings by self-
attention-based product quantisation. Specifically, we incor-
porate the adaptive margin loss for preserving network struc-
ture information, semantic margin loss for semantic space
learning, and self-attention based quantisation loss to learn
compact codes. In standard evaluation tasks on four diverse
networks, our method outperforms state-of-the-art network
embedding methods. In addition, due to quantisation, SNEQ
significantly reduces storage footprint and accelerates query
time for node recommendation.
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