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Abstract

Image denoising is a classic low level vision problem that
attempts to recover a noise-free image from a noisy observa-
tion. Recent advances in deep neural networks have outper-
formed traditional prior based methods for image denoising.
However, the existing methods either require paired noisy and
clean images for training or impose certain assumptions on
the noise distribution and data types. In this paper, we present
an end-to-end unpaired image denoising framework (UID-
Net) that denoises images with only unpaired clean and noisy
training images. The critical component of our model is a
noise learning module based on a conditional Generative Ad-
versarial Network (cGAN). The model learns the noise dis-
tribution from the input noisy images and uses it to transform
the input clean images to noisy ones without any assumption
on the noise distribution and data types. This process results
in pairs of clean and pseudo-noisy images. Such pairs are then
used to train another denoising network similar to the existing
denoising methods based on paired images. The noise learn-
ing and denoising components are integrated together so that
they can be trained end-to-end. Extensive experimental eval-
uation has been performed on both synthetic and real data
including real photographs and computer tomography (CT)
images. The results demonstrate that our model outperforms
the previous models trained on unpaired images as well as the
state-of-the-art methods based on paired training data when
proper training pairs are unavailable.

Introduction

Image denoising is a classic low level vision problem but re-
mains as a research hotspot because it is essential in various
image processing and computer vision tasks. Noise corrup-
tion is usually inevitable when images are generated, which
may heavily degrade the image quality. Image denoising
aims at restoring the noise-free image from a noisy obser-
vation by reducing the latent noise. In many real situations,
noise is generated by a very complicated process. For exam-
ple, the noise in real photographs may be affected by the in-
camera processing pipeline and environmental factors such
as low illumination, radial distortion, over-exposure, etc. For
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Figure 1: An example low dose CT image normalized un-
der different Hounsfield Unit (HU) ranges. The black area
and highlighted area have very different noise distributions
compared with other areas.

medical CT images, their noise may be even more compli-
cated, which is closely related to the radiation dose, resolu-
tion, slice thickness, patient size, organ type, etc. Therefore,
it is very challenging to develop a general denoising method
that is applicable to all noisy images.

In the past few decades, many methods have been intro-
duced in the literature trying to solve this problem. These
methods can be roughly divided into two groups, image
prior based models and discriminative learning based mod-
els. Image prior based methods such as BM3D (Dabov et
al. 2007), NCSR (Dong et al. 2013) and WNNM (Zoran
and Weiss 2011) are highly engineered approaches that are
mostly based on self-similarity and have achieved impres-
sive results for many years. Despite their good performance
on some specific types of noise, they suffer from two main
drawbacks. First, image priors used in these methods are
mostly from human knowledge and experience, which are
limited and not general enough to handle noise generated by
complicated processes. Second, these methods involve com-
plex optimization problems and may need to calculate the
similarity between a large number of image patches, which
is time-consuming.

To break the limitations of prior-based methods, sev-
eral discriminative learning based methods (Chen and Pock
2017; Burger, Schuler, and Harmeling 2012; Schmidt and
Roth 2014) have been proposed recently. They try to learn
the latent noise implicitly from data and have achieved im-
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proved performance. Meanwhile, some Convolutional Neu-
ral Network (CNN) based methods, such as NLNet (Lefkim-
miatis 2017) and DnCNN (Zhang et al. 2017), achieved
even better results by training a deep neural network with
paired clean and noisy data to remove additive white Gaus-
sian noise (AWGN). In addition to AWGN, Guo et al. (2018)
propose the CBDNet that uses a specially designed noise
model for dealing with real photographs, achieving the state-
of-the-art performance. However, the model does not extend
to noise beyond that in real photographs. These discrimi-
native learning based approaches learn noise from data di-
rectly, thus overcoming the limitations of prior-based meth-
ods. However, such discriminative models all require noisy
and clean image pairs. Although it is possible to construct
such image pairs for some noise such as AWGN, in most
real scenarios including real photographs and low-dose CT
images, such paired data are not always available or very
hard to obtain. Therefore, it would be interesting to develop
methods that are applicable when no paired training images
are available.

If we could construct paired images from unpaired ones,
then we would be able to perform image denoising simi-
lar to the existing methods based on paired data. There are
a few methods adopting this idea such as GCBD (Chen et
al. 2018), which trains a GAN model to learn the underlin-
ing noise and add it to clean data to construct image pairs,
hence requiring specially selected image patches to model
the noise distribution. This work assumes that the noise has
zero-mean and extracts patches with similar internal content
and weak background from the training images. A critical
drawback of this method is that noise is implicitly assumed
to be independent of image content, which does not hold
in many cases (Foi et al. 2008; Liu, Tanaka, and Okutomi
2014), including, e.g. CT images (Fig. 1). Moreover, the
noise generator learned on such patches often cannot gen-
erate proper noise for the foreground.

Hence, the above denoising methods either require paired
training data or impose some limitations on noise distribu-
tion and image types. Is it possible to solve the blind im-
age denoising problem where paired training data is not
provided without any assumptions on data? To answer this
question, we combine a cGAN with a image sharpening
technique to generate image noise with any distribution that
could be dependent of the image content. The noise gener-
ated by our noise generation component is further added to
clean images to simulate noisy images. This results in clean
and pseudo-noisy image pairs. Such pairs are used to train
a denoising network similar to the existing methods based
on paired images. The noise generation component and de-
noising network are integrated together so that they can be
trained end-to-end. The whole framework is trained on un-
paired clean and noisy images. More details will be given
in the Proposed Method section. We evaluate the proposed
method on both synthetic and real world data including real
photographs and CT images. The results demonstrate that
our method outperforms the existing methods trained on un-
paired images as well as the state-of-the-art methods based
on paired training data when proper training pairs are un-
available (e.g., when denosing low-dose CT images).

The major contributions of our method include but not
limited to: (1) We proposed a general end-to-end framework
for image denoising without paired supervision. (2) Since
our model does not make any special assumption on noise
distribution and data types, it performs well on complex
data such as medical images with content-dependent noise.
The extensive experimental results demonstrate the superior
performance of our model compared with the state-of-the-
art image denoising methods. (3) We introduced an image
sharpening technique for the GAN model to better capture
image textural information. This technique has potential ap-
plications in problems beyond image denoising such as sin-
gle image super-resolution and image style transfer.

Related Work
Prior-based image denoising Before discriminative
learning models were introduced, various methods were
proposed to model image priors such as models based on
filters (Dabov et al. 2007), models based on sparse cod-
ing (Mairal et al. 2009; Elad and Aharon 2006; Dong et
al. 2013), effective prior models (Zoran and Weiss 2011),
low rank models (Gu et al. 2014) and models based on
Markov Random Fields (MRFs) (Lan et al. 2006). Particu-
larly, the self-similarity driven techniques among them, such
as BM3D (Dabov et al. 2007), NCSR (Dong et al. 2013) and
WNNM (Gu et al. 2014), have achieved impressive perfor-
mance for many years. To denoise, the above methods treat
each image independently without the requirement of a large
training dataset. Therefore, they do not take into account the
shared noise and content information between similar im-
ages. Furthermore, image priors based on human knowledge
are often not general enough to model complicated noise.
For methods such as BM3D, the self-similarity calculation
between different similar patches also incur computation in-
efficiency.
Deep neural networks for image denoising Recent
methods based on deep neural networks have outperformed
traditional prior based methods. These methods follow a
data-driven paradigm instead of relying only on analytical
operations. Jain and Seung (2009) used a CNN for image de-
noising and observed that CNNs are more capable in repre-
sentation learning than MRFs. Burger, Schuler, and Harmel-
ing (2012) used a multi-layer perceptron (MLP) to denoise
images which as we know is the first discriminative learn-
ing model to achieve comparative results as BM3D. Xie,
Xu, and Chen (2012) used stacked sparse auto-encoders to
deal with Gaussian noise. Chen and Pock (2017) proposed
a dynamic trainable nonlinear reaction diffusion (TNRD)
model with time-dependent parameters. Apart from these
relatively early CNN methods, Zhang et al. (2017) proposed
a deep CNN denoising model DnCNN using residual learn-
ing and batch normalization strategies, which is very pow-
erful in handling Gaussian noise. Guo et al. (2018) pro-
posed another convolutional blind denoising model (CBD-
Net) for real photographs that achieved the state-of-the-art
performance. In this work, the authors considered both the
signal-dependency and in-camera processing pipeline to bet-
ter model noise on real photographs. However, the good per-
formance achieved by the above methods are all based on the
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Figure 2: An overview of the proposed UIDNet framework. Given unpaired images, we first use a cGAN to learn the noise
distribution from the noisy data. The noise obtained from the generator (denoted as G) is added to the clean data to form
pseudo-noisy images. The discriminator (denoted as D) tries to distinguish the generated pseudo-noisy images from the real
noisy images. This gives us pairs of clean and pseudo-noisy images. Such pairs are further used to train the denoiser. The cGAN
and denoiser are integrated together so that they can be trained end-to-end.

premise that a large paired training dataset is available. But
the premise does not hold in many real situations and thus
these methods would fail. When this happens, one would
have to seek help from methods based on unpaired data.
Image denoising without paired data There are few
methods proposed to deal with image denoising in the ab-
sence of paired training data. Lehtinen et al. (2018) proposed
a Noise2Noise model that learns image restoration without
clean data under certain suitable and common circumstances
based on statistical techniques. The limitation of this method
is that the denoised image is not sharp enough compared
with models trained on clean data. The other noise model-
ing technique proposed by Chen et al. (2018) in (GCBD)
may be applied to images beyond real photographs. How-
ever, GCBD implicitly assumes that the noise has zero-mean
and the noise from different patches of the images follows
similar distributions.
Low-dose CT image denoising X-ray is one of the most
widely utilized imaging modalities that has shown its great
capabilities in disease diagnosis in modern hospitals and
clinics (Brenner and Hall 2007). However, the potential can-
cer risk of X-ray radiation exposure to patients has raised
public concerns (De González et al. 2009) due to the in-
creasing use of medical CT scans. Therefore, low-dose CT
has attracted widespread attention in medical imaging field
and is preferred by more and more patients. Nevertheless,
lowering the radiation dose also introduces certain noise and
artifacts in reconstructed images that may compromise di-
agnostic performance. Hence, low-dose CT image recon-
struction and denoising have become essential and many
efforts have been made to deal with the involved technical
issues, among which image post-processing methods have
attracted considerable interest. Chen et al. (2017b) trained a
deep CNN to transform low-dose CT images to normal-dose
CT images patch by patch. Chen et al. (2017a) used a resid-
ual encoder-decoder network to perform low-dose CT de-

noising with impressive success. Yang et al. (2018) applied
WGAN (Arjovsky, Chintala, and Bottou 2017) and percep-
tual loss to reduce noise and showed that GANs are superior
than general CNN models in keeping image details. You et
al. (2018) proposed a novel 3D noise reduction method on
low-dose CT images. However, the above methods are based
on paired low-dose and normal-dose training data, which are
not always available. In this paper, we will apply our model
to this problem and show the superior performance of our
model over the existing applicable methods. The detailed re-
sults are given in the Experiments section.

Proposed Method

The goal of image denoising is to learn a function that maps
the input noisy image to its noise-free version. Our work-
flow starts with an unpaired clean image set X and noisy
image set Y ′, containing training samples {xi}Ni=1 where
xi ∈ X and {y′j}Mj=1 where y′j ∈ Y ′. Different from most
neural network based denoising methods due to the lack of
paired training data, we first build paired images from given
unpaired clean and noisy images, with which we can fur-
ther train another denoising network similar to the existing
methods based on paired images. Therefore, how to con-
struct paired data is the crucial step of our model. To ad-
dress this, we train a cGAN to learn the noise distribution
in Y ′ and transform the clean data X to its corresponding
pseudo-noisy version X ′ without making any assumption
on the distribution of the noise. In this way, we construct
the clean and pseudo-noisy image pairs {X,X ′} as desired.
The noise learning network and the denoising network are
integrated together so that they can be trained end-to-end.
We denote the whole model as UIDNet (Unpaired Image
Denosing Network). An overview of UIDNet is shown in
Fig. 2. More details will be discussed in the following sub-
sections.

4142



The Noise Learning Network

The noise learning network is a Generative Adversarial Net-
work (GAN). It learns the noise distribution in the noisy
data Y ′ and transforms the clean data X to its corresponding
pseudo-noisy version X ′. It consists of a generative network
G and a discriminative network D. The generator G is trained
to generate samples that are closed to real data from a ran-
dom noise sample and D is trained to distinguish whether a
sample is generated by G or from real data. In the original
GAN, D and G are trained to solve the following minimax
optimization problem

min
G

max
D

LGAN (D,G) = Ex∼Pdata(x) [log(D(x))]

+ Ez∼Pz(z) [log(1−D(G(z)))]
(1)

where E(·) denotes the expectation operator, and Pdata and
Pz are the distributions of real data and random noise. The
plain GAN generates images just from a random noise sam-
ple z, which is not a proper option for us here because noise
is often related to image content in most real world situa-
tions. Therefore, we have to revise the generator such that
the generated noisy image X ′ is related to the clean data X .
Mirza and Simon proposed a conditional version of GAN,
called cGAN (Mirza and Osindero 2014), to deal with this
kind of problem. In cGAN, the generator could generate
samples based on some condition c, which could be any kind
of auxiliary information, such as class labels or data from
other modalities. In our problem, we treat a clean image x
as the condition c and perform the conditioning by feeding
it into the generator as an additional input apart from the
random sample z.

Although the classic GAN model such as DCGAN (Rad-
ford, Metz, and Chintala 2015) has proved its capability
in learning data distributions, it relies on minimizing the
Jensen-Shannon (JS) divergence between the distributions
of the generated and real data, which may suffer from van-
ished gradient on the generator G (Arjovsky, Chintala, and
Bottou 2017) in certain circumstances where G may stop up-
dating its parameters during training. This motivated the in-
troduction of WGAN (Arjovsky, Chintala, and Bottou 2017)
based on the Wasserstein distance, which has better per-
formance in generating images and is easier to train. In
our model, an improved version of WGAN, called WGAN-
GP (Gulrajani et al. 2017), is applied to learn the noise dis-
tribution with the following objective function

min
G

max
D

LWGAN (D,G) = Ey′∼PY ′ [D(y′)]

−Ez∼Pz,x∼PX
[D(G(z, x))]

+λEx̂∼Px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
(2)

where Pz , PY ′ and PX are the distributions of random
noise, real noisy data Y ′ and real clean data X ′. Px̂ is the
distribution of x̂ that is sampled uniformly along straight
lines between pairs of generated and real samples (Gulra-
jani et al. 2017). WGAN-GP removes the log term in its loss
function and adds a gradient penalty term for network reg-
ularization compared with the original GAN. Particularly, it

Figure 3: The generator architecture of the proposed UID-
Net.

drops the last sigmoid layer of the discriminator in the im-
plementation. The detailed architecture of the WGAN-GP
network is described below.
Generative Network Architecture The generator is a U-
Net (Ronneberger, Fischer, and Brox 2015) like network that
takes a clean image x and random noise sample z as two
channels of the input. It is widely known that the training of
a GAN model tends to be unstable. Hence, it is difficult for
the network to directly generate high quality pseudo-noisy
images X ′ with noise similar to the given noisy data Y ′
without introducing artifacts. To ease the training process,
we set the generator to generate only noise and then add it
to the clean image X to obtain the X ′. Here we implicitly
assumed that all the noisy images have the same noise distri-
bution. The generator architecture is illustrated in Fig. 3. It
consists of an encoder network and a decoder network with
skip connections between them. The encoder part just fol-
lows the general CNN architecture with repeated conv-pool
units, i.e., each unit consists of two 3×3 convolutional layers
followed by a rectified linear unit (ReLU) (He et al. 2015)
activation layer and a 2 × 2 max-pooling layer for down-
sampling. The number of feature channels in the first con-
volutional layer is 32 and it doubles at each max-pooling
layer. The decoder part performs opposite processing with
upsampling or deconvolutional layers. Here, we use an “up-
conv” operation consisting of an upsampling layer followed
by a 2 × 2 convolutional layer to double the feature map
size and halve the number of feature channels. Then, with
a skip connection, it is concatenated with the corresponding
layers in the encoder part, and is followed by two 3× 3 con-
volutional layers and a ReLU activation layer. At the end, a
1 × 1 convolutional layer is used to output the target image
with the desired number of channels. This is also referred
to as a “fully convolutional network” (Long, Shelhamer, and
Darrell 2015) that could handle images with different input
sizes.
Discriminative Network Architecture The discrimina-
tor takes a real noisy image from Y ′ or generated pseudo-
noisy image from X ′ as input and returns the probability
that the image is sampled from real noisy data. The archi-
tecture of the discriminator is illustrated in Fig. 4 which is
similar to DCGAN (Radford, Metz, and Chintala 2015). The
difference is that we have removed the batch normalization
layers and the last sigmoid layer as WGAN-GP (Gulrajani
et al. 2017). In the training process, we use 64 × 64 image
patches to train the GAN network. The images fed to the
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Figure 4: The discriminator architecture of the proposed
UIDNet.

discriminator are X ′ and Y ′ that may have different image
contents. To make the discriminator focus more on noise, we
apply a sharpening technique by subtracting a image from its
local-mean filtered version. The sharpened images and orig-
inal images serve as two group of channels of the input for
the discriminator. This sharpening technique is critical to the
success of model in performance. The kernel size for calcu-
lating local mean is a hyper-parameter and is set to 3× 3 in
our experiments.

The Denoising Network

The cGAN in above subsection helps us to construct the
paired clean and pseudo-noisy data {X,X ′}. Now we per-
form image denoising similar to the existing paired meth-
ods. As mentioned before, there are many neural network
based models (Lefkimmiatis 2017; Zhang et al. 2017) pro-
posed for this with greater capabilities than prior based
models. Here, we adopt a network architecture similar to
DnCNN (Zhang et al. 2017). Since the batch normaliza-
tion (Ioffe and Szegedy 2015) and residual learning (He et
al. 2016) strategies are known to help improve the perfor-
mance in image denoising. We incorporate them here too.
Our network takes a noisy image x′ as the input and outputs
the residual noise ε that it has learned. The denoised clean
image x̂ is then obtained by subtracting the noise ε from the
input noisy image x′. The involved objective function is

Ldenoiser =
1

2N

N∑

i=1

||(x̂i − xi)||2F (3)

x̂i = x′
i − εi (4)

εi = fΘ(x
′
i) (5)

where N is the size of the training data, Θ denotes the net-
work parameter we need to learn and the subscript i means
the i-th sample of the data and F denotes Frobenius norm.
The detailed network architecture is illustrated in Fig. 5. It
consists of 16 repeated “conv-bn-relu” units, each of which
contains a 3 × 3 convolutional layer followed by a batch
normalization layer and a ReLU (He et al. 2015) activa-
tion layer except the first, similar to DnCNN (Zhang et al.
2017). At the end, an additional 3× 3 convolutional layer is
used to output the target noise image with the desired num-
ber of channels. All the convolutional layers adopt the zero
padding strategy to keep the feature map size consistent.

Figure 5: The architecture of the denoising network.

Again, it forms a “fully convolutional network” (Long, Shel-
hamer, and Darrell 2015) that allows us to test our model
on images of different sizes after training. Finally, the noise
learning and denoising modules are integrated together and
trained end-to-end jointly.

Experiments

In this section, we evaluate our UIDNet’s performance
on both synthetic and real world data including real pho-
tographs and medical CT images. Our experiments are di-
vided into three parts and UIDNet is compared with several
representative published methods in each part. (1) We eval-
uate our model’s performance on synthetic data with inde-
pendent Gaussian noise to confirm that it is able to handle
such simple noise with unpaired data. (2) We evaluate our
model’s performance on real photographs to show that it is
capable of dealing with real world noise. (3) Our model is
applied to denoise low-dose CT image to demonstrate our
model’s capability in handling even more complicated noise.
In the following, we denote our method with the sharpening
technique as UIDNet and the version without the technique
as UIDNet-NS.

Experimental Setting

Training and Test Data To train and test the model, we
crop images into 64× 64 patches in all experiments. (1) For
denoising synthethic Gaussian noise, we use the 400 images
of size 180 × 180 in (Chen and Pock 2017) for training.
The noisy images are obtained by adding Gaussian noise to
these images. We consider three representative noise levels
as DnCNN (Zhang et al. 2017), i.e., σ = 15, 25 and 50.
We crop 25, 600 image patches to train our model. After
training, we test our model on a popular test data BSD68
including 68 natural images from the Berkeley segmenta-
tion dataset (Roth and Black 2009). Apart from these gray
images, we also train our model on color images from the
BSD500 dataset (Arbelaez et al. 2011). We use the color
version of BSD68 (denoted as CBSD68) as the test images
and the remaining 432 color images as the training images.
In total, 63, 000 image patches are extracted. (2) For im-
age denoising on real photographs, we choose the bench-
mark Smartphone Image Denoising Dataset (SIDD) (Abdel-
hamed, Lin, and Brown 2018), which consists of 30, 000
noisy images and correspoding high-quality ground truth
images. The images are from 10 different scenes under dif-
ferent lighting conditions using five representative smart-
phone cameras (Apple iPhone 7, Google Pixel, Samsung
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(a) Noisy / 20.44 dB (b) BM3D / 28.10 dB (c) DnCNN / 27.46 dB (d) UIDNet / 28.23 dB (e) Ground truth

Figure 6: The denoising results in PSNR on an image from CBSD68 with Gaussian noise σ = 25.

Table 1: The average PSNR(dB) results of the compared methods on BSD68 in denoising with Gaussian synthetic noise.

Noise
Method Paired / Supervision Unpaired / Without paired supervision

MLP TNRD DnCNN BM3D WNNM EPLL UIDNet-NS UIDNet
σ = 15 - 31.42 31.61 31.07 31.37 31.21 30.41 31.30
σ = 25 28.96 28.92 29.16 28.57 28.83 28.68 28.05 28.98
σ = 50 26.03 25.97 26.23 25.62 25.87 25.67 25.29 26.04

Galaxy S6 Edge, Motorola Nexus 6 and LG G4). The ground
truth of this dataset is estimated with a sophisticated process-
ing pipeline including defective pixel correction, intensity
alignment, dense local spatial alignment and robust mean
image estimation. The SIDD dataset has higher quality and
is better than the RENOIR dataset (Anaya and Barbu 2018)
and the Darmstadt Noise Dataset (DND) (Plotz and Roth
2017). Note that although the DND has been used in pre-
vious work (Chen et al. 2018; Guo et al. 2018), it is not
suitable for benchmarking our model since it does not pro-
vide training data. For the purpose of benchmarking, the
authors of (Abdelhamed, Lin, and Brown 2018) pick 200
images with one for each scene instance from the SIDD,
where 40 representative images are used as the test data
and the remaining 160 noisy images and their ground truth
images are made available for training. For the efficiency
of evaluation, 32 randomly selected non-overlapping image
patches of size 256 × 256 from each of the 40 test images
are provided, forming a total of 1280 test image patches.
We adopt the same training and test dataset split strategy
and crop 520, 965 image patches from the 160 training im-
ages to train UIDNet. (3) For low-dose CT image denois-
ing, a real clinical dataset from “the 2016 NIH-AAPM-Mayo
Clinic Low Dose CT Grand Challenge” authorized by Mayo
Clinic (AAPM 2016) is utilized to train and evaluate our
model. This dataset consists of 5936 slices of 1mm thickness
and 2378 slices of 3mm thickness normal-dose (full dose)
and low-dose (quarter dose) abdominal CT images with size
of 512 × 512 from 10 anonymous patients. We denote the
3mm thickness CT images as set A and 1mm thickness CT
images as set B. We denote low-dose CT images as Noisy
and normal-dose CT images as Clean. Therefore, we have

four combinations: CleanA, NoisyA, CleanB and NoisyB.
For image preprocessing, we randomly extract overlapping
patches and exclude completely black patches correspond-
ing to air area in CT image. Finally, CleanA (or NoisyA) are
splitted into training and testing sets with 197, 214 and 5234
patches, respectively. CleanB (or NoisyB) are splitted into
training and testing sets with 198, 796 and 4768 patches, re-
spectively. The values of Hounsfield Unit (HU) on the CT
images are normalized to [0,1] according to the abdominal
window width of [-160,240] HU as Yang et al. (2018).
Implementation Details Before each epoch of the train-
ing process, all the clean and noisy image patches are shuf-
fled. In each mini-batch, the clean and noisy images fed to
the network are uncoupled. During the training phase, the
batch size is set to 64. In the noise learning model, the λ
in Eqn. 2 is set to 10 and local mean kernel size is set to
3 × 3. For the denoising network, we roughly follow the
parameter settings in DnCNN (Zhang et al. 2017). We use
the Adam (Kingma and Ba 2014) optimization algorithm
with β1 = 0.5 and initial learning rate 1.0 × 10−4 to train
UIDNet. Depending on the training dataset size, we train the
model for 100, 20 and 50 epochs on the synthetic data, real
photographs and low-dose CT images, respectively. It takes
seven to nine hours to train our model on a single Nvidia
GeForce GTX 1080 Ti GPU.
Compared Methods In the experiment on synthetic data,
we compare our model with BM3D (Dabov et al. 2007),
WNNM (Gu et al. 2014), EPLL (Zoran and Weiss 2011),
MLP (Burger, Schuler, and Harmeling 2012), TNRD (Chen
and Pock 2017), and DnCNN (Zhang et al. 2017). For the
real photographs, we also compare with the state-of-the-art
model CBDNet (Guo et al. 2018). For low-dose CT images,
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Figure 7: The denoising results of UIDNet on some example images from the dataset SIDD. Zoom in for a better view.

we compare our methods with several recently published
models WGAN-VGG (Yang et al. 2018), SMGAN (You et
al. 2018) and RED-CNN (Chen et al. 2017a). Unfortunately,
we are unable to compare with GCBD (Chen et al. 2018)
due to the unavailability of its source code. We use the pop-
ular PSNR (peak signal-to-noise ratio) and SSIM (structural
similarity index) as quantitative measures of denoising per-
formance.

Denoising on Synthetic Images

We evaluate the model’s denoising performance on the
BSD68 (Roth and Black 2009) dataset with Gaussian noise
of zero mean and three representative standard deviations
σ = 15, 25 and 50. The quantitative results are shown in
Table 1. The results of the compared methods are taken
from Zhang et al. (2017). In this task, although UIDNet
was trained on unpaired images, it achieved a similar per-
formance as MLP, TNRD and DnCNN that were trained
on paired images. The effectiveness of the sharpening tech-
nique is clearly demonstrated by the gap between UIDNet-
NS and UIDNet. One of the reasons for the overall small
difference between the compared methods is that Gaussian
noise is relatively easy to handle. We also train our model on
color images. Fig. 6 shows an example of the denoising re-

sults on some CBSD68 image with Gaussian noise σ = 25,
from which we can see that DnCNN oversmoothed the im-
age and our model was able to keep more details.

Denoising on Real Photographs

Here, we evaluate our model on real photographs from the
SIDD (Abdelhamed, Lin, and Brown 2018). We evaluate
our model and the compared methods in the sRGB space
for general image denoising. The quantitative denoising re-
sults are shown in Table 2 (mostly taken from (Abdelhamed,
Lin, and Brown 2018)). Clearly, our method significantly
outperforms traditional prior-based methods and the meth-
ods trained with paired data assuming Gaussian noise such
as DnCNN. Our method even surpasses a state-of-the-art de-
noising method for real photographs, CBDNet, in terms of
the SSIM index, although CBDNet was specially designed
to denoise photographs that takes into account the in-camera
image processing pipeline. We also noticed that the results
of CBDNet are partially based on real noisy images and as-
sociated nearly noise-free images calculated by existing ap-
proaches. Such data provide extra information for the model.
The large SSIM difference between UIDNet-NS and UID-
Net again indicates that the sharpening technique is very ef-
fective for the network to capture structural information of
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(a) Real NDCT (b) Real LDCT (c) Learned noise (d) Pseudo LDCT (e) Denoised output

Figure 8: Results of UIDNet on example CT patches. (a) Real normal-dose. (b) Real low-dose. (c) The learned noise. (d) The
generated low-dose. (e) The denoised output from the real low-dose CT patches. The display window is [-160, 240] HU.

Table 2: The average PSNR(dB) and SSIM results of all
compared methods on the SIDD in denoising real pho-
tographs.

Method PSNR SSIM

Paired /
Supervision

MLP 24.71 0.641
TNRD 24.73 0.643

DnCNN 28.46 0.784
CBDNet 33.28 0.868

Unpaired /
Without
paired

supervision

BM3D 25.65 0.685
KSVD-G 27.19 0.771

NLM 26.75 0.699
KSVD 26.88 0.842

KSVD-DCT 27.51 0.780
LPG-PCA 24.49 0.681

FoE 25.58 0.792
WNNM 25.78 0.809
GLIDE 24.71 0.774
EPLL 27.11 0.870

UIDNet-NS 31.34 0.856
UIDNet 32.48 0.897

the images. Fig. 7 shows the denoising performance of UID-
Net and some other popular denoising methods. Compared
with BM3D and DnCNN, UIDNet was able to keep more
sharp edges.

Low-dose CT Image Denoising

Finally, we evaluate our model on CT images from “the
2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Chal-
lenge” authorized by Mayo Clinic (AAPM 2016). Here,
the normal-dose CT (NDCT) corresponds to clean images
and low-dose CT (LDCT) corresponds to noisy images.
Both images with z-spacing 3mm (dataset A) and z-spacing
1mm (dataset B) are considered. The quantitative results
in PSNR and SSIM on dataset A are shown in Table 3
(the two columns under NoisyA). Note that, except UIDNet
and BM3D, all other methods compared here require paired

Figure 9: Comparison of Gaussian noise and the noises
learned from an example CT patch by GAN and cGAN.

training data. Our model outperformed all other methods ex-
cept RED-CNN in terms of PSNR, which suggests that our
model does well on complex noise. Again, UIDNet consis-
tently performed better than UIDNet-NS. Fig. 8 shows some
examples where UIDNet was able to generate noise that is
content dependent. Interestingly, because the model was not
trained with paired data, it is possible for the denoised im-
ages Fig. 8(e) to look even smoother than the correspond-
ing clean images. Fig. 8(a), Fig. 8(c) and Fig. 9 show that
the cGAN could generate noise depending on the clean im-
age content. Compared with Gaussian noise or noise gen-
erated by unconditioned GAN, such image dependent noise
fits real data better. We have also done the ablation study on
different realizations of initial random sample z. We tried
the binomial distribution with probability 0.5 and observed
a similar noise distribution. Because the noise generation is
through a very complicated network and the noise distribu-
tion is mainly determined by the GAN, we think it makes
sense that the initial z distribution has little influence on the
resulted noise.

As mentioned in previous sections, most of the state-of-
the-art denoising methods either require paired training data
or impose some limitations on noise distribution and image
types. However, in many real world situations such as med-
ical image analysis, paired clean and noisy data could be
very difficult to obtain. For example, in a normal workflow,
patients would not take normal-dose CT images and low-
dose ones at the same time, althrough it is possible to ob-
tain NDCT and LDCT images on a limited set of patients
and CT machines under proper ethics agreements. Mod-
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Table 3: The quantitative PSNR and SSIM results of different methods on LDCT image denoising. The initial PSNR and SSIM
of the LDCT images are 22.461 and 0.647 on NoisyA and are 17.702 and 0.568 on NoisyB, respectively.

Method
Training Test

Clean Noisy NoisyA NoisyB
PSNR SSIM PSNR SSIM

Paired
WGAN-VGG CleanA NoisyA 25.300 0.722 20.236 0.462

SMGAN CleanA NoisyA 25.507 0.732 20.354 0.653
RED-CNN CleanA NoisyA 27.243 0.743 21.723 0.673

Unpaired

BM3D - - 26.325 0.728 21.439 0.661
UIDNet-NS CleanA NoisyA 26.475 0.738 21.198 0.662

UIDNet CleanA NoisyA 26.694 0.746 21.247 0.668
UIDNet CleanA NoisyB - - 22.315 0.682
UIDNet CleanA NoisyB & NoisyA - - 22.578 0.686

els trained on such paired data can be further applied to
other patients on other machines with different noise lev-
els and distributions. To simulate this situation, we hide the
NDCT images in dataset B (i.e., CleanB) from the paired
methods and train them with the NDCT and LDCT im-
ages in dataset A (i.e., CleanA and NoisyA). On the other
hand, we train the unpaired methods with CleanA and the
LDCT images in dataset B (i.e., NoisyB). All methods are
tested on NoisyB using CleanB as the ground truth. The
test results are shown in Table 3 (the last two columns un-
der NoisyB). UIDNet (with PSNR 22.315 and SSIM 0.682)
did remarkably well on NoisyB, outperforming the state-of-
the-art paired methods including RED-CNN. The effective-
ness of the sharpening technique is further demonstrated in
the better performance of UIDNet over UIDNet-NS when
trained on dataset A. The performance of UIDNet when
trained on both NoisyA and NoisyB is also provided in the
table for reference.

Conclusion

In this paper, we proposed an end-to-end blind image
denoising framework consisting of a noise learning network
based on cGANs and a denoising network based on CNNs.
Compared with the existing methods, the model imposes the
weakest assumptions on noise distribution and data types.
The most critical part of the model is to generate image
content dependent noises. To make it possible, we used a
cGAN with a U-Net type generator. A sharpening technique
was introduced to further improve the performance of the
model. With properly generated noise conditioned on clean
image, we constructed clean and pseudo-noisy image pairs
to train a denoising network similar to the previous methods
based on paired images. All the components were integrated
together so that they could be trained end-to-end. Extensive
evaluation was performed on both synthetic and real world
data including real photographs and CT images. The results
demonstrate that for synthetic Gaussian noise, our model’s
performance is close to the previous methods based on
paired data. On real photographs, our model significantly
outperformed the previous prior-based methods such as
BM3D and representative discriminative learning based

methods such as DnCNN, and it performed comparably to
a state-of-the-art method for denoising real photographs,
CBDNet. On low-dose CT images with more complex
noise, our model also showed its capability in generating
content dependent noise and achieved better denoising
performance than the state-of-the-art methods based on
paired training data when proper paired training images
are unavailable. Moreover, we believe that the proposed
unpaired UIDNet framework and sharpening technique have
potential applications in solving other related problems such
as single image super-resolution and image style transfer.
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