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Abstract

Attention networks have successfully boosted the perfor-
mance in various vision problems. Previous works lay em-
phasis on designing a new attention module and individually
plug them into the networks. Our paper proposes a novel-and-
simple framework that shares an attention module through-
out different network layers to encourage the integration of
layer-wise information and this parameter-sharing module is
referred to as Dense-and-Implicit-Attention (DIA) unit. Many
choices of modules can be used in the DIA unit. Since Long
Short Term Memory (LSTM) has a capacity of capturing
long-distance dependency, we focus on the case when the
DIA unit is the modified LSTM (called DIA-LSTM). Exper-
iments on benchmark datasets show that the DIA-LSTM unit
is capable of emphasizing layer-wise feature interrelation and
leads to significant improvement of image classification ac-
curacy. We further empirically show that the DIA-LSTM has
a strong regularization ability on stabilizing the training of
deep networks by the experiments with the removal of skip
connections (He et al. 2016a) or Batch Normalization (Ioffe
and Szegedy 2015) in the whole residual network.

Introduction

Attention, a cognitive process that selectively focuses on a
small part of information while neglects other perceivable
information (Anderson 2005), has been used to effectively
ease neural networks from learning large information con-
texts from sentences (Vaswani et al. 2017; Britz et al. 2017;
Cheng, Dong, and Lapata 2016), images (Xu et al. 2015;
Luong, Pham, and Manning 2015) and videos (Miech,
Laptev, and Sivic 2017). Especially in computer vision, deep
neural networks (DNNs) incorporated with special operators
that mimic the attention mechanism can process informative
regions in an image efficiently. These operators are modu-
larized and plugged into networks as attention modules (Hu,
Shen, and Sun 2018; Woo et al. 2018; Park et al. 2018;
Wang et al. 2018; Hu et al. 2018; Cao et al. 2019).
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Figure 1: Left. Explicit structure of the network with DIA
unit. Right. Implicit connection caused by DIA unit.

Previous works lay emphasis on designing a new atten-
tion module and individually plug them into networks. Gen-
erally, the attention module can be divided into three parts:
extraction, processing and recalibration. First, the plug-in
module extracts internal features of a network which can
be squeezed channel-wise information (Hu, Shen, and Sun
2018; Li et al. 2019) or spatial information (Wang et al.
2018; Woo et al. 2018; Park et al. 2018). Next, the module
processes the extraction and generates a mask to measure the
importance of the features via a fully connected layer (Hu,
Shen, and Sun 2018), convolution layer (Wang et al. 2018).
Last, the mask is applied to recalibrate the features. Previ-
ous works focus on designing effective ways to process the
extracted features. There is one obvious common ground
where the attention modules are individually plugged into
each layer throughout DNNs (Hu, Shen, and Sun 2018;
Woo et al. 2018; Park et al. 2018; Wang et al. 2018).

Our Framework. Differently, we propose a novel-and-
simple framework that shares an attention module through-
out different network layers to encourage the integration of
layer-wise information and this parameter-sharing module is
referred to as Dense-and-Implicit-Attention (DIA) unit. The
structure and computation flow of a DIA unit is visualized
in Figure 2. There are also three parts: extraction ( 1©), pro-
cessing ( 2©) and recalibration ( 3©) in the DIA unit. The 2© is
the main module in the DIA unit to model network attention
and is the key innovation of the proposed method where the
parameters of the attention module are shared.

Characteristics and Advantages. (1) As shown in Fig-
ure 2, the DIA unit is placed parallel to the network back-
bone, and it is shared with all the layers in the same
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Figure 2: DIA units in the residual network. Fext means the operation for extracting different scales of features. Femp means
the operation for emphasizing or recalibrating features.

stage (the collection of successive layers with same spatial
size, as defined in (He et al. 2016a)) to improve the inter-
action of layers at different depth. (2) As the DIA unit is
shared, the number of parameter increment from the DIA
unit remains roughly constant as the depth of the network
increases.

We show the feasibility of our framework by applying
SE module (Hu, Shen, and Sun 2018) in the DIA unit. SE
module, a representative of attention mechanism, is used for
each block individually in its original design. In our frame-
work, we share the same SE module (referred to as DIA-SE)
throughout all layers in the same stage. It is easy to see that
DIA-SE has the same computation cost as SE, but Table 1
shows that DIA-SE has a better generalization and smaller
parameter increment.

model #P(M) top1-acc.

Org 1.73 73.43(±0.43)

SE 1.93 75.03(±0.33)

DIA-SE 1.74 75.74(±0.41)

Table 1: Testing accuracy (mean± std %) on CIFAR100 and
ResNet164 with different attention modules. ”Org” means
the original backbone of ResNet164. #P(M) means the num-
ber of parameters (million).

Implicit and Dense Connection. We illustrate how the
DIA unit connects all layers in the same stage implicitly
and densely. Consider a stage consisting of many layers in
Figure 1 (Left). It is an explicit structure with a DIA unit
and one layer seems not to connect the other layers except
the network backbone. In fact, the different layers use the
parameter-sharing attention module and the layer-wise in-
formation jointly influences the update of learnable param-
eters in the module, which causes implicit connections be-
tween layers with the help of the shared DIA unit as in Fig-
ure 1 (Right). Since there is communication between every
pair of layers, the connections over all layers are dense.

DIA-LSTM

The idea of parameter sharing is also used in Recurrent
Neural Network (RNN) to capture contextual information
so we consider applying RNN in our framework to model
the layer-wise interrelation. Since Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber 1997) has a

strong capacity of capturing long-distance dependency, we
mainly focus on the case when we use LSTM in DIA
unit (DIA-LSTM) and the remainder of our paper studies
DIA-LSTM.

Figure 3 is the showcase of DIA-LSTM. A global average
pooling (GAP) operator (as the 1© in Figure 2) is used to ex-
tract global information from current layer. A LSTM module
(as the 2© in Figure 2) is used to integrate multi-scale infor-
mation and there are three inputs passed to the LSTM: the
extracted global information from current raw feature map,
the hidden state vector ht−1, and the cell state vector ct−1

from previous layers. Then the LSTM outputs the new hid-
den state vector ht and the new cell state vector ct. The cell
state vector ct stores the information from the t-th layer and
its preceding layers. The new hidden state vector ht (dubbed
as attention vector in our work) is then applied back to the
raw feature map by channel-wise multiplication (as the 3©
in Figure 2) to recalibrate the feature.

The LSTM in the DIA unit plays a role to bridge the cur-
rent layer and the preceding layers such that the DIA unit
can adaptively learn the non-linearity relationship between
features in two different dimensions. The first dimension of
features is the internal information of the current layer. The
second dimension represents the outer information, regarded
as layer-wise information, from the preceding layers. The
non-linearity relationship between these two dimensions can
benefit attention modeling for the current layer. The multi-
dimensional modeling enables DIA-LSTM to have regular-
ization effect.

Our Contribution

We summarize our contribution as followed,

1. We propose a novel-and-simple framework that shares an
attention module throughout different network layers to
encourage the integration of layer-wise information.

2. We propose incorporating LSTM in the DIA unit (DIA-
LSTM) and show the effectiveness of DIA-LSTM for im-
age classification by conducting experiments on bench-
mark datasets and popular networks.

Related Works

Attention Mechanism in Computer Vision. Previous
works use the attention mechanism in image classification
via utilizing a recurrent neural network to select and pro-
cess local regions at high resolution sequentially (Mnih et al.
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Figure 3: The showcase of DIA-LSTM. In the LSTM cell, ct is the cell state vector and ht is the hidden state vector. GAP
means global average pool over channels and ⊗ means channel-wise multiplication.

2014; Zhao et al. 2017). Concurrent attention-based meth-
ods tend to construct operation modules to capture non-
local information in an image (Wang et al. 2018; Cao et
al. 2019), and model the interrelationship between channel-
wise features (Hu, Shen, and Sun 2018; Hu et al. 2018).
The combination of multi-level attention is also widely stud-
ied (Park et al. 2018; Woo et al. 2018; Wang et al. 2019;
2017). Prior works (Wang et al. 2018; Cao et al. 2019;
Hu, Shen, and Sun 2018; Hu et al. 2018; Park et al. 2018;
Woo et al. 2018; Wang et al. 2019) usually insert an attention
module in each layer individually. In this work, the DIA unit
is innovatively shared for all the layers in the same stage of
the network, and the existing attention modules can be com-
posited into the DIA unit readily. Besides, we adopt a global
average pooling in part 1© to extract global information and
a channel-wise multiplication in part 3© to recalibrate fea-
tures, which is similar to SENet (Hu, Shen, and Sun 2018).
Dense Network Topology. DenseNet proposed in (Huang et
al. 2017) connects all pairs of layers directly with an iden-
tity map. Through reusing features, DenseNet has the ad-
vantage of higher parameter efficiency, a better capacity of
generalization, and more accessible training than alternative
architectures (Lin, Chen, and Yan 2013; He et al. 2016a;
Srivastava, Greff, and Schmidhuber 2015b). Instead of ex-
plicitly dense connections, the DIA unit implicitly links lay-
ers at different depth via a shared module and leads to dense
connection.
Multi-Dimension Feature Integration. (Wolf and Bileschi
2006) experimentally analyzes that even the simple aggre-
gation of low-level visual features sampled from a wide in-
ception field can be efficient and robust for context repre-
sentation, which inspires (Hu, Shen, and Sun 2018; Hu et
al. 2018) to incorporate multi-level features to improve the
network representation. (Li, Ouyang, and Wang 2016) also
demonstrates that by biasing the feature response in each
convolutional layers using different activation functions, the
deeper layer could achieve the better capacity of capturing
the abstract pattern in DNN. In the DIA unit, the high non-
linearity relationship between multidimensional features is
learned and integrated via the LSTM module.

Dense-and-Implicit Attention Network

In this section, we formally introduce the DIA-LSTM unit.
We incorporate the modified LSTM module in the DIA unit.

Afterward, a DIANet is referred to as a network built with
DIA-LSTM units.

Formulation of DIA-LSTM Unit

Figure 3 shows a DIA-LSTM unit built with a residual net-
work (He et al. 2016a), the input of the t-th layer is xt ∈
R

W×H×N , where W,H and N mean width, height and the
number of channels, respectively. f(·; θ(t)1 ) is the residual
mapping at the t-th layer with parameters θ(t)1 as introduced
in (He et al. 2016a). Let at = f(xt; θ

(t)
1 ) ∈ R

W×H×N .
Next, a global average pooling denoted as GAP(·) is applied
to at to extract global information from features in the cur-
rent layer. Then GAP(at) ∈ R

N is passed to LSTM along
with a hidden state vector ht−1 and a cell state vector ct−1 (
h0 and c0 are initialized as zero vectors). The LSTM finally
generates a current hidden state vector ht ∈ R

N and a cell
state vector ct ∈ R

N as

(ht, ct) = LSTM(GAP(at), ht−1, ct−1; θ2), (1)

where θ2 is the trainable parameter within the LSTM. In
our model, the hidden state vector ht is regarded as atten-
tion vector to adaptively recalibrate feature maps. We apply
channel-wise multiplication ⊗ to enhance the importance of
features, i.e., at ⊗ ht. We obtain xt+1 after skip connection,
i.e., xt+1 = xt + at ⊗ ht.

Table 2 shows the formulation of ResNet, SENet, and DI-
ANet, and Part (b) is the main difference between them. The
LSTM module is used repeatedly and shared with different
layers in parallel to the network backbone. Therefore the
number of parameters θ2 in an LSTM does not depend on
the number of layers in the backbone, e.g., t. SENet utilizes
an attention-module consisted of fully connected layers to
model the channel-wise dependency for each layer individ-
ually (Hu, Shen, and Sun 2018). The total number of pa-
rameters brought by the added-in modules depends on the
number of layers in the backbone and increases concerning
the number of layers.

Modified LSTM Module

Now we introduce the modified LSTM module used in
Figure 3. The design of the attention module usually re-
quires the value of the attention vector in the range [0, 1]
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ResNet SENet DIANet (ours)

(a) at = f(xt; θ
(t)
1 ) at = f(xt; θ

(t)
1 ) at = f(xt; θ

(t)
1 )

(b) - ht = FC(GAP(at); θ
(t)
2 ) (ht, ct) = LSTM(GAP(at), ht−1, ct−1; θ2)

(c) xt+1 = xt + at xt+1 = xt + at ⊗ ht xt+1 = xt + at ⊗ ht

Table 2: Formulation for the structure of ResNet, SENet and DIANet. f is the convolution layer. GAP(·) means global average
pooling. FC means fully connected layer and θ

(t)
2 is the trainable parameter within SE module at the t-th layer.

and also requires a small parameter increment. We con-
duct some modifications in the LSTM module used in DIA-
LSTM. As shown in Figure 4, compared to the standard
LSTM (Hochreiter and Schmidhuber 1997) module, there
are two modifications in our purposed LSTM: 1) a shared
linear transformation to reduce input dimension of LSTM;
2) a carefully selected activation function for better perfor-
mance.
(1) Parameter Reduction. A standard LSTM consists of
four linear transformation layers as shown in Figure 4 (Top).
Since yt, ht−1 and ht are of the same dimension N , the stan-
dard LSTM may cause 8N2 parameter increment as shown
in the last section (Analysis). When the number of chan-
nels is large, e.g., N = 210, the parameter increment of the
added-in LSTM module in the DIA unit will be over 8 mil-
lion, which can hardly be tolerated.

As shown Figure 4 (Top), ht−1 and yt in the standard
LSTM are passed to four linear transformation layers with
the same input and output dimension N . In the DIA-LSTM,
a linear transformation layer (denoted as “Linear1” in Figure
4 (Bottom)) with a smaller output dimension are applied to
ht−1 and yt. We use reduction ratio r in “Linear1”. Specifi-
cally, we reduce the dimension of the input from N to N/r
and then apply the ReLU activation function to increase non-
linearity in this module. The dimension of the output of the
ReLU layer is changed back to N when the output is passed
to those four linear transformation functions. This modifi-
cation can enhance the relationship between the inputs for
different parts in DIA-LSTM and also effectively reduce the
number of parameters by sharing a linear transformation for
dimension reduction. The number of parameter increment
reduces from 8N2 to 10N2/r as shown in the last section
(Analysis). When we choose an appropriate reduction ratio
r, we can make a better trade-off between parameter reduc-
tion and the performance of DIANet. Further experimental
results will be discussed in the ablation study later.
(2) Activation Function. Sigmoid (σ(z) = 1/(1 + e−z))
is used in many attention-based methods like SENet (Hu,
Shen, and Sun 2018), CBAM (Woo et al. 2018) to gener-
ate attention maps as a gate mechanism. As shown in Fig-
ure 4 (Bottom), we change the activation function of the out-
put layer from Tanh to Sigmoid. Further discussion will be
presented in ablation study.

Experiments

In this section, we evaluate the performance of the DIA-
LSTM unit in image classification and empirically demon-
strate its effectiveness. We conduct experiments on popular
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Figure 4: Top. The standard LSTM cell. Bottom. The mod-
ified LSTM cell in DIA-LSTM unit. We highlight the mod-
ified component in the modified LSTM. “σ” means the sig-
moid activation. “Linear” means the linear transformation.

networks for benchmark datasets. Since SENet (Hu, Shen,
and Sun 2018) is also a channel-specific attention model,
we compare DIANet with SENet. For a fair comparison, we
adjust the reduction ratio such that the number of parameters
of DIANet is similar to that of SENet.

Dataset and Model. We conduct experiments on CI-
FAR10, CIFAR100 (Krizhevsky and Hinton 2009) and Ima-
geNet 2012 (Russakovsky et al. 2015) using ResNet (He et
al. 2016a), PreResNet (He et al. 2016b), WRN (Zagoruyko
and Komodakis 2016) and ResNeXt (Xie et al. 2017).
CIAFR10 or CIFAR100 has 50k train images and 10k test
images of size 32 by 32, but has 10 and 100 classes respec-
tively. ImageNet 2012 (Russakovsky et al. 2015) comprises
1.28 million training and 50k validation images from 1000
classes, and the random cropping of size 224 by 224 is used
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Dataset original SENet DIANet

#P(M) top1-acc. #P(M) top1-acc. #P(M) top1-acc. r

ResNet164 CIFAR100 1.73 73.43 1.93 75.03 1.95 76.67 4
PreResNet164 CIFAR100 1.73 76.53 1.92 77.41 1.96 78.20 4
WRN52-4 CIFAR100 12.07 79.75 12.42 80.35 12.30 80.99 4
ResNeXt101,8x32 CIFAR100 32.14 81.18 34.03 82.45 33.01 82.46 4

ResNet164 CIFAR10 1.70 93.54 1.91 94.27 1.92 94.58 4
PreResNet164 CIFAR10 1.70 95.01 1.90 95.18 1.94 95.23 4
WRN52-4 CIFAR10 12.05 95.96 12.40 95.95 12.28 96.17 4
ResNeXt101,8x32 CIFAR10 32.09 95.73 33.98 96.09 32.96 96.24 4

ResNet34 ImageNet 21.81 73.93 21.97 74.39 21.98 74.60 20
ResNet50 ImageNet 25.58 76.01 28.09 76.61 28.38 77.24 20
ResNet152 ImageNet 60.27 77.58 66.82 78.36 65.85 78.87 10
ResNeXt50,32x4 ImageNet 25.03 77.19 27.56 78.04 27.83 78.32 20

Table 3: Testing accuracy (%) on CIFAR10, CIFAR100 and ImageNet 2012. “#P(M)” means the number of parameters (mil-
lion). The rightmost “r” indicates the reduction ratio of DIANet.

in our experiments. The details can be found in Appendix.
Image Classification. As shown in Table 3, DIANet im-

proves the testing accuracy significantly over the original
networks and consistently comparing with SENet for differ-
ent datasets. In particular, the performance improvement of
the ResNet with the DIA unit is most remarkable. Due to the
popularity of ResNet, the DIA unit may be applied in other
computer vision tasks.

Ablation Study
In this section, we conduct ablation experiments to explore
how to better plug DIA-LSTM units in different neural net-
work structures and gain a deeper understanding of the role
of components in the unit. All experiments are performed
on CIFAR100 with ResNet. For simplicity, DIANet164 is
denoted as a 164-layer ResNet built with DIA-LSTM units.
Reduction Ratio. The reduction ratio is the only hyperpa-
rameter in DIANet. The main advantage of our model is
improving the generalization ability with a light parameter
increment. The smaller reduction ratio causes a higher pa-
rameter increment and model complexity. This part investi-
gates the trade-off between the model complexity and per-
formance. As shown in Table 4, the number of parameters
of the DIANets decreases with the increasing reduction ra-
tio, but the testing accuracy declines slightly, which suggests
that the model performance is not sensitive to the reduction
ratio. In the case of r = 16, the DIANet164 has 0.05M pa-
rameter increment compared to the original ResNet164 but
the testing accuracy of the DIANet164 is 76.50% while that
of the ResNet164 is 73.43%.
The Depth of Networks. Generally in practice, DNNs with
a larger number of parameters do not guarantee sufficient
performance improvement. Deeper networks may contain
extreme feature and parameter redundancy (Huang et al.
2017). Therefore, designing a new structure of deep neural
networks is necessary (He et al. 2016a; Huang et al. 2017;
Srivastava, Greff, and Schmidhuber 2015a; Hu, Shen, and
Sun 2018; Hu et al. 2018; Wang et al. 2018). Since DIA

Ratio r #P(M) top1-acc.

1 2.59(+0.86) 76.88
4 1.95(+0.22) 76.67
8 1.84(+0.11) 76.42

16 1.78(+0.05) 76.50

Table 4: Test accuracy (%) with different reduction ratio on
CIFAR100 with ResNet164. The value in bracket means the
parameter increment compared with the original ResNet164
(1.73M).

units change the topology of DNN backbones, evaluating
the effectiveness of DIANet structure is important. Here we
investigate how the depth of DNNs influences DIANets in
two aspects: (1) the performance of DIANets compared to
SENets of various depth; (2) the parameter increment of DI-
ANets.

The results in Table 5 show that as the depth increases
from 83 to 407 layers, the DIANet with a smaller number of
parameters can achieve higher classification accuracy than
the SENet. Moreover, the DIANet83 can achieve a similar
performance as the SENet245, and DIANet164 outperforms
all the SENets with at least 1.13% and at most 58.8% pa-
rameter reduction. They imply that the DIANet is of higher
parameter efficiency than SENet. The results also suggest
that: for DIANet, as shown in Figure 3, the DIA-LSTM unit
will pass more layers recurrently with a deeper depth. The
DIA-LSTM can handle the interrelationship between the in-
formation of different layers in much deeper DNN and figure
out the long-distance dependency between layers.
Activation Function and the Number of Stacking Cells.
We choose different activation functions in the output layer
of LSTM in Figure 4 (Bottom) and different numbers of
stacking LSTM cells to explore the effects of these two
factors. In Table 6, we find that the performance has been
significantly improved after replacing tanh in the standard
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Figure 5: Visualization of feature integration for each stage by random forest. Each row presents the importance of source layers
hn, 1 ≤ n < t contributing to the target layer ht.

CIFAR-100 SENet DIANet(r = 4)

Depth #P(M) acc. #P(M) acc.

ResNet83 0.99 74.67 1.11(+0.12) 75.02
ResNet164 1.93 75.03 1.95(+0.02) 76.67
ResNet245 2.87 75.03 2.78(−0.09) 76.79
ResNet407 4.74 75.54 4.45(−0.29) 76.98

Table 5: Test accuracy (%) with ResNet of different depth
on CIFAR100.

LSTM with sigmoid. As shown in Figure 4 (Bottom), this
activation function is located in the output layer and directly
changes the effect of memory unit ct on the output of the
output gate. In fact, the sigmoid is used in many attention-
based methods like SENet as a gate mechanism. The test
accuracy of different choices of LSTM activation functions
in Table 6 shows that sigmoid better helps LSTM as a gate to
rescale channel features. Table 12 in the SENet paper (Hu,
Shen, and Sun 2018) shows the performance of different ac-
tivation functions like: sigmoid > tanh > ReLU (bigger is
better), which coincides to our reported results.

When we use sigmoid in the output layer of LSTM, the
increasing number of stacking LSTM cells does not neces-
sarily lead to performance improvement but may lead to per-
formance degradation. However, when we choose tanh, the
situation is different. It suggests that, through the stacking of
LSTM cells, the scale of the information flow among them
is changed, which may affect the performance.

Analysis

In this section, we study some properties of DIANet, in-
cluding feature integration and regularization effect on sta-
bilizing training. Firstly, the layers are connected by the
DIA-LSTM unit in DIANet and we use the random forest
model (Gregorutti, Michel, and Saint-Pierre 2017) to visu-
alize how the current layer depends on the preceding layers.
Secondly, we study the stabilizing training effect of DIANet
by removing all the Batch Normalization (Ioffe and Szegedy
2015) or the skip connection in the residual network.

#P(M) Activation #LSTM cells top1-acc.

1.95 sigmoid 1 76.67
1.95 tanh 1 75.24
1.95 ReLU 1 74.62
3.33 sigmoid 3 75.20
3.33 tanh 3 76.47

Table 6: Test accuracy (%) on CIFAR100 with DIANet164
of different activation function at the output layer in the
modified LSTM and different number of stacking LSTM
cells.

Feature Integration

Here we try to understand the dense connection from the nu-
merical perspective. As shown in Figure 3 and 1, the DIA-
LSTM bridges the connections between layers by propagat-
ing the information forward through ht and ct. Moreover, ht

at different layers are also integrating with ht′ , 1 ≤ t′ < t in
DIA-LSTM. Notably, ht is applied directly to the features
in the network at each layer t. Therefore the relationship
between ht at different layers somehow reflects layer-wise
connection degree. We explore the nonlinear relationship be-
tween the hidden state ht of DIA-LSTM and the preceding
hidden state ht−1, ht−2, ..., h1, and visualize how the infor-
mation coming from ht−1, ht−2, ..., h1 contributes to ht. To
reveal this relationship, we consider using the random for-
est to visualize variable importance. The random forest can
return the contributions of input variables to the output sep-
arately in the form of importance measure, e.g., Gini im-
portance (Gregorutti, Michel, and Saint-Pierre 2017). The
computation details of Gini importance can be referred to
Algorithm 1.

Take hn, 1 ≤ n < t as input variables and ht as out-
put variable, we can get the Gini importance of each vari-
able hn, 1 ≤ n < t. ResNet164 contains three stages, and
each stage consists of 18 layers. We conduct three Gini im-
portance computation to each stage separately. As shown in
Figure 5, each row presents the importance of source lay-
ers hn, 1 ≤ n < t contributing to the target layer ht. In
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Algorithm 1 Calculate feature integration using Gini impor-
tance by Random Forest
Input: H: composed of h1,h2,...,ht from Stage i;
# The size of H is (bz × cz × fz)
# bz denotes the number of training samples
# cz denotes the number of channels in Stage i
# fz denotes the number of layers in Stage i
Output: The hotmap G about the feature integration for
Stage i;

1: initial G = ∅ ;
2: for j = 1 to fz − 1 do
3: x← [h1, h2, ..., hj−1];
4: y ← [hj ];
5: x← x.reshape(bz ,(fz − j)× cz);
6: RF← RandomForestRegressor();
7: RF.fit(x,y);
8: Gini importances← RF.feature importances ;

# The length of Gini importance is (fz − j)× cz
9: res← ∅; s← 0; cnt← 0;

10: for k = 0 to (fz − j) do
11: s← s + Gini importance(k);
12: cnt← cnt + 1;
13: if cnt == cz-1 then
14: res.add(s);s← 0;cnt← 0;
15: end if

G.add(res/max(res));
16: end for
17: end for

each sub-graph of Figure 5, the diversity of variable impor-
tance distribution indicates that the current layer uses the in-
formation of the preceding layers. The interaction between
shallow and deep layers in the same stage reveals the effect
of implicitly dense connection. In particular, taking h17 in
stage 1 (the last row) as an example, h16 or h15 does not in-
tuitively provide the most information for h17, but h5 does.
The DIA unit can adaptively integrate information between
multiple layers. Moreover, in Figure 5 (stage 3), the infor-

remove #P(M) #P(M)↓ top1-acc. top1-acc.↓
stage1 1.94 0.01 76.27 0.40
stage2 1.90 0.05 76.25 0.42
stage3 1.78 0.17 75.40 1.27

Table 7: The test accuracy (%) of DIANet164 with the re-
moval of DIA-LSTM unit in different stage.

mation interaction with previous layers in stage 3 is more
intense and frequent than that of the first two stages. Corre-
spondingly, as shown in Table 7, in the experiments when
we remove the DIA-LSTM unit in stage 3, the classification
accuracy decreases from 76.67 to 75.40. However, when it
in stage 1 or 2 is removed, the performance degradation is
very similar, falling to 76.27 and 76.25 respectively. Also
note that for DIANet, the number of parameter increment in
stage 2 is larger than that of stage 1. It implies that the sig-
nificant performance degradation after the removal of stage

3 may be not only due to the reduction of the number of
parameters but due to the lack of dense feature integration.

The Effect on Stabilizing Training

Removal of Batch Normalization. Small changes in shal-
lower hidden layers may be amplified as the informa-
tion propagates within the deep architecture and some-
times result in a numerical explosion. Batch Normalization
(BN) (Ioffe and Szegedy 2015) is widely used in the deep
networks since it stabilizes the training by normalization the
input of each layer. DIA-LSTM unit recalibrates the feature
maps by channel-wise multiplication, which plays a role of
scaling similar to BN. Table 8 shows the performance of the
models of different depth trained on CIFAR100 and BNs are
removed in these networks. The experiments are conducted
on a single GPU with batch size 128 and initial learning
rate 0.1. Both the original ResNet, SENet face problem of
numerical explosion without BN while the DIANet can be
trained with depth up to 245. In Table 8, at the same depth,
SENet has larger number of parameters than DIANet but
still comes to numerical explosion without BN, which means
that the number of parameters is not the case for stabiliza-
tion of training but sharing mechanism we proposed may be
the case. Besides, comparing with Table 5, the testing accu-
racy of DIANet without BN still can keep up to 70%. The
scaling learned by DIANet integrates the information from
preceding layers and enables the network to choose a better
scaling for features of current layer.
Removal of Skip Connection. The skip connection has be-
come a necessary structure for training DNNs (He et al.
2016b). Without skip connection, the DNN is hard to train
due to the reasons like the gradient vanishing (Bengio et
al. 1994; Glorot and Bengio 2010; Srivastava, Greff, and
Schmidhuber 2015a). We conduct the experiment where all
the skip connections are removed in ResNet56 and count the
absolute value of gradient at the output tensor of each stage.
As shown in Figure 6 which presents the gradient distribu-
tion with all skip connection removal, DIANet (blue) obvi-
ously enlarges the mean and variance of the gradient distri-
bution, which enables larger absolute value and diversity of
gradient and relieves gradient degradation to some extent.
Without Data Augment. Explicit dense connections may
help bring more efficient usage of parameters, which makes
the neural network less prone to overfit (Huang et al. 2017).
Although the dense connections in DIA-LSTM are implicit,
the DIANet still shows the ability to reduce overfitting. To
verify it, We train the models without data augment to re-
duce the influence of regularization from data augment. As
shown in Table 9, DIANet achieves lower testing error than
ResNet164 and SENet. To some extent, the implicit and
dense structure of DIANet may have regularization effect.

Number of Parameters in LSTM

This section shows the number of parameter costs in the
standard LSTM and the modified LSTM with the reduction
ratio r. The input yt, the hidden state vector ht−1 and the
output in Figure 4 are of the same size N , which is equal to
the number of channels.
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original SENet DIANet(r = 16)

#P(M) top1-acc. #P(M) top1-acc. #P(M) top1-acc.

ResNet83 0.88 nan 0.98 nan 0.94 70.58
ResNet164 1.70 nan 1.91 nan 1.76 72.36
ResNet245 2.53 nan 2.83 nan 2.58 72.35
ResNet326 3.35 nan 3.75 nan 3.41 nan

Table 8: Testing accuracy (%). We train models of different depth without BN on CIFAR-100. “nan” indicates the numerical
explosion.

Figure 6: The distribution of gradient in each stage of ResNet56 without all the skip connections.

Models CIFAR-10 CIFAR-100

ResNet164 87.32 60.92
SENet 88.30 62.91

DIANet 89.25 66.73

Table 9: Test accuracy (%) of the models without data aug-
ment with ResNet164.

Standard LSTM. There are four linear transformations in
the standard LSTM as shown in Figure 4 (Top) to control
the information flow with input yt and ht−1 respectively. To
simplify the calculation, the bias is omitted. Therefore, for
the yt, the number of parameters of four linear transforma-
tions is equal to 4N2. Similarly, the number parameters of
four linear transformations for input ht−1 is equal to 4N2.
The total number equals to 8N2.

DIA-LSTM. As shown in Figure 4 (Bottom), there is a lin-
ear transformation to reduce the dimension at the beginning,
which reduces the dimension of input yt from N to N/r.
The number of parameters for the linear transformation is
equal to N2/r. Then the output will be passed to four linear
transformations the same as the standard LSTM. The num-
ber of parameters of four linear transformations is equal to
4N2/r. Therefore, for input yt and reduction ratio r, the to-
tal number of parameters is 5N2/r. Similarly, the number
of parameters with input ht−1 is the same as that concerning
the input yt. The total number of parameters is 10N2/r.

Conclusion

In this paper, we proposes a novel-and-simple framework
that shares an attention module throughout different network
layers to encourage the integration of layer-wise informa-
tion. The parameter-sharing module is called Dense-and-
Implicit Attention (DIA) unit. We propose incorporating
LSTM in DIA unit (DIA-LSTM) and show the effectiveness
of DIA-LSTM for image classification by conducting ex-
periments on benchmark datasets and popular networks. We
further empirically show that the DIA-LSTM has a strong
regularization ability on stabilizing the training of deep net-
works by the experiments with the removal of skip connec-
tions or Batch Normalization (Ioffe and Szegedy 2015) in
the whole residual network.
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