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Abstract
Graph convolutional networks (GCN) have achieved promis-
ing performance in attributed graph clustering and semi-
supervised node classification because it is capable of mod-
eling complex graphical structure, and jointly learning both
features and relations of nodes. Inspired by the success of un-
supervised learning in the training of deep models, we won-
der whether graph-based unsupervised learning can collabo-
ratively boost the performance of semi-supervised learning.
In this paper, we propose a multi-task graph learning model,
called collaborative graph convolutional networks (CGCN).
CGCN is composed of an attributed graph clustering network
and a semi-supervised node classification network. As Gaus-
sian mixture models can effectively discover the inherent
complex data distributions, a new end to end attributed graph
clustering network is designed by combining variational
graph auto-encoder with Gaussian mixture models (GMM-
VGAE) rather than the classic k-means. If the pseudo-label
of an unlabeled sample assigned by GMM-VGAE is consis-
tent with the prediction of the semi-supervised GCN, it is se-
lected to further boost the performance of semi-supervised
learning with the help of the pseudo-labels. Extensive exper-
iments on benchmark graph datasets validate the superior-
ity of our proposed GMM-VGAE compared with the state-
of-the-art attributed graph clustering networks. The perfor-
mance of node classification is greatly improved by our pro-
posed CGCN, which verifies graph-based unsupervised learn-
ing can be well exploited to enhance the performance of semi-
supervised learning.

1 Introduction
The explosive growth of graph data in real-world applica-
tions, such as knowledge graph (Hamaguchi et al. 2017),
social networks (Tang et al. 2008), and computer vision
(Wang, Ye, and Gupta 2018), badly needs graph learning
models with strong representation and reasoning abilities.
In recent years, graph neural networks (Bruna et al. 2014;
Henaff, Bruna, and LeCun 2015; Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017) have shown
surprising performance. Especially, graph convolutional net-
works (GCN) have been applied to a large variety of tasks,
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e.g. , attributed graph clustering and semi-supervised node
classification (Kipf and Welling 2017).

Despite the success of GCN in graph data, there are
still great challenges for GCN in attributed graph cluster-
ing and semi-supervised node classification. Firstly, varia-
tional graph auto-encoder (VGAE) (Kipf and Welling 2016)
based attributed graph clustering approaches impose a sin-
gle Gaussian prior on the learned latent embedding. How-
ever, the complex data distributions cannot be well mod-
eled under the assumption of a single Gaussian prior. Ad-
ditionally, many works conduct graph embedding and get
clustering assignments by k-means separately, which does
not utilize the end to end learning manner of deep learn-
ing. Secondly, semi-supervised learning directly uses unla-
beled samples to enhance models by graph convolutions, but
the supervised information is still not increased. Although
a pseudo-labeling strategy is designed to exploit unlabeled
samples with the most confidence scores (Li, Han, and Wu
2018), the accumulative error of pseudo-labels will gradu-
ally increase and degrade the model. Thirdly, pseudo-labels
can be assigned to unlabeled samples by clustering. The po-
tential of the pseudo-labels is not well investigated for graph
convolutional networks.

Unsupervised learning can effectively boost the perfor-
mance of deep models in many approaches. (Caron et al.
2018) used pseudo-labels generated by deep clustering to
guide learning of visual features, which significantly im-
proves the discrimination ability of the learned features. (Xie
et al. 2019) proposed an unsupervised data augmentation
strategy, which leads to substantial improvements when the
labeled set is extremely small. Motivated by the success of
unsupervised learning in visual feature learning and data
augmentation, we investigate to use graph-based unsuper-
vised learning, i.e. , attributed graph clustering, to enhance
semi-supervised node classification performance. Specifi-
cally, our contributions are summarized as follows:

• We propose a multi-task graph learning model, i.e. , col-
laborative graph convolutional networks (CGCN). CGCN
uses the samples whose clustering assignments and semi-
supervised predictions are consistent to further boost the
learning performance of semi-supervised node classifica-
tion. CGCN effectively alleviates the accumulative error
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of pseudo-labels via joint training of clustering and semi-
supervised node classification networks.

• An attributed graph clustering model is given, i.e. , vari-
ational graph auto-encoder with Gaussian mixture model
(GMM-VGAE). It uses Gaussian mixture model to dis-
cover complex data distributions, which can lead to better
clustering results in an end to end manner.

• Extensive experiments on graph data verify the effective-
ness of our proposed GMM-VGAE for attributed graph
clustering and multi-task graph learning model, i.e. ,
CGCN, for semi-supervised node classification.

2 Related Work
2.1 Graph Convolutional Networks
Recently, there have been increasing interests in deep learn-
ing approaches for graph data. The neural networks on graph
data can be categorized into spatial (Atwood and Towsley
2016; Monti et al. 2017; Velickovic et al. 2017) and spec-
tral approaches (Bruna et al. 2014; Defferrard, Bresson, and
Vandergheynst 2016; Kipf and Welling 2017). For spectral
approaches, by the eigen-decomposition of the graph Lapla-
cian, the convolution operation is defined, resulting in po-
tentially intense computations and non-spatially localized
filters in the Fourier domain (Bruna et al. 2014). (Deffer-
rard, Bresson, and Vandergheynst 2016) utilized Chebyshev
expansion of the graph Laplacian to approximate the fil-
ters, removing the need of computing the eigenvectors of the
Laplacian and yielding spatially localized filters. On this ba-
sis, (Kipf and Welling 2017) presented a simplified method
by restricting the filters to operate in a 1-order neighbor-
hood around each node, called graph convolutional networks
(GCN), which is the focus of this paper. However, GCN
has the intrinsic limitation that it cannot effectively propa-
gate the labels to the entire graph. To address this problem,
(Li, Han, and Wu 2018) proposed self-training approaches
to enlarge the training dataset. Further more, (Sun, Zhu,
and Lin 2019) proposed multi-stage self-training process-
ing, but it only apply deep clustering on embedding and
rely on distance measure to align, without considering us-
ing more appropriate attributed graph clustering approach.
When the number of available labeled samples is limited, it
is worth leveraging the potential of massive unlabeled sam-
ples to strengthen the performance of GCNs.

2.2 Attributed Graph Clustering
Attributed graph clustering is to cluster nodes by using node
features and topological information of graph data (Yang
et al. 2009). Generative models (Chang and Blei 2009;
He et al. 2017; Bojchevski and Günnemann 2018) aim to in-
teract between the connectivity of graph and node features.
In recent years, benefiting from the development of graph
convolution networks, attributed graph clustering has pro-
gressed significantly. Many algorithms employ graph auto-
encoder (GAE) and variational graph auto-encoder (VGAE)
(Kipf and Welling 2016) to learn representation with two
GCN layers and then reconstruct the adjacency matrix.
To learn a robust embedding and enforce the latent codes

to match a prior distribution, two variants of adversar-
ial approaches, adversarially regularized graph autoencoder
(ARGA) and adversarially regularized variational graph au-
toencoder (ARVGA) are developed (Pan et al. 2018). (Wang
et al. 2019) proposed an attentional embedding algorithm
(DAEGC), to jointly perform graph clustering and learn
graph embedding in a unified framework. To capture global
cluster structure and adaptively select the appropriate order
of different graphs, (Zhang et al. 2019) proposed an adaptive
graph convolution method (AGC). Most VGAE-based meth-
ods adopt a two-step strategy with single Gaussian prior,
that is, first learn embedding and then get cluster assignment
by k-means. Recently (Nalisnick, Hertel, and Smyth 2016;
Shu 2016; Jiang et al. 2017) introduced the VAE with Gaus-
sian mixture model for non-graph data clustering.

3 Preliminaries and Problem Definition
Basic Notations on Graphs. Given a non-directed graph
G = (V ,E,X), where V = {v1, v2, . . . , vn} consists of a
set of nodes with |V | = n, and E = {eij} is a set of edges
between nodes. Adjacency matrix A = {aij} ∈ R

n×n de-
notes the topological structure of graph G, where ai,j = 1
if (vi, vj) ∈ E, otherwise ai,j = 0 . X is an attribute fea-
ture matrix of all the nodes, i.e. , X = {x1,x2, . . . ,xn} ∈
R

n×d, where xi ∈ R
d is a real-value attribute vector associ-

ated with node vi.

Graph Convolutional Layer. Given the adjacent matrix
A and the input feature X , a layer-wise transformation is
conducted by a spectral convolution function:

fφ

(
Z(l),A|W (l)

)
= φ

(
D̃− 1

2 ÃD̃− 1
2Z(l)W (l)

)
, (1)

where Z(l) is the lth hidden layer for convolution, and
Z(l+1) is the output after convolution. We have Z(0) =
X ∈ R

n×d (n nodes and d features). Ã = A + IN ,
D̃ii =

∑
j Ãij and IN is an identity matrix. W (l) denotes

the layer-specific trainable weight parameters, and φ is an
activation function , e.g. , Relu(·) = max(0, ·). For more
details, please refer to (Kipf and Welling 2017).

Attributed Graph Clustering. Given the graph G, at-
tributed graph clustering aims to partition the nodes in G into
k clusters G = {G1,G2, · · · ,Gk} by unsupervised learning
without any labeled node.

Semi-supervised Learning. The semi-supervised node
classification aims to learn a classifier from a set of N train-
ing samples D. These samples are split into an unlabeled set
Du = {xi}Nu

i=1 and a labeled set Dl = {(xi, yi)}Nl

i=1. yi ∈
{0, 1}C is the one-hot encoding label for C classes corre-
sponding to xi and N = Nl+Nu. Pseudo-label is the predic-
tion of a supervised learner or clustering assignments in un-
supervised learning. As we seek to perform pseudo-labeling
for the Nu unlabel samples, we assume that a pseudo-label
ỹ is available for these samples. We can then reformulate the
problem as training using D̃ = {(xi, ỹi)}Ni=1, where ỹ = y
for the Nl labeled samples.
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Figure 1: The architecture of collaborative graph convolutional networks (CGCN). CGCN is composed of GMM-VGAE module
(attributed graph clustering) and semi-supervised module (node classification). They utilize the common shallow representation
by sharing the first graph convolution layer. During the training, if the clustering assignment is consistent with the semi-
supervised prediction for an unlabeled sample, then the unlabeled node with the pseudo-label is added to the label set, and the
network will be retrained.

4 Proposed Method
In this section, we present the proposed multi-task graph
learning model, i.e. , collaborative graph convolutional net-
work (CGCN), which is shown in Fig. 1. It is pointed out
that a vanilla GCN can not sufficiently propagate the label
information to the entire graph with only a few labels, since
repeatedly applying Laplacian smoothing may mix the fea-
tures of vertices from different categories and make them
indistinguishable during training (Li, Han, and Wu 2018)
. Therefore GCN needs a considerable amount of labeled
data for validation and model selection. An intuitive solu-
tion is to select the nodes with the most confidence scores
for each class and then add them to the training set. How-
ever, the model prediction may gradually become unreliable
because of the accumulative error with iterations induced by
the uncertainty from pseudo-labels of the selected nodes. As
shown in Fig. 2, the reliability of the selected nodes with
high confidence scores will gradually decrease with iter-
ations. Hence, these pseudo labels will probably lead the
model to propagate incorrect (noise) information. Above all,
the challenging issue for vanilla GCN is how to make good
use of the nodes with pseudo-labels more accurately to boost
the performance of GCN.

To this end, we employ unsupervised learning, i.e. , at-
tributed graph clustering, to boost the performance of semi-
supervised node classification. CGCN selects nodes with
consistent pseudo-labels of both the unsupervised clustering
network and semi-supervised node classification network.
In this way, nodes can be selected more accurately and the
propagation of possible incorrect information is alleviated as

Figure 2: Confusion matrix for selected nodes with top con-
fidence scores in different training iteration. The left subfig-
ure shows the confuse matrix of the selected nodes in the
first iteration and the right one is the selected nodes in the
fifth iteration on Cora dataset.

well. In addition, the multi-task learning model will be more
beneficial to learn the general representation.

4.1 GMM-VGAE
To discover the complex data distributions, we combine vari-
ational graph autoencoder with Gaussians mixture model
(GMM-VGAE) and develop an end to end unsupervised
model for attributed graph clustering. We first introduce the
architecture of GMM-VGAE, and then present the optimiza-
tion process. GMM-VGAE consists of encoder and decoder
and the encoder can be constructed as:

Z(1) = fRelu

(
X,A|W (0)

)
, (2)

Z(2)
μ = flinear

(
Z(1),A|W (1)

μ

)
, (3)
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Z(2)
σ = flinear

(
Z(1),A|W (1)

σ

)
. (4)

Following VAGE (Kipf and Welling 2016), we can take a
simple inference model parameterized by a two-layer GCN:

q(Z|X,A) =
n∏

i=1

q (zi|X,A) , (5)

q (zi|X,A) = N (
zi|μi, diag

(
σ2

i

))
. (6)

where μ = Z
(2)
μ and σ2 are the mean vectors and the vari-

ance. logσ2 = Z
(2)
σ . The decoder is used to reconstruct the

graph data, especially graph structure A. More specifically,
generative model is given by an inner product between la-
tent variables:

p(Â|Z) =

n∏
i=1

n∏
j=1

p
(
Âij |zi, zj

)
; (7)

p
(
Âij |zi, zj

)
= φ

(
z�i , zj

)
. (8)

Here φ is the activation function (sigmoid), and Âij is the
reconstruction graph structure from decoder.

According to VGAE (Kipf and Welling 2016), it mini-
mizes the reconstruction error of the graph data and op-
timizes the variational lower bound by a single Guassian
prior. However, the complex data distributions cannot be
well modeled under the assumption of a single Guassian
prior. Guassian mixture model has been well applied to
VaDE (Jiang et al. 2017), here we extend it for attributed
graph clustering task. For VaDE, the input and output are
both images, while the GMM-VGAE input is a feature of
the node, and the output is an adjacency matrix representing
the graph structure. We describe the process of clustering:
given the hyper-parameter K for cluster numbers, we first
choose a cluster c from the categorical distribution Cat(π)

which is parameterized by π, and π ∈ R
K
+ ,
∑K

k=1 πk = 1
is the prior probability for cluster. Then we obtain a latent
vector z from the distribution N (

μc, σ
2
cI
)
. Given a certain

cluster c, we can find the Gaussian distribution with mean
μc and variance σ2

c and I is an identity matrix. Finally, the
observed μa = φ

(
z�i , zj

)
can be camputed and sample a

from Ber(μa), where the Ber(·) denotes the multivariate
Bernoulli distribution parameterized by the latent vector μa

from reconstruction observed sample. Above all, we can fac-
torize joint probability p(a, z, c):

p(a, z, c) = p(a|z)p(z|c)p(c). (9)

Variational Lower Bound In accordance to the VAE
(Kingma and Welling 2013), GMM-VGAE can be trained
together and optimized by maximizing the variational evi-
dence lower bound, i.e. , elbo. Given the generative process,
the elbo loss Lelbo of GMM-VGAE can be defined as:

Lelbo = Eq(z,c|x,a)

[
log

p(a, z, c)

q(z, c|x, a)
]
, (10)

similar with VaDE, we use variational posterior q(z, c|x, a)
which could be assumed as a mean-field distribution to ap-
proximate the true posterior p(z, c|x, a).

q(z, c|x, a) = q(z|x, a)q(c|x, a). (11)

By substituting the terms in Eq. 9, 10, 11, the variational
evidence lower bound L can be rewritten as:

Lelbo = Eq(z,c|x,a)
[
log p(a,z,c)

q(z,c|x,a)
]

= Eq(z,c|x,a)[log p(a, z, c)− log q(z, c|x, a)]
= Eq(z,c|x,a)[log p(a|z) + log p(z|c) + log p(c)
− log q(z|x, a)− log q(c|x, a)],

(12)

where q(z|x, a) = N (
z; μ̃, σ̃2I

)
and μ̃ and σ̃2 are derived

by Z
(2)
μ ,Z

(2)
σ respectively. In order to straightforwardly op-

timize Eq. 12 using standard stochastic gradient methods,
we need utilize the SGVB estimator and reparameteriza-
tion trick proposed by VAE (Kingma and Welling 2013),
the Lelbo could be divided into reconstruction term Lrec and
KL-divergence term Lkld:

Lelbo = Lrec + Lkld, (13)

Lrec =
1

N

N∑
n=1

D∑
i=1

ai logμ
n
a |i + (1− ai) log (1− μn

a |i) .
(14)

The Lrec is defined as binary cross entropy to calculate re-
construction loss and D is the dimensions of μn

a . N is the
number of Monte Carlo sample in the SGVB estimator and
∗n is the nth sample.

Lkld =− 1

2

K∑
c=1

γc

J∑
j=1

(
log σ2

c |j+
σ̃2|j
σc|j +

(μ̃|j − μc|j)2
σ2
c |j

)

+
K∑
c=1

γc log
πc

γc
+

1

2

J∑
j=1

(
1 + log σ̃2|j

)
,

(15)
where the K is the number of clusters, πc is the prior prob-
ability of cluster c, γc denotes q(c|x, a), and ∗|j denotes the
jth element of ∗. μ(n)

a from the decoder is computed as:

μn
a = φ

(
(zn)�, zn

)
, (16)

zn = μ̃+ σ̃ ◦ εn, (17)
where ◦ is the element-wise operator, zn can be obtained
via reparameterization trick and εn ∼ N (0, I). Above all,
we can rewritten Lelbo as:

Lelbo = Eq(z,c|x,a)
[
log p(a,z,c)

q(z,c|x,a)

]

=
∫
z

∑
c q(z|x, a)q(c|x, a)·

[
log p(a|z)p(z)

q(z|x,a) + log p(c|z)
q(c|x,a)

]
dz

=
∫
z
q(z|x, a) log p(a|z)p(z)

q(z|x,a) dz

− ∫
z
q(z|x, a)DKL(q(c|x, a)‖p(c|z))dz.

(18)
The DKL(q(·)‖p(·)) defines the Kullback-Leibler (KL)

(Kullback 1987) divergence between two distribution q(·)
and p(·). Since the definition of KL divergence is non-
negative and the first term has no dependence on c, when
DKL[q(c|x, a)‖p(c|z)] ≡ 0, the loss Lelbo is maximized. At
last, we could compute q(c|x, a) by:

q(c|x, a) = p(c|z) ≡ p(c)p(z|c)∑K
c′=1 p (c

′) p (z|c′)
. (19)
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4.2 Collaborative Graph Convolutional Networks
In this subsection, we will introduce how the attributed
graph clustering network helps to boost the performance of
semi-supervised learning in a collaborative learning man-
ner. CGCN firstly pre-train two modules, i.e. , GMM-VGAE
module and semi-supervised module.

Algorithm 1: CGCN
Input: Graph G = (V ,E,X); The sample set D with

all nodes. Unlabel set Du. Labeled set Dl.
Number of classes K. Number of query nodes q.
Number of iteration T . Number of pretrain
iteration Tp. Number of retrain iteration Tr.

Output: Final classification result.
1 Random initialize the GCN parameters

W (0),W
(1)
μ ,W

(1)
σ ,W

(1)
semi in CGCN;

2 for t = 1, 2, · · · , Tp do
3 Update CGCN by Eq. 18, 22; � Pretrain Networks
4 end
5 for t = 1, 2, · · · , T do
6 for k = 1, 2, · · · ,K do
7 Initialize pseudo set Ũk = ∅;
8 � For each class select the highest confidence

labeled node according to softmax prediction.
9 if vl = top(Z

(2)
semi, 1, k) && vl ∈ Dl; then

10 Get vl belone to which cluster ck in
GMM-VAGE module;

11 Set all unlabeled nodes in ck cluster with
pseudo label k, append them to Ũk;

12 end
13 � For each class select the top q confidence

unlabeled nodes according to softmax
prediction.

14 if vu = top(Z
(2)
semi, q, k) && vu ∈ Du then

15 if vu ∈ Ũk then
16 Dl.add(vu); � Add to labeled set
17 Du.remove(vu); � Remove from

unlabeld set
18 end
19 end
20 end
21 Retrain networks with Tr iteration on new Dl,Du;
22 end

For the semi-supervised module which aims to predict the
ground truth of the unlabeled nodes, the input consists of la-
beled and unlabeled attribute nodes. The vanilla GCN is ap-
plied for semi-supervised node classification via a two-layer
graph convolution with a softmax operation on the output
features:

Z
(1)
semi = fRelu

(
X,A|W (0)

semi

)
; (20)

Z
(2)
semi = fSoftmax

(
Z

(1)
semi,A|W (1)

semi

)
; (21)

The loss function is defined as the cross-entropy over limited

Table 1: Data statistics.
Datasets # Nodes # Edges # Features # Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19717 44338 500 3

labeled samples:

Lsemi = −
∑
i∈Dl

F∑
f=1

Yif lnZ
(2)
semi (22)

where Dl is the set of labeled nodes and F is the dimen-
sion of the output features, which is equal to the number of
classes. Y ∈ R

|Dl|×F denotes the label indicator matrix.
W

(0)
semi and W

(1)
semi are learnable parameters which can be

trained via gradient descent method. It is worth mentioning
that Z(2)

semi from softmax operation can be regarded as the
confidence by GCN prediction. To make the two modules
collaborate more effectively, we enforce them to share the
parameters of the first hidden layer, i.e. , :

W (0) = W
(0)
semi ⇒ Z(0) = Z

(0)
semi, (23)

For unlabeled samples, there are two types of pseudo-
labels, including clustering assignments from GMM-VGAE
and predictions from semi-supervised GCN. As shown in
Fig. 1, the top q nodes with high prediction confidence
scores are selected to query in the clustering results. To la-
bel all clusters learned by GMM-VGAE, we select the high-
est confidence (softmax prediction score) labeled sample of
each class and pass them to the clustering network. Thus,
all unlabeled samples will be labeled if the labeled sample
belong to certain cluster. For example, if a sample {xi,yi}
belongs to the kth cluster, then the pseudo-labels of all sam-
ples in the kth cluster is yi. In this way, clustering assign-
ments and semi-supervised predictions are connected. If the
clustering assignment is consistent with the semi-supervised
prediction, then the node together with the pseudo-label is
added to the label set. When the selected nodes are added to
the labeled set Dl, the network will be retrained.

Through repeated iterations, the number of reliable sam-
ples in the training set increases continuously, which will
improve the performance of semi-supervised learning. The
parameters of the first hidden layer are shared between the
clustering module and semi-supervised node classification
module. The feature representation ability of the first hidden
layer is gradually improved by the multi-task learning strat-
egy. Thus, CGCN can boost the performance of both semi-
supervised node classification and clustering, which will be
validated in Section 5. Overall, we describe the pipeline of
CGCN in detail in Algorithm 1.

5 Experiment
In this section, experiments are conducted on three bench-
mark graph datasets and two tasks, including attributed
graph clustering and semi-supervised node classification.
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Table 2: Clustering performance on Cora, CiteSeer, and Pubmed.

Method Input Cora Citeseer Pubmed
Acc (↑) NMI (↑) F1 (↑) Acc (↑) NMI (↑) F1 (↑) Acc (↑) NMI (↑) F1 (↑)

K-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35

Spectral Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97
DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06
DNGR Graph 41.90 37.29 34.01 32.59 18.02 44.19 45.35 15.38 17.90

GAE Both 53.25 40.96 41.97 41.26 18.34 29.13 64.08 22.97 49.26
VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95
MGAE Both 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41
ARVGE Both 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04
DAEGC Both 70.40 52.80 68.20 67.20 39.70 63.60 67.10 26.60 65.90
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72
GMM-VGAE Both 71.50 54.43 67.76 67.44 42.30 63.22 71.03 30.28 69.74

Figure 3: 2D visualization of the GMM-VGAE algorithm on Cora during training.

5.1 Benchmark Datasets
We evaluate the performance of the proposed model on
three benchmark datasets. The detailed statistics of the three
datasets are summarized in Table 1. Cora, Citeseer and
Pubmed (Sen et al. 2008) are citation networks where the
number of nodes varies from 2708 to 19717 and the number
of feature varies from 500 to 3703.

5.2 Attributed Garph Clustering
In this section, we evaluate the performance of GMM-
VGAE on attributed graph clustering independently.

Parameter Settings. We train GMM-VGAE module with
Adam learning algorithm (the learning rate is set as 0.01) for
all datasets. We construct encoder using a two-layer GCN
with 32 and 16 filters respectively, and initialize encoder
weights as described in (Glorot and Bengio 2010). During
training, we firstly pretrain the graph autoencoder.

Baselines and Evaluation Metrics. Following (Xia et al.
2014), we use three widely used metrics to evaluate the clus-
tering results, i.e. , accuracy (ACC), normalized mutual in-
formation (NMI) and macro F1 score (F1). According to the
type of inputs, there are generally three kinds of attributed
graph clustering methods: a) methods only using node fea-
tures, including k-means clustering with node features. b)
methods only using graph structures, including spectral clus-
tering that uses the eigenvalues to perform dimensionality
reduction before clustering, DeepWalk (Perozzi, Al-Rfou,

Table 3: Semi-supervised classification accuracy on Cora
Rate 0.5% 1% 2% 3% 4% 5%

LP 56.4 62.3 65.4 67.5 69.0 70.2
GCN-V 38.0 52.0 62.4 70.8 74.1 77.6
GCN+V 50.9 62.3 72.2 76.5 78.4 79.7
Co-training 56.6 66.4 73.5 75.9 78.9 80.8
Self-training 53.7 66.1 73.8 77.2 79.4 80.0
Union 58.5 69.9 75.9 78.5 80.4 81.7
Intersection 49.7 65.0 72.9 77.1 79.4 80.2
Two-stage 57.9 67.0 74.8 79.0 81.5 83.3

CGCN 64.3 72.4 76.8 80.1 82.7 84.2
GMM-VGAE∗ 71.5 71.9 72.5 73.3 73.6 73.8

and Skiena 2014) which is a structure-only representation
learning method, and DNGR (Cao, Lu, and Xu 2016) which
uses stacked denoising auto-encoders and encodes each ver-
tex into a low-dimensional vector representation. c) meth-
ods using both node features and graph structures, including
graph autoencoder (GAE), variational graph autoencoder
(VGAE) (Kipf and Welling 2016), marginalized graph au-
toencoder (MGAE) (Wang et al. 2017), adversarially reg-
ularized graph autoencoder (ARGE), variational graph au-
toencoder (ARVGE) (Pan et al. 2018), unsupervised deep
attentional embedded graph clustering (DAEGC) (Wang et
al. 2019), and adaptive graph convolution (AGC) (Zhang et
al. 2019).
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Figure 4: The first three columns represent the performance of CGCN semi-supervised module in different label rates, and the
last column represents the performance of clustering module (GMM-VGAE) in different label rates.

Table 4: Semi-supervised accuracy on CiteSeer
Rate 0.5% 1% 2% 3% 4% 5%

LP 34.8 40.2 43.6 45.3 46.4 47.3
GCN-V 33.4 46.5 62.6 66.9 68.4 69.5
GCN+V 43.6 55.3 64.9 67.5 68.7 69.6
Co-training 47.3 55.7 62.1 62.5 64.5 65.5
Self-training 43.3 58.1 68.2 69.8 70.4 71.0
Union 46.3 59.1 66.7 66.7 67.6 68.2
Intersection 42.9 59.1 68.6 70.1 70.8 71.2
Two-stage 51.3 60.6 68.9 71.4 71.9 72.3

CGCN 59.3 63.1 69.5 72.6 72.8 74.6
GMM-VGAE∗ 67.4 67.9 68.5 69.3 69.6 70.2

Result Analysis We compare the proposed GMM-VGAE
with the state-of-the-art attributed graph clustering algo-
rithms and the clustering results are shown in Table 2. The
results of the comparison methods are directly duplicated
from the original paper. We can observe that our method
outperforms all the baselines in terms of different evalua-
tion metrics. It is worth mentioning that GMM-VGAE sig-
nificantly outperforms GAE and VGAE, which verifies the
effectiveness of GMM in discovering complex data distribu-
tions. In addition, we use the t-SNE algorithm (Maaten and
Hinton 2008) to visualize the Cora dataset on the learned
embedding during training. As shown in Figure 3, we can
obtain a more meaningful distribution of the graph data.

5.3 Semi-Supervised Node Classification
In this section, we will evaluate the performance of proposed
collaborative graph convolution networks (CGCN) on semi-
supervised learning task. At the same time, we will observe
the change of the clustering accuracy of GMM-VGAE in
CGCN. GMM-VGAE∗ means the clustering performance
under collaborative learning (in CGCN).

Parameter Settings We set the number of pretrain itera-
tions Tp as 200, the number of retrain iterations Tr as 20 and
the number of query high confidence nodes q as 20 for each
pseudo-label assignment with T = 5 times. Following (Kipf
and Welling 2017), we set the learning rate, dropout rate,
regularization weight, and the size of second hidden layer
as 0.01, 0.2, 0.5 × 10−4 and 16, respectively. For each run,

Table 5: Semi-supervised classification accuracy on PubMed
Rate 0.03% 0.05% 0.1% 0.3%

LP 61.4 66.4 65.4 66.8
GCN-V 46.4 49.7 56.3 76.6
GCN+V 60.5 57.5 65.9 77.8
Co-training 62.2 68.3 72.7 78.2
Self-training 51.9 58.7 66.8 77.0
Union 58.4 64.0 70.7 79.2
Intersection 52.0 59.3 69.4 77.6
Two-stage 60.7 64.1 72.2 78.2

CGCN 64.7 69.2 77.8 80.3
GMM-VGAE∗ 71.0 71.8 72.3 72.7

we split the data into one small sample subset for training,
and the test sample subset with 1000 samples. Similar to (Li,
Han, and Wu 2018), in order to explore the effectiveness of
collaborative learning, we conducted experiments with dif-
ferent label rates, i.e. , 0.1%, 1%, 2%, 3%, 4%, 5% on Cora
and CiteSeer, and 0.03%, 0.05%, 0.1%, 0.3% on PubMed.

Baselines and Evaluation Metrics We compare our
methods with GCN and it variants (Li, Han, and Wu 2018).
1) LP: Label propagation using ParWalks (Wu et al. 2012).
2) GCN+V: GCN with validation. 3) GCN-V: GCN without
validation. 4) Co-Training: Method that trains GCN with a
random walk model. 5) Self-Training: Simple self-training
based on softmax prediction. 6) Union: Method that expands
the label set with the most confident predictions found by the
random walk and those found by the GCN itself, and then
uses the expanded label set to continue to train the GCN.
7) Intersection: Method that adds the most confident pre-
dictions found by both the random walk and the GCN. 8)
Two-stage: First use clustering network to pre-train and then
train the semi-supervised network using the labelled data.

Result Analysis As shown in Tables 3, 4, 5, our methods
outperform the comparison methods using much fewer la-
bels. CGCN has strong competitiveness in the case of very
low label rates. For example, CGCN only needs 3% of the
labeled data to get better results than GCN using 5% of the
data on Cora and CiteSeer. Additionally, we report the ac-
curacy of GMM-VGAE under different label rates in col-
laborative learning. The clustering performance is improved
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compared with the completely unsupervised case. That is
because the clustering module and semi-supervised module
share the first hidden layer. With the improvement of semi-
supervised module, the feature representation ability of the
first hidden layer will also be enhanced, which can improve
the clustering performance.

6 Conclusion
In this paper, we proposed a multi-task graph learning
model, i.e. , collaborative graph convolutional networks
(CGCN). CGCN effectively exploits attributed graph clus-
tering, to collaboratively boost the performance of semi-
supervised learning. To model complex data distributions
in the graph embedding space, we presented an end to
end attributed graph clustering network by combining vari-
ational graph auto-encoder with Gaussian mixture model.
Experiments on both attributed graph clustering and semi-
supervised node classification tasks validate the superiority
of the proposed models.
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