
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Co-Occurrence Estimation from Aggregated Data with Auxiliary Information

Tomoharu Iwata, Naoki Marumo
NTT Communication Science Laboratories, Kyoto, Japan
{tomoharu.iwata.gy, naoki.marumo.ec}@hco.ntt.co.jp

Abstract

Complete co-occurrence data are unavailable in many appli-
cations, including purchase records and medical histories, be-
cause of their high cost or privacy protection. Even with such
applications, aggregated data would be available, such as the
number of purchasers for each item and the number of pa-
tients with each disease. We propose a method for estimating
the co-occurrence of items from aggregated data with auxil-
iary information. For auxiliary information, we use item fea-
tures that describe the characteristics of each item. Although
many methods have been proposed for estimating the co-
occurrence given aggregated data, no existing method can
use auxiliary information. We also use records of a small
number of users. With our proposed method, we introduce
latent co-occurrence variables that represent the amount of
co-occurrence for each pair of items. We model a probabilis-
tic generative process of the latent co-occurrence variables
by a multinomial distribution with Dirichlet priors. The pa-
rameters of the Dirichlet priors are parameterized with neural
networks that take the auxiliary information as input, where
neural networks are shared across different item pairs. The
shared neural networks enable us to learn unknown relation-
ships between auxiliary information and co-occurrence using
the data of multiple items. The latent co-occurrence variables
and the neural network parameters are estimated by maximiz-
ing the sum of the likelihood of the latent co-occurrence vari-
ables and the likelihood of the small records. We demonstrate
the effectiveness of our proposed method using user-item rat-
ing datasets.

1 Introduction
Co-occurrence is the basic and important statistics for an-
alyzing categorical data. For example, recommender sys-
tems in e-commerce services suggest items that are likely
to be purchased by the same user (Sarwar et al. 2001). With
text analysis, words that appear in the same document are
clustered to discover topics (Blei, Ng, and Jordan 2003).
With social network analysis, communities are detected us-
ing information about common friends (Girvan and New-
man 2002). Medical knowledge about complications is es-
sential for treatment. Complete co-occurrence data are un-
available in many applications, such as purchase records and
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medical histories, because of their high cost or privacy pro-
tection. However, even within such applications, aggregated
data would be available, such as the number of purchasers
for each item and the number of patients for each disease,
since they do not contain any privacy information.

In this paper, we propose a method that estimates co-
occurrence from aggregated data with auxiliary information.
For auxiliary information, we use item features. In the case
of purchase records, item features might include genres, re-
lease dates and descriptions. Since item features do not con-
tain privacy information, they are often open to the public.
Although many methods have been proposed for estimating
co-occurrence counts given aggregated data (Deming and
Stephan 1940; Causey 1983; Sheldon and Dietterich 2011),
no existing method can use auxiliary information. We also
use the records of a few users that are sampled from total
users. The sampled records can be obtained by giving incen-
tives to some users if they agree to share their records. We
assume that the number of sampled users with their records
is much smaller than the total number of users.

With the proposed method, we introduce latent co-
occurrence variables, which represent the amount of co-
occurrence for each pair of items, or the number of users
who purchased both items. The joint probability of the co-
occurrence count of two items is assumed to follow a multi-
nomial distribution with Dirichlet priors. The parameters of
the Dirichlet priors are modeled by non-linear functions that
take the auxiliary information as input. For non-linear func-
tions, we use permutation invariant neural networks since
co-occurrence data are invariant to the permutation of two
items. The neural network parameters are shared across dif-
ferent pairs of items. Shared neural networks enable us to
learn unknown relationships between auxiliary information
and the co-occurrence using the data of multiple items.

The latent co-occurrence variables and the neural net-
work parameters are estimated by maximizing the sum of
the likelihood of the latent co-occurrence variables and the
likelihood of the small sampled records. The parameters of
the multinomial distributions are analytically marginalized
since we use conjugate Dirichlet priors. By relaxing that the
latent co-occurrence variables are non-negative real values
instead of integers, we efficiently maximize the objective
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function with stochastic gradient descent methods.

2 Related work

Previous work proposed learning from aggregated data, such
as imputing individual level records (Park and Ghosh 2012;
2014) and regression from aggregated data (Goodman 1953;
Freedman et al. 1991; Bhowmik, Ghosh, and Koyejo 2015;
2016). In this paper, we focus on estimating co-occurrence
counts, which can be represented by two-by-two contin-
gency tables. Many methods for estimating contingency ta-
bles have been proposed especially in statistics (Ireland
and Kullback 1968; Smith 1947; Fienberg 1970; Slavkovic
2010), such as least squares (Deming and Stephan 1940;
Stephan 1942), maximum likelihood (Causey 1983) and
the Markov chain Monte Carlo (Dobra, Tebaldi, and West
2006), as well as in machine learning (Sheldon and Diet-
terich 2011; Kumar, Sheldon, and Srivastava 2013; Shel-
don et al. 2013; Sun, Sheldon, and Kumar 2015; Nguyen
et al. 2016). Most of these methods use the sampled data
of a small population and/or the aggregated counts for each
item. For other information, samples from different popu-
lations (Little and Wu 1991), conditional tables (Slavkovic
2010) and short and long form questionnaires (Greco 2016)
have been used. However, these existing methods cannot use
auxiliary item features. Although neural collective graphi-
cal models (Iwata and Shimizu 2019) estimate people flow
from aggregated data using spatio-temporal auxiliary infor-
mation, they are specialized for people flow, and inapplica-
ble to co-occurrence estimation. The proposed method can
be seen as a multi-task learning approach (Caruana 1997) for
simultaneously multiple contingency tables by transferring
knowledge across different two-by-two contingency tables
using shared neural networks.

3 Proposed method

3.1 Problem formulation

For simplicity, we explain the proposed method with an ex-
ample of item co-occurrence in user purchase records. How-
ever, our proposed method is applicable to any kinds of co-
occurrences, such as word co-occurrence in documents and
disease complications in patients.

Assume I items and U users, where each user has pur-
chased some items but we cannot observe their complete
purchase records. We are given marginal counts for each
item, y = {yi}Ii=1, where yi is the number of users who
have purchased item i. For auxiliary information, we are
given item features S = {si}Ii=1, and item purchase records
R = {ru}U∗

u=1 for a small number of users U∗ � U .
Here, si ∈ R

D is a D-dimensional item feature vector
of item i, such as genres, release dates and descriptions,
and ru ∈ {0, 1}I is an I-dimensional binary vector, where
rui = 1 if user u has purchased item i and rui = 0 other-
wise.

Our task is to estimate the joint probability of the occur-
rence of two items, πij = (πīj̄ , πīj , πij̄ , πij), for all pairs of
items, i, j ∈ {1, · · · , I}, where πīj̄ = P (ri = 0, rj = 0)
is the probability that a user purchases neither items i nor j,
πīj = P (ri = 0, rj = 1) is the probability that a user does

Table 1: Our notation.
I number of items
U number of users
yi number of users who have purchased item i
si auxiliary feature vector of item i
R purchase records of a few sampled users
πij probability that a user purchases

both items i and j

θ̂i empirical probability that item i is purchased
xij latent number of users who have purchased

both items i and j
Ψ parameters of neural networks

Table 2: Co-occurrence count matrix xij between items i
and j, number of purchasers yi and yj , and total number of
users.

Item i \ Item j Not purchased Purchased Total
Not purchased xīj̄ xīj U − yi

Purchased xij̄ xij yi
Total U − yj yj U

not purchase item i but buys item j, πij̄ = P (ri = 1, rj =
0) is the probability that a user purchases item i but not item
j, πij = P (ri = 1, rj = 1) is the probability that a user
purchases both items i and j,

∑
i′∈{i,̄i},j′∈{j,j̄} πi′j′ = 1,

and πi′j′ ≥ 0. Table 1 summarizes our notation.

3.2 Model

We introduce latent co-occurrence variables xij =
(xīj̄ , xīj , xij̄ , xij), where xīj̄ is the number of users who
have purchased neither items i nor j, xīj is the number of
users who have purchased item j but not i, xij̄ is the num-
ber of users who have purchased item i but not j, and xij is
the number of users who have purchased both items i and j.
Table 2 shows a co-occurrence count matrix that represents
the relationship among latent co-occurrence variables xij ,
item marginal counts yi, yj and the total number of users U .
Given xij , other latent co-occurrence variables xīj̄ , xīj and
xij̄ are determined using yi, yj and U as follows,

xīj = yj − xij , xij̄ = yi − xij ,

xīj̄ = U − yi − yj + xij . (1)

Therefore, we do not need to estimate xīj̄ , xīj , xij̄ if xij is
estimated. Using Eq.(1) and the non-negativity of all the la-
tent co-occurrence variables, xīj̄ , xīj , xij̄ , xij , the following
constraint on xij is derived,

max(0, yi + yj − U) ≤ xij ≤ min(yi, yj), (2)

which is known as Fréchet inequalities. Range,
min(yi, yj) − max(0, yi + yj − U), indicates infor-
mation about co-occurrence xij of aggregated data yi and
yj . When the range is narrow, the aggregated data are
informative for estimating co-occurrence. However, since
the range is not generally narrow, the co-occurrence cannot
be determined only from the aggregated data.
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We assume that the probability of latent co-occurrence
variables xij is given by the following multinomial distri-
bution with parameters πij ,

p(xij |πij) =
U !∑

i′∈{i,̄i},j′∈{j,j̄} xi′j′ !

∏

i′∈{i,̄i},j′∈{j,j̄}
π
xi′j′
i′j′ .

(3)
Note that a multinomial distribution is derived from the Pois-
son distributions for each cell when total count U is fixed.
We assume the following Dirichlet distribution for the prior
of co-occurrence probabilities πij ,

p(πij |βij) =
Γ(

∑
i′∈{i,̄i},j′∈{j,j̄} βi′j′)∏

i′∈{i,̄i},j′∈{j,j̄} Γ(βi′j′)

×
∏

i′∈{i,̄i},j′∈{j,j̄}
π
βi′j′−1

i′j′ , (4)

where βij = (βīj̄ , βīj , βij̄ , βij), βi′j′ > 0, and Γ(·) is
the Gamma function. We model Dirichlet parameters βij

as a function of auxiliary information si and sj to incor-
porate them for estimating the co-occurrence probabilities.
By modeling the Dirichlet parameters, we can handle the
variance of the co-occurrence probabilities as well as their
mean, where the mean is E[πi′j′ ] =

βi′j′
βij0

and the variance

is Var[πi′j′ ] =
βi′j′ (βij0−βi′j′ )

β2
ij0(βij0+1)

, and βij0 =
∑

i′j′ βi′j′ . In
particular, we use the following neural network-based mod-
els,

βīj̄ = α(1− θ̂i)(1− θ̂j) + f0(si, sj),

βīj = α(1− θ̂i)θ̂j + f01(si, sj),

βij̄ = αθ̂i(1− θ̂j) + f01(sj , si),

βij = αθ̂iθ̂j + f1(si, sj), (5)

where θ̂i =
yi

U is the empirical marginal occurrence proba-
bility of item i, α > 0 is the scalar positive parameter, and
f0(·), f01(·), f1(·) are functions modeled with neural net-
works. The first term in Eq.(5) corresponds to the probability
when the occurrences of items i and j are independent, and
α controls the strength of independence. Since a simple as-
sumption to estimate the joint probabilities is independence
when there is no information about the co-occurrence, we
include this first term. The second term controls the corre-
lation between the occurrence of two items using auxiliary
information. Neural networks enable us to flexibly model the
relationships between the correlation and auxiliary informa-
tion. Even when items i and j are transposed, the prior prob-
ability should be invariant. Therefore, we use f01(sj , si) for
βij̄ , where input auxiliary information si and si are trans-
posed from f01(si, sj) for βīj . Also, f0(·) and f1(·) need to
be invariant to the permutation of inputs si and sj ,

f0(si, sj) = f0(sj , si), f1(si, sj) = f1(sj , si). (6)
To satisfy the above invariance, we use the following permu-
tation invariant networks (Zaheer et al. 2017),

f0(si, sj) = ρ0(φ0(si) + φ0(sj)),

f1(si, sj) = ρ1(φ1(si) + φ1(sj)), (7)

βij

α θ̂i θ̂j

πij xij

U

yi

yj

neural
net

si

sj

Figure 1: Proposed model: Shaded and unshaded nodes in-
dicate observed and latent variables. Neural networks take
item feature vectors si and sj as input. Dirichlet parameters
βij are determined by α, empirical marginal count proba-
bilities θ̂i and θ̂j , and neural network output. Co-occurrence
probabilities πij are generated from Dirichlet distribution
with parameters βij , and latent co-occurrence variables xij

are generated from multinomial distribution with parameters
πij . Total count U = xīj̄ +xīj +xij̄ +xij , marginal counts
yi = xij̄ + xij and yj = xīj + xij are determined by latent
co-occurrence variables xij = (xīj̄ , xīj , xij̄ , xij).

where ρ0(·), φ0(·), ρ1(·), φ1(·) are neural networks. Since
addition is invariant to permutation, neural networks with
structure of Eq.(7) output the same values even when inputs
si and sj are permuted as in Eq.(6). Fig. 1 illustrates the
proposed model.

3.3 Estimation

First, we count the co-occurrences in small purchase records
R, and represent them by X∗ = {x∗

ij}Ii,j=1, where x∗
ij =

(x∗̄
ij̄
, x∗̄

ij
, x∗

ij̄
, x∗

ij), and x∗
ij is the number of users with

rui = 1 and ruj = 1 in R, which are the users who
have purchased both items i and j in the small purchase
records. Then, we estimate latent co-occurrence variables
X = {xij}Ii,j=1, parameter α, and parameters Ψ of neu-
ral networks f0(·), f1(·), f01(·) by maximizing the weighted
sum of the likelihoods of X and X∗.

To automatically satisfy the box constraint in Eq.(2), we
parameterize xij by

xij = max(0, yi + yj − U)

+
min(yi, yj)−max(0, yi + yj − U)

1 + exp(−x′
ij)

, (8)

where −∞ < x′
ij < ∞, and optimize x′

ij , instead of xij ,
without constraints. Also, we parameterized positive param-
eter α by α = exp(α′), where −∞ < α′ < ∞, for uncon-
strained optimization.

Since the Dirichlet distribution is the conjugate prior of
the multinomial distribution parameters, we can analytically
marginalize co-occurrence probabilities πij in Eqs.(3) and
(4). Then the probability of xij given βij is as follows,

p(xij |βij) =
U !Γ(

∑
i′,j′ βi′j′)

Γ(U +
∑

i′,j′ βi′j′)

∏

i′,j′

Γ(xi′j′ + βi′j′)

xi′j′ !Γ(βi′j′)
,

(9)
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Algorithm 1: Estimation procedure with the proposed
method.

Input: marginal counts y, total count U , auxiliary
information S, small records R, hyperparameter
λ, batchsize T

Output: estimation of co-occurrence counts X, neural
network parameters Ψ, parameter α

1 Initialize parameters X, Ψ, α;
2 Calculate empirical marginal occurrence probability

θ̂i =
yi

U for all items using y;
3 Calculate co-occurrence counts for small records X∗

using R;
4 repeat
5 Sample a set of T item pairs Q randomly;
6 Calculate the objective function Eq.(10) for the

sampled item pairs and its gradients Update
parameters X, Ψ, α with a gradient-based
optimization method;

7 until end condition is satisfied;

where i′ ∈ {i, ī} and j′ ∈ {j, j̄}. This is called the Dirich-
let compound multinomial distribution or the multivariate
Pólya distribution.

The objective function to be maximized is the following
weighted sum of the likelihoods of latent co-occurrence vari-
ables X and observed small co-occurrence X∗,

L(X,Ψ, α) = λ

I∑

i=1

I∑

j=i+1

log p(xij |βij)

+ (1− λ)
I∑

i=1

I∑

j=i+1

log p(x∗
ij |βij), (10)

where Dirichlet parameters βij are calculated using neural
networks by Eq.(5), λ is the hyperparameter, and 0 ≤ λ ≤ 1.
We used fixed hyperparameter λ = 0.5 in our experiments.
By relaxing that the latent co-occurrence variables are non-
negative real values instead of integers, we can efficiently
find a local maximum of the objective function with stochas-
tic gradient-based optimization methods. Algorithm 1 shows
the estimation procedure with the proposed method.

4 Experiments

4.1 Data

We evaluated the proposed method using sushi and Movie-
lens data sets.

The sushi data were generated from the preferences of
5,000 users among the following ten kinds of sushi: shrimp,
sea eel, tuna, squid, sea urchin, salmon roe, egg, fatty tuna,
tuna roll, and cucumber roll (Kamishima 2003)1. When user
u ranked sushi item i within the top five among the ten items,
we assumed that the user has purchased the item rui = 1,

1The original sushi data were obtained from http://www.
kamishima.net/sushi/.

Table 3: Comparing methods. Methods with check-marks
indicate that they use marginal counts y, small records R,
or auxiliary information S.

IND ML EB CGM EB+CGM EB+A CGM+A Ours
y

√ √ √ √ √
R

√ √ √ √ √
S

√ √ √

and generated occurrence data. For the auxiliary item fea-
tures, we used style (maki or not), major group (seafood or
not), minor group, heaviness/oiliness in taste, frequency of
consumption, price, and frequency of being sold. We trans-
formed the categorical features, i.e., style, major and minor
groups, into one-hot vectors, and normalized the numerical
features, i.e., heaviness, frequency, and price, into a range
from zero to one. The dimensionality of the item feature vec-
tors was D = 20.

The Movielens data were generated from 100,000 ratings
of 943 users of 1,682 movies (Konstan et al. 1997)2. When
user u rated movie i, we assumed that she has purchased the
item rui = 1. For the auxiliary item features, we used the
release date and genres, such as action, comedy, and fantasy.
We normalized the release dates into a range from zero to
one, and transformed the genres into vectors by setting the
corresponding element to one when the movie was in the
genre, and zero otherwise. The dimensionality of the item
feature vectors was D = 20.

With both data sets, we generated item count yi for each
item i using all the users. We randomly sampled the pur-
chase records of ten users for the validation data.

4.2 Evaluation measurement

For the evaluation measurement, we used the following ab-
solute error of the co-occurrence probabilities,

E =
2

I(I − 1)

I∑

i=1

I∑

j=i+1

∑

i′∈{i,̄i},j′∈{j,j̄}
|π̂i′j′ − πTRUE

i′j′ |,

(11)

where πTRUE
i′j′ is the true empirical co-occurrence probabil-

ity calculated using all the users, which is not used during
training, and π̂i′j′ is the estimated co-occurrence probabil-
ity.

4.3 Comparing methods

We compared the proposed method with the following
seven methods: IND, ML, EB, CGM, EB+CGM, EB+A and
CGM+A. We summarized the characteristics of the compar-
ing methods in Table 3.

The IND method estimates the co-occurrence probabil-
ity by assuming that items occur independently as follows,
π̂īj̄ = (1− θ̂i)(1− θ̂j), π̂īj = (1− θ̂i)θ̂j , π̂ij̄ = θ̂i(1− θ̂j),
π̂ij = θ̂iθ̂j .

2The original Movielens data were obtained from https://
grouplens.org/datasets/movielens/.
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Figure 2: Absolute error of co-occurrence probabilities averaged over 30 experiments with (a) different numbers of sampled
users with records U∗, (b) different numbers of items I , and (c) different hyperparameters λ with proposed method. Error bars
show their standard errors.

The ML method estimates the probability by the maxi-
mum likelihood of the small record data as follows, π̂īj̄ =
x∗̄
ij̄

U∗ , π̂īj =
x∗̄
ij

U∗ , π̂ij̄ =
x∗
ij̄

U∗ , π̂ij =
x∗
ij

U∗ , where U∗ is the total
number of users in the small record data.

The EB method is the empirical Bayesian method that
maximizes the marginalized likelihood of the small record
data, L(B) =

∑
i,j log p(x

∗
ij |βij), where B = {βij}Ii,j=1

is the set of Dirichlet parameters, and
∑

i,j denotes
∑I

i=1

∑I
j=i+1.

The CGM method is the collective graphical model
based method (Kumar, Sheldon, and Srivastava 2013) that
maximizes the marginalized likelihood of the aggregated
data with the constraints on marginal counts, L(X,B) =∑

i,j log p(xij |βij).
The EB+CGM method is the combination of the

EB and CGM methods, where the weighted sum of
the marginalized likelihood of the aggregated and small
record data, L(X,B) = λ

∑
i,j log p(xij |βij) + (1 −

λ)
∑I

i=1

∑I
j=i+1 log p(x

∗
ij |βij), is maximized. We used the

fixed weight hyperparameter λ = 0.5 with the EB+CGM
and proposed methods. With the EB, CGM and EB+CGM
methods, Dirichlet parameters βij are directly optimized
without neural networks.

The EB+A method is the empirical Bayesian method that
uses the auxiliary data, where neural networks are trained by
maximizing the marginalized likelihood of the small record

data, L(Ψ, α) =
∑

i,j log p(x
∗
ij |βij), where Dirichlet pa-

rameters βij are parameterized by neural networks in Eq.(5).
The CGM+A is the collective graphical model based

method that uses the auxiliary data, where neural networks
are trained by maximizing the marginalized likelihood of the
small record data, L(X,Ψ, α) =

∑
i,j log p(xij |βij). Here,

as with the EB+A method, Dirichlet parameters βij are pa-
rameterized by neural networks in Eq.(5).

The EB+A, CGM+A and proposed methods use the aux-
iliary information, and the other methods do not use it. After
estimating the latent co-occurrence variables, we estimated
the co-occurrence probability by π̂ij =

x̂ij

U with the CGM,
EB+CGM, CGM+A and proposed methods, where x̂ij is the
estimate of latent co-occurrence variable xij . Since the EB
and EB+A methods did not estimate co-occurrence xij , they
estimated the co-occurrence probability by the expectation
with learned prior π̂ij =

β̂ij
∑

i′j′ β̂i′j′
, where β̂ij is the esti-

mated Dirichlet parameter.
For neural network ρ0(·), ρ1(·), φo(·), φ1(·), f01(·) in the

EB+A, CGM+A and proposed methods, we used three-
layer feed-forward neural networks with 32 hidden units.
Since βi′j′ must be non-negative, we use rectified linear unit
ReLU(x) = max(0, x) at the end of neural networks ρ0(·),
ρ1(·) and f01(·). We optimized using ADAM (Kingma and
Ba 2015) with learning rate 10−2, weight decay 10−2 and
dropout rate 0.1. For each batch, we randomly sampled 512
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Table 4: Absolute error of co-occurrence probabilities averaged over 30 experiments for each pair of items with the sushi data,
where the number of sampled users with records was U∗ = 20 and number of items was I = 10. Values in bold typeface are
not statistically different (at 5% level) from the best performing method in each row according to a paired t-test. Bottom line
shows number of pairs for which the method achieved the best.

Item i Item j IND ML EB CGM EB+CGM EB+A CGM+A Proposed
shrimp sea eel 0.129 0.285 0.233 0.138 0.120 0.673 0.126 0.027
shrimp tuna 0.136 0.242 0.219 0.098 0.100 0.726 0.133 0.026
shrimp squid 0.035 0.285 0.237 0.062 0.082 0.634 0.029 0.165
shrimp sea urchin 0.161 0.289 0.244 0.164 0.144 0.683 0.158 0.026
shrimp salmon roe 0.190 0.290 0.245 0.207 0.166 0.722 0.186 0.044
shrimp egg 0.039 0.305 0.265 0.079 0.075 0.617 0.043 0.052
shrimp fatty tuna 0.137 0.257 0.235 0.120 0.124 0.769 0.135 0.101
shrimp tuna roll 0.200 0.279 0.231 0.182 0.178 0.658 0.206 0.098
shrimp cucumber roll 0.002 0.242 0.240 0.015 0.028 0.524 0.003 0.039
sea eel tuna 0.221 0.284 0.243 0.172 0.179 0.760 0.218 0.098
sea eel squid 0.157 0.316 0.267 0.146 0.124 0.660 0.163 0.024
sea eel sea urchin 0.017 0.316 0.259 0.020 0.049 0.663 0.014 0.147
sea eel salmon roe 0.126 0.279 0.235 0.137 0.147 0.706 0.123 0.036
sea eel egg 0.011 0.313 0.280 0.045 0.054 0.587 0.015 0.080
sea eel fatty tuna 0.086 0.271 0.252 0.070 0.081 0.772 0.084 0.039
sea eel tuna roll 0.176 0.334 0.287 0.165 0.154 0.653 0.182 0.048
sea eel cucumber roll 0.071 0.257 0.249 0.085 0.099 0.519 0.073 0.084
tuna squid 0.141 0.290 0.279 0.188 0.168 0.723 0.145 0.041
tuna sea urchin 0.203 0.310 0.283 0.154 0.157 0.767 0.201 0.070
tuna salmon roe 0.157 0.295 0.260 0.115 0.109 0.778 0.154 0.030
tuna egg 0.130 0.280 0.280 0.163 0.164 0.693 0.133 0.069
tuna fatty tuna 0.104 0.224 0.251 0.120 0.133 0.745 0.106 0.121
tuna tuna roll 0.102 0.305 0.265 0.069 0.090 0.668 0.097 0.164
tuna cucumber roll 0.088 0.242 0.273 0.099 0.108 0.632 0.090 0.110
squid sea urchin 0.181 0.324 0.276 0.177 0.160 0.650 0.187 0.023
squid salmon roe 0.205 0.309 0.278 0.188 0.149 0.699 0.210 0.052
squid egg 0.044 0.300 0.266 0.037 0.056 0.544 0.040 0.064
squid fatty tuna 0.175 0.260 0.256 0.193 0.206 0.786 0.177 0.094
squid tuna roll 0.119 0.333 0.272 0.135 0.118 0.598 0.114 0.044
squid cucumber roll 0.005 0.258 0.257 0.019 0.032 0.446 0.007 0.033
sea urchin salmon roe 0.194 0.323 0.273 0.191 0.175 0.660 0.197 0.354
sea urchin egg 0.275 0.308 0.255 0.311 0.218 0.654 0.279 0.154
sea urchin fatty tuna 0.057 0.268 0.254 0.078 0.081 0.733 0.059 0.115
sea urchin tuna roll 0.273 0.300 0.254 0.269 0.217 0.661 0.278 0.121
sea urchin cucumber roll 0.140 0.277 0.270 0.154 0.155 0.537 0.142 0.123
salmon roe egg 0.170 0.311 0.283 0.212 0.153 0.669 0.174 0.063
salmon roe fatty tuna 0.007 0.275 0.264 0.024 0.042 0.774 0.009 0.054
salmon roe tuna roll 0.227 0.293 0.256 0.211 0.165 0.677 0.233 0.094
salmon roe cucumber roll 0.102 0.257 0.265 0.115 0.127 0.583 0.104 0.104
egg fatty tuna 0.169 0.266 0.283 0.183 0.193 0.773 0.171 0.110
egg tuna roll 0.067 0.283 0.243 0.046 0.059 0.530 0.063 0.033
egg cucumber roll 0.084 0.257 0.274 0.094 0.102 0.377 0.086 0.054
fatty tuna tuna roll 0.027 0.293 0.261 0.045 0.063 0.736 0.029 0.035
fatty tuna cucumber roll 0.142 0.230 0.296 0.147 0.151 0.736 0.143 0.135
tuna roll cucumber roll 0.015 0.256 0.251 0.028 0.041 0.428 0.017 0.027
Best 15 0 0 4 4 0 4 30

Table 5: Rate of item pairs that each method achieved the best with the Movielens data, where the number of sampled users
with records was U∗ = 20 and number of items was I = 200.

IND ML EB CGM EB+CGM EB+A CGM+A Proposed
0.121 0.031 0.014 0.170 0.142 0.068 0.211 0.242
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Table 6: Absolute error of co-occurrence probabilities averaged over 30 experiments with the Movielens-1M data.
IND ML EB CGM EB+CGM EB+A CGM+A Proposed

0.0169 0.4219 0.0167 0.3952 0.0164 0.0154 0.3597 0.0147

item pairs in training. The validation data were used for early
stopping, where the maximum number of training epochs
was 1,000. We implemented all the methods based on Py-
Torch (Paszke et al. 2017).

4.4 Results

Figure 2(a) shows the absolute error of the co-occurrence
probabilities averaged over 30 experiments with different
numbers of sampled users with records U∗, where the num-
ber of items was I = 10 with the sushi data, and I = 200
with the Movielens data. Here, items were randomly sam-
pled from all items with the Movielens data. The proposed
method achieved the lowest error for all the cases. The er-
ror by the proposed method was statistically lower at the
5% level than that by the other methods by a paired t-test
with all the cases in the sushi data and with all the cases
except for U∗ = 30 in the Movielens data. This result indi-
cates that the proposed method improved the estimation per-
formance using all of the aggregated marginal count data, a
small number of sampled records, and auxiliary item feature
data. The error decreased as the number of observed users
U∗ increased with the proposed method, since the estimation
of the Dirichlet parameters modeled by the neural networks
became robust with more training data. Although the perfor-
mance of the ML, EB, and EB+A methods also improved as
the number of observed users increased, their performance
was much worse than the proposed method. This result oc-
curred because they did not use aggregated data information.
In contrast, the proposed method effectively used the aggre-
gated data information in the first term of the objective func-
tion in Eq.(10). The reduction of the error of the proposed
method from EB+CGM, which corresponds to the proposed
method without auxiliary information, was 34% and 8% on
Sushi data and Movielens data with U∗ = 20, respectively.
This result shows the importance to use the auxiliary infor-
mation for improving performance.

Table 4 shows the average absolute errors for each pair of
items on the sushi data with U∗ = 20 and I = 10. The IND
method achieved the lowest error with some pairs, where
the user preferences were assumed to be independent. The
performance of the CGM, EB+CGM, and CGM+A meth-
ods resembled the IND method, although they were slightly
worse. The proposed method achieved the lowest error with
many pairs, which include item pairs whose preferences
were not independent. Table 5 shows the rate of item pairs
that each method achieved the best on the Movielens data
with U∗ = 20 and I = 200. The rate of the the proposed
method was highest.

Figure 2(b) shows the absolute error with different num-
bers of items I , where the number of sampled users was
U∗ = 20 with both the sushi and Movielens data, and we
randomly sampled I items from all items. With the sushi
data, the performance of the proposed method was not the

best when the number of items was small. However, its per-
formance improved as the number of items increased; it was
statistically lower at the 5% level than that by the other
methods with I ≥ 6. Since the data for training the neu-
ral networks increased with more items, the performance
improved. With the Movielens data, the proposed method
achieved statistically less error than the other methods for
all cases.

Figure 2(c) shows the absolute error with different hy-
perparameter values λ with the proposed method, where the
number of sampled users was U∗ = 20 with both kinds of
data, and the number of items was I = 10 with the sushi
data, and I = 200 with the Movielens data. The proposed
method corresponds to the EB+A method when λ = 0, and
to the CGM+A method when λ = 1. The best hyperparam-
eter value was λ = 0.4 with the sushi data, and λ = 0.1
with the Movielens data. The co-occurrence data are latent
xij with the first term of the objective function in Eq.(10),
but the co-occurrence data are observed x∗

ij with the second
term. Therefore, the best hyperparameter values put more
weight on the second term than the first term.

The average computational time with the proposed
method for training using the sushi data with I = 10, Movie-
lens with I = 100, and Movielens with I = 200 were
0.12, 5.95 and 24.19 minutes, respectively, on computers
with 2.60GHz CPUs, where we fixed U∗ = 20. The com-
putational time increased quadratically with the number of
items since we need to consider all pairs of items. The com-
putational time did not depend on the number of users, U or
U∗.

We also evaluated with Movielens-1M data, which con-
tained 6,040 users. We used the genres as auxiliary infor-
mation, U∗ = 10 users with records, and I = 100 items
that were randomly selected from movies rated by more than
300 users. Table 6 shows the results. The proposed method
achieved the lowest error with the Movielens-1M data.

5 Conclusion

We proposed a method for estimating co-occurrence with
aggregated marginal count data, the records of a small
number of users, and auxiliary item feature information.
Our proposed method learns unknown relationships be-
tween auxiliary information and co-occurrence using neu-
ral networks for the parameters of the Dirichlet priors of
joint co-occurrence probabilities. Experiments on real-world
datasets confirmed that the proposed method achieved bet-
ter estimation performance for co-occurrence than existing
methods. Although our results are encouraging, we must ex-
tend our approach in several directions. First, we will ap-
ply our framework to general multi-way and/or multivariate
contingency tables; we focused on two-by-two contingency
tables in this paper. Second, we will investigate tuning the
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hyperparameters using validation data or a Bayesian frame-
work.
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