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Abstract

Empirical game-theoretic analysis refers to a set of models
and techniques for solving large-scale games. However, there
is a lack of a quantitative guarantee about the quality of out-
put approximate Nash equilibria (NE). A natural quantitative
guarantee for such an approximate NE is the regret in the
game (i.e. the best deviation gain). We formulate this devia-
tion gain computation as a multi-armed bandit problem, with
a new optimization goal unlike those studied in prior work.
We propose an efficient algorithm Super-Arm UCB (SAUCB)
for the problem and a number of variants. We present sample
complexity results as well as extensive experiments that show
the better performance of SAUCB compared to several base-
lines.

Introduction

Real-world multi-agent interactions are often immensely
complex and unstructured. These real-world problems are
simply not amenable to theoretical analysis due to vari-
ous complexities, such as stochastic and unknown utilities.
This has led to the development of the area of empirical
(or simulated) games (Wellman 2006; Tuyls et al. 2018),
which have been used successfully to model and solve com-
plex multi-agent game interactions in stock markets (Wang,
Vorobeychik, and Wellman 2018) and cyber-security prob-
lems (Prakash and Wellman 2015). The main characteris-
tic of such games is a simulator, which acts as an oracle
for player utility functions, taking as input a strategy profile
(the strategy of each player) and returning an observation of
the utility each player obtained from that strategy profile in
simulation. The simulator, in theory, allows one to fill the
full game matrix with expected utilities. However, in prac-
tice, calls to the simulator are quite time consuming. Various
techniques have been proposed in the literature showing how
to use the simulator parsimoniously to compute approximate
Nash equilibria (NE) of these complex games using double
oracle or its adaptations (Lanctot et al. 2017).

Yet, applications of empirical games either do not pro-
vide a guarantee about the quality of the output approximate
NE solution or do so in an ad-hoc manner. A natural quality
measure is the most profitable deviation gain from the ap-
proximate NE, also called the regret in the underlying game.
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Further, given the cost involved in calling the simulator, the
deviation gain computation must also make as few calls to
the simulator as possible. Thus, there is a need to design
principled methods to compute the regret of an approximate
NE strategy profile in an empirical game.

Our first contribution is to set up the regret computation
in empirical games as a stochastic multi-armed bandit prob-
lem and provide efficient solutions for this problem. How-
ever, unlike known bandit problems, our problem possesses
unique characteristics due to the following factors: (a) we
consider subsets of arms (called super-arms) which com-
bine the rewards of underlying arms in a weighted sum and
(b) our goal is to bound the reward of the best super-arm
in an interval with high probability, which provides a high
probability bound on the value of the best deviation. We em-
phasize that our goal is not to identify the most profitable
deviation strategy but to just bound this deviation’s gain,
which results in substantially fewer samples as compared to
approaches that aim to identify the best (super) arm. Our
main approach is called Super-Arm UCB (SAUCB). While
this problem, at first glance, may seem amenable to known
techniques, we show via thorough experiments that simple
approaches using prior methods require many more samples
than SAUCB in practice. We also present three variants of
SAUCB and obtain their sample complexities. Furthermore,
we provide a lower bound for the sample complexity of a
specific instance of this problem.

Our second contribution is an extensive set of experiments
comparing SAUCB, its variants, and various baseline ap-
proaches. Our comparisons are for both synthetic data and
for a large-scale example based on a well-known agent-
based simulator of stock markets that has been used in re-
cent papers in AI venues (Wang, Vorobeychik, and Wellman
2018). Among potential approaches in the literature, a re-
cent work applies to our setting (Huang et al. 2018) (called
COCI here based on the algorithm name); however, that
work does not aim for the goal mentioned in (b) above. Sim-
ple approaches combining pure arm exploration and sam-
pling from the mixed strategy also perform poorly. Thus,
SAUCB is able to outperform all known approaches, includ-
ing our own proposed variants, by a large amount. All the
full and missing proofs in this paper and additional graphi-
cal results are in the appendix of the full version, which is
available on the authors’ webpages.
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Problem Description

Empirical games are so complex that the utilities for play-
ers are unknown to begin with. A simulator takes as input a
strategy profile and returns an observation of the payoffs of
each player. In empirical game-theoretic analysis, this sim-
ulator is treated as a black-box payoff oracle, which allows
any arbitrarily complex game to be analyzed. Since these
games typically incorporate stochastic factors, the payoff
observation vector is a sample from some underlying dis-
tribution of payoff outcomes. Thus, many simulation calls
may be necessary to even estimate the expected payoff for a
given strategy profile.

In this paper, for ease of presentation, we focus on sym-
metric games with n players. These are games in which all
n players have the same strategy space S . The outcome and
hence the player payoffs depend only on how many play-
ers played each strategy; that is, a player’s identity does not
matter in the outcome of the game. It is well known that such
games have a NE in symmetric strategies, i.e., a NE in which
every player plays the same (possibly mixed) strategy. Note
that our focus on symmetric games is without loss of gener-
ality, as the non-symmetric case would just require repeating
the regret computation n times, once for each player.

We denote a symmetric mixed strategy as a K-
dimensional vector p, where pi denotes the probability of
choosing i ∈ S and K = |S|. Note that we consider only
the space of symmetric strategies, so the strategy of every
player is given by the same p. We wish to compute regret
for a given fixed p, which will be implicit in all our notation
henceforth. Let U ⊆ S be the support of p. In this work,
we assume |U | > 1 to rule out the degenerate case when
the mixed strategy is actually a pure strategy. Denote by Di

the random utility of a player when this player plays i ∈ S
and others play according to p (called the deviating payoff).
Again note that this payoff is not player-specific due to the
symmetric nature of the game. Also, it can be readily in-
ferred that the payoff of the mixed strategy p is given by∑

j∈S pjDj . Then, the regret R of the strategy profile p in a
symmetric game is given by:

R = max
i∈S

E[Ri] where Ri = Di −
∑
j∈S

pjDj

Ri is the gain in payoff of deviating to strategy i.
Problem Statement: Our goal is to find an interval [LR, UR]
such that R ∈ [LR, UR] with high probability and UR −
LR < W for some fixed W within the fewest samples pos-
sible.
Combinatorial Bounding Bandit Problem (CBBP): We
set up the above problem in a stochastic bandit framework.
However, the objective of this bandit problem is quite dis-
tinct from prior bandit problems; hence, we refer to this
problem as the Combinatorial Bounding Bandit Problem
(CBBP). There are K arms and an arm i has the random pay-
off Di. Let μi = E[Di]. Ri, as described above, is a linear
combination of payoffs of a subset of arms. We call this sub-
set the super-arm (SA). For super-arm i this subset is {i}∪U .
Super-arm i has the random payoff Ri. Let νi = E[Ri].
Then, following our problem statement, we wish to the find

an interval [LR, UR] such that the expected payoff of the
best super arm lies in [LR, UR] with high probability and
UR−LR < W for some fixed W within the fewest samples
possible. Observe that this objective has not been studied
in the literature (see related work for a detailed compari-
son). The combinatorial nature of this problem arises from
the super-arm structure; we exploit this special structure in
our solution.

Note that our sampling primitive is the deviating payoff
Di from a mixed-strategy profile. A call to the simulator re-
turns a sample for an arm, so at every time step we sam-
ple from an arm and not from a super-arm. Thus, our sam-
ple complexity results count the number of times arms are
pulled, not super-arms. We otherwise treat the simulator as a
black box, in line with the standard methodology in empiri-
cal game-theoretic analysis.
Further Notation: Define ck,i = pk if k �= i and ck,i =
1 − pk otherwise. ck,i is a convenient shorthand to express
Ri = ci,iDi −

∑
k∈S\i ck,iDk. Let D̂i,t and R̂i,t denote

the empirical means of the samples of the random variables
Di (arm) and Ri (SA) respectively. Let i∗ denote the index
of the best super-arm, and let Ti(t) denote the number of
times arm i is pulled before time step t. In this work, fol-
lowing standard bandit literature, we assume that the distri-
bution of Di for any i is sub-gaussian with parameter g2.
Also, let Δi = νi∗ − νi. By the definition of super arms,
Δi = μi∗ − μi as well. As is standard in bandit literature
we assume Δi∗ = Δ(1) = Δ(2) ≤ Δ(3) ≤ . . . ≤ Δ(K)

where (i) denotes the ith best super arm. As a consequence,
w.l.o.g., arms are ordered by means so that arm 1 has highest
mean; this ordering is just for ease of notation and is not used
by any algorithm. For readability, we will write Δi instead
of Δ(i).

Related Work

Empirical Games: There is a large body of work on em-
pirical games (Wellman 2006; Jordan, Vorobeychik, and
Wellman 2008; Jordan, Schvartzman, and Wellman 2010;
Tuyls et al. 2018). However, as stated earlier, applications
of these techniques either use ad-hoc methods to report the
regret of approximate Nash equilibria or often do not re-
port it (Wang, Vorobeychik, and Wellman 2018; Prakash and
Wellman 2015).
Stochastic Bandits: In classical stochastic bandit problems,
the goal is to design an efficient sampling algorithm to
minimize the cumulative regret (Lattimore and Szepesvári
2018; Bubeck, Cesa-Bianchi, and others 2012; Auer, Cesa-
Bianchi, and Fischer 2002). Cumulative regret is the cumu-
lative reward difference between the optimal static strategy
and the one realized by the designed algorithm, which is dif-
ferent from regret in the game-theoretic sense that we use
here. We aim to bound the regret of the game in an inter-
val, which translates to bounding the reward of the best SA
in an interval. This makes our setting different from that of
classical stochastic bandits.

Our problem is more related to pure exploration or best
arm identification in multi-armed bandits (Audibert and
Bubeck 2010; Bubeck, Munos, and Stoltz 2011). Originat-
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ing from the problem of deriving PAC bounds for identify-
ing ε-optimal arms (Even-Dar, Mannor, and Mansour 2006;
2002; Mannor and Tsitsiklis 2004), recently various effi-
cient algorithms have been proposed for both the fixed bud-
get setting (Gabillon et al. 2011; Gabillon, Ghavamzadeh,
and Lazaric 2012; Karnin, Koren, and Somekh 2013) and
the fixed confidence setting (Kalyanakrishnan et al. 2012;
Mnih, Szepesvári, and Audibert 2008; Kaufmann, Cappé,
and Garivier 2016). Even more relevant is the combina-
torial pure exploration problem (CPE) (Chen et al. 2014;
Gabillon et al. 2016; Chen et al. 2017). While this problem’s
goal is to identify the best super-arm (defined as a subset of
single arms with additive rewards), our objective still differs
as the values of our super-arms are weighted combinations
of rewards of single arms. A recent work handles weighted
combinations of rewards (Huang et al. 2018) in an algorithm
called COCI which can be used for our problem, but COCI
still aims to identify the best super-arm and not bound the
highest reward in an interval. We compare to COCI in ex-
periments. Overall, many methods for CPE do not apply to
our problem, and those that apply (COCI) perform poorly.

Another line of work (Antos, Grover, and Szepesvári
2008; 2010; Carpentier et al. 2011) aims to estimate the
mean values of the arms using an active learning approach.
However, these works minimize the uniform mean square
loss across all arms by controlling the empirical variance
estimate, while our aim is to bound only the best super-arm
mean. To the best of our knowledge, (Zhou, Li, and Zhu
2017) is the only work that studies multi-armed bandit prob-
lems in an empirical game setting. However, they consider
the very different problem of identifying the pure strategy
NE in a two player zero-sum game by efficiently querying
different pure strategy profiles to construct the stochastic
payoff bimatrix.

Approaches for Bounding Regret

Super-Arm UCB (SAUCB) is our primary solution for
CBBP. SAUCB is specified in Algorithm 1. To begin with,
we present a lower bound for the sample complexity fol-
lowed by an simple approach that combines known methods
to seemingly solve our problem but fails badly in practice.
Lower Bound: First, observe that given the number of
pulls of each arm (that is, not as a random variable) we
get that D̂i,t is sub-gaussian with mean μi and parameter
g2/Tk(t). Next, the SA empirical payoff R̂i,t is a weighted
sum of sub-gaussian random variables D̂i,t. Hence R̂i,t

has a sub-gaussian distribution with mean νi and parame-
ter g2

∑
k∈S c2k,i/Tk(t). These results hold when the payoffs

are normally distributed with variance g2, which we use to
prove the following:

Theorem 1. Given W , there exists a problem instance for
which the number of samples needed to get the true regret
in an interval of width W with confidence erf(m/

√
2) is at

least

Tmin = K − 1− |U |+ 4
g2m2 mini

{(∑
k∈S ck,i

)2}
W 2

.

erf is the error function associated with the normal distribu-
tion. With constant probability values and constant |U |, this
lower bound for the problem instance is Ω(K + m2

W 2 ).

Proof Sketch. Choose the problem in which the arm payoffs
are distributed normally with variance g2. Then, we show
that for a fixed number of time steps τ , there is an ideal pro-
portion in which to distribute the samples among the arms
in SA i. This is Tk(τ) ∝ ck,iτ , which can be readily seen

to be the minimizer of
∑

k∈S
c2k,i

Tk(t)
and hence the variance

of R̂i,τ . Using the ideal proportion, we calculate the min-
imum number of samples for any SA i to get the confi-
dence width to be W with confidence erf(m/

√
2) (i.e. the

prob. of R̂i,τ lying within m standard deviations of νi) as

τ = 4
g2m2(

∑
k∈S ck,i)

2

W 2 . As i∗ is not known, we take the
worst case over SAs to get a lower bound.

Simple Approach: One approach that is simple and appar-
ently seems to address our problem is a modified pure ex-
ploration algorithm, which works as follows: since R =
maxi E[Di] −

∑
j pjE[Dj ], it would seem that estimating

both (a) maxi E[Di] (pure exploration) and (b)
∑

j pjE[Dj ]

(mixed-strategy utility estimation), each with W/2 bound
width, would solve the overall problem of estimating R with
bound width W . Indeed, we use this observation to pro-
pose a simple baseline. We use the successive elimination
pure exploration algorithm (Even-Dar, Mannor, and Man-
sour 2006) (returning a bound width) along with a sampling-
based estimation of mixed-strategy expected utility, which
we together call Modified SE. This approach has the same
asymptotic (in order notation) sample complexity as our
SAUCB approach; however, the constants in the actual num-
ber of samples are higher. Thus, in practice this approach
performs very poorly compared to SAUCB. Intuitively, sam-
ples are inefficiently allocated since the samples of arms
in the best-arm identification portion may not be useful in
narrowing the bound on the mixed-strategy payoff and vice
versa, which is addressed in SAUCB. The details of Mod-
ified SE and its sample complexity are provided in the ap-
pendix.

SAUCB Algorithm

We start with a simple result where using Hoeffding’s in-
equality for R̂i,t with fixed t, we can write

P

⎡⎣R̂i,t +

√√√√2g2 ln
1

δ

∑
k∈S

c2k,i
Tk(t)

≤ νi

⎤⎦ ≤ δ and

P

⎡⎣R̂i,t −
√√√√2g2 ln

1

δ

∑
k∈S

c2k,i
Tk(t)

≥ νi

⎤⎦ ≤ δ (1)

The SAUCB algorithm selects the arm to pull in a hier-
archical manner. The choice of a super-arm is driven by a
UCB-style approach, but where the upper confidence width
is based on the super-arm confidence bound as shown in
Equation 1. In every round, the algorithm first chooses a
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Algorithm 1 SAUCB: A regret-bounding algorithm
Input: Mixed strategy p, width W , sub-gaussian param g2

1: Pull each arm once, t ← 0, Bj,t ←√
2g2 ln 1

δ

∑
k∈S

c2k,j

Tk(t)

2: while wt > W do
3: Increment t
4: k ← argmaxj∈S R̂j,t +Bj,t

5: i← argmaxj∈S
∣∣∣ ∂Bk,t

∂Tj(t)

∣∣∣
6: Pull arm i, increment count Ti(t), update R̂i,t

7: k ← argmaxj∈S R̂j,t +Bj,t

8: wt ← 2 ∗Bk,t

9: end while
10: return interval [R̂k,t −Bk,t, R̂k,t +Bk,t]

super-arm k (line 4), and then chooses an arm i (line 5)
within this super-arm such that this choice i leads to the
largest reduction in the super-arm confidence width Bk,t.
The magnitude of the derivative of Bk,t w.r.t. Tj(t) is used
to decide the reduction that an arm j could provide (line 5),
since this derivative will be 0 for arms outside the chosen
super-arm. Thus, our approach of choosing an arm within
each super-arm is guided by the goal of greedily reducing
the confidence width of the chosen super-arm. Finally, the
SA width is computed (line 8) and compared to the desired
width (line 2) to decide whether to stop or not. We show the
following sample complexity result.
Theorem 2. In order to get an interval of width W contain-
ing the true regret with probability 1 − α, the total number
of samples t required by SAUCB is bounded by

t ≤ K + 16g2 log
1

δ

(
max

(
1− p1
W 2

,
p1

max(W,Δ2)2

)
+
∑

k∈S\1
max

(
1− pk

max(W,Δk)2
,
pk
W 2

))

where α = 2Ktmaxδ and tmax =
16Kg2 log 1

δ

W 2 . With con-

stant probability values, t is O(K +
K log 1

δ

W 2 ). Furthermore,

SAUCB uses a minimum of Ω(K +
log 1

δ

W 2 ) samples.

Proof Sketch. First, each arm is sampled once, giving K
samples. Suppose that at time t, suboptimal arm k �= 1 is
sampled when some super-arm i∗t is chosen as the best super-
arm. This arm will only be sampled if the width of the bound
on i∗t is greater than W : 2Bi∗t ,t > W . In addition, since arm

k is sampled, we have that for all arms j ∈ S ,
∣∣∣∂Bi∗t ,t

∂Tk(t)

∣∣∣ ≥∣∣∣∂Bi∗t ,t

∂Tj(t)

∣∣∣ which implies Tj(t) ≥ cj,i∗t
ck,i∗t

Tk(t). Combining

these, we get Tk(t) ≤
(
16g2ck,i∗t log

1
δ

)
/W 2. If arm k �= 1

is sampled when it is also chosen as the best super-arm (i∗t =

k), then R̂k,t + Bk,t ≥ R̂1,t + B1,t which gives Tk(t) ≤(
16g2(1−pk) log

1
δ

)
/Δ2

k where we again use the bound on

the partial derivative to achieve the second inequality. Com-
bining these results, since either i∗t = k or i∗t �= k when
k is sampled, Tk(t) ≤ 16g2 log 1

δ max
(

1−pk

max(W,Δk)2
, pk

W 2

)
.

We use analogous techniques to achieve a bound for arm
1: T1(t) ≤ 16g2 log 1

δ max
(

1−p1

W 2 , p1

max(W,Δ2)2

)
. Summing

over all arms, we achieve the required result. The complex-
ity can be seen by noting that max

(
1−pk

max(W,Δk)2
, pk

W 2

) ≤
1−pk

W 2 + pk

W 2 . The minimum number of samples is found in a
manner similar to Thm. 1.

The result above also reveals the difference from the best
(super) arm identification problem. Typically in best arm
identification problems, the sample complexity is a func-
tion of terms 1/Δ2

k for all k. However, here we see that
these terms are clamped to W , as in 1/max(W,Δk)

2. Thus,
even if the top two super-arms are very close (i.e. Δ2 is very
small), our sample complexity is not as high as it would be
for the best arm identification problem due to this clamping
effect. Moreover, even when Δ2 is large, the sample com-
plexity depends on the maximum over pk

W 2 and 1−pk

max(W,Δk)2
,

and hence W primarily determines the sample complexity,
as can be seen in the order notation above. This also explains
why we do better than the pure super-arm exploration algo-
rithm COCI (Huang et al. 2018) in experiments.

While the upper bound above depends on K in a mul-
tiplicative manner, there are specific problem instances for
which the upper bound matches the minimum number of
samples for SAUCB. One such example is when the mixed
strategy has a uniform distribution (i.e. all pk are the same
and Δk >> W for k ∈ S\1). It can be readily checked that
the second term reduces to

∑
k∈S\1 pk/W

2 = (1−p1)/W 2.
This makes the resulting upper bound for this instance
O(K +

log 1
δ

W 2 ). Given this observation, the advantage of the
SAUCB approach (e.g. as compared to the simple baseline
Modified SE) is in better constants for the actual number of
samples, leading to much better performance in practice as
revealed in our experiments.

Variants

In order to provide a comprehensive comparison to alterna-
tives, we also propose a few variants of the algorithm above.
These variants serve as additional baselines that we com-
pare SAUCB against. The main variation is in the concentra-
tion bound that is used for the upper confidence bound. For
SAUCB, we have used Hoeffding’s bound. Our first vari-
ant lil-SAUCB uses the law of the iterated logarithm (lil)
bound (Jamieson et al. 2014; Jamieson and Nowak 2014).
Unlike Hoeffding, the lil bound is time-uniform; that is, the
lil bound holds for all timesteps (avoiding a naive union
bound over time). While a number of other time-uniform
concentration bounds exist in the literature (Huang et al.
2018; Zhao et al. 2016), in practice, the Hoeffding bound
works much better for us than the lil bound (see experi-
ments). Thus, we limit ourselves to just the Hoeffding bound
and lil bound.
lil-SAUCB: This variant follows the same template as

4283



Alg. 1, except Bj,t =
∑

k∈S ck,jbk,t where

bk,t = (1 +
√
ε)

√
2g2(1 + ε)

Tk(t)
log

log (Tk(t)(1 + ε))

δ
(2)

and ε ∈ (0, 1), δ ∈ (0, log (1+ε)
e ) are chosen constants. We

show the following sample complexity:

Theorem 3. In order to get an interval of width W contain-
ing the true regret with probability 1 − α, the total number
of samples t taken by lil-SAUCB is bounded by

t ≤ K +max

[
K1

(1− p1)
2/7

W
,min

(
K1

p
2/7
1

W
,

K2 max
j∈S\1

((
p1
Δj

)(
1 +K3

(1− pj)
5/7

p
5/7
1

)))]63/26

+
∑

k∈S\1
max

[
K1

p
2/7
k

W
,min

(
K1

(1− pk)
2/7

W
,

K2

(
(1− pk)

Δk

)(
1 +K3

p
5/7
1

(1− pk)5/7

))]63/26
where K1, K2, and K3 are constants (defined in the
appendix) that depend on ε, δ, g, and K. α =
2K(2+ε)

ε

(
δ

log(1+ε)

)1+ε

. With constant probability values, t

is O
(
K + K22/13

W 63/26δ33/52 log9/13 1
δ

)
.

Proof Sketch. We follow the same method as in the proof
for Thm. 2, repeatedly using the following two inequalities
for simplification:

log x ≥ 1/x for x ≥ 3 and 3x1/3 ≥ log x for x ≥ 0 .

Using the inequalities 2Bi∗t ,t > W and
∣∣∣∂Bi∗t ,t

∂Tk(t)

∣∣∣ ≥ ∣∣∣∂Bi∗t ,t

∂Tj(t)

∣∣∣,
we can derive that arm k is only sampled if

Tk(t) <
(
K1

c
2/7

k,i∗t
W

)63/26
. We derive additional re-

strictions on the number of samples taken from arm
k �= 1 if it is sampled and chosen as the best SA at
time step t, using R̂k,t + Bk,t ≥ R̂1,t + B1,t to get

Tk(t) ≤
(
K2

(
(1−pk)

Δk

)(
1 +K3

p
5/7
1

(1−pk)5/7

))63/26

and

on the number of samples taken from arm k = 1 if it is
sampled and not chosen as the best SA at time step t (for
some j �= 1) using R̂j,t +Bj,t ≥ R̂1,t +B1,t to get T1(t) ≤(
K2 maxj∈S\1

((
p1

Δj

)(
1 +K3

(1−pj)
5/7

p
5/7
1

)))63/26

.

Combining these, we get the desired result. The
complexity result follows from the fact that K1 is
Θ
(

K2/7

δ11/42 log2/7 1
δ

)
.

There are two other variants that arise from the way the
super-arm is chosen. Until now, we used the bounds on

the super-arms to choose a super-arm. However, there is
a one-to-one correspondence between the super-arms and
individual arms; thus, the super-arm choice can be driven
by upper confidence bounds for the corresponding arms.
In particular, the choice in line 4 (Alg. 1) is made using
D̂i,t + bi,t inside the argmax. For the Hoeffding bound vari-

ant, bi,t =
√

2g2 log (1/δ)
Ti(t)

; for the lil bound variant, bi,t is
given by Equation 2. We call these variants single-SAUCB
and single-lil-SAUCB respectively. Note that since standard
SAUCB uses a special construction of the Hoeffding bound
that does not bound individual arms, single-SAUCB instead
uses a linear combination of Hoeffding bounds on individual
arms to bound the super-arms for determining the width of
the regret bound. The following results provide the sample
complexity for these algorithms.

Theorem 4. In order to get an interval of width W
containing the true regret with probability 1 − α, the
total number of samples t taken by single-SAUCB is

O(K +
K5/3 log 1

δ

W 2 ), where α = 2Ktmaxδ and tmax =

8Kg2 log 1
δ

(
(1+(K−1)1/3)

W

)2

.

Theorem 5. In order to get an interval of width
W containing the true regret with probability 1 −
α, the total number of samples t taken by single-lil-
SAUCB is O

(
K + K22/13

W 63/26δ33/52 log9/13 1
δ

)
, where α =

2K(2+ε)
ε

(
δ

log(1+ε)

)1+ε

.

Experiments

Baselines and Evaluation Metrics: We compare our ap-
proach against a number of baselines. We have experimen-
tally found that the Hoeffding bound is the tightest in terms
of width compared to the lil bound or the bound used in
COCI. Therefore, for a fair comparison, we allow all the
baseline algorithms to use Hoeffding bounds on the arms or
super-arms. The baselines we compare against are (a) naive
uniform: arms are sampled in a uniform distribution, (b)
COCI: prior work by (Huang et al. 2018) which is a pure ex-
ploration algorithm for super-arms with weighted rewards,
(c) UAS: modified SAUCB where the arms within a super-
arm are not selected using the derivative values but aiming
for every arm in the super-arm to be sampled equally often
(that is, a uniform distribution within the super-arm), and
(d) Modified SE: the simple approach that combines suc-
cessive elimination (Even-Dar, Mannor, and Mansour 2006)
and mixed-strategy sampling as described earlier.

We compare these baselines across three different crite-
ria. First (1), for all experiments, we compare the bound
width variation over the number of samples. Second (2),
for the synthetic-data experiments, we compare the ground-
truth probability of the true regret lying in a width-W bound
around the empirical regret estimate at each time step; for
SAUCB and each baseline, this probability is estimated as
percentage of 100 runs in which the true regret was within
a W width interval around the empirical regret. Third (3),
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(a) Exp. A: Bound width (b) Exp. A: Probability of correct bound (c) Exp. A: Bound width (vs. variants)

(d) Exp. B: Bound width (e) Exp. B: Probability of correct bound (f) Exp. B: Bound width (vs. variants)

(g) Exp. C: Bound width (h) Exp. C: Probability of correct bound (i) Exp. C: Bound width (vs. variants)

Figure 1: Results on synthetic data experiments

for the large-scale experiments, we compare the total num-
ber of samples taken to achieve the required bound width in
a single run.

We also compare against the variants of our algorithm:
lil-SAUCB, single-SAUCB, and single-lil-SAUCB. Due to
space constraints, we compare against these variants only
for criterion (1) in the main paper. The comparison using
criterion (2) for these variants is presented in the appendix.

Synthetic-Data Experiments

Our experiments follow the design in prior work (Audibert
and Bubeck 2010). We use 20 arms with Bernoulli distribu-
tions, and set W = 0.05 and α = 0.05. We present three
setups Exp. A, Exp. B, and Exp. C in Table 1. In Exp. A, the
top mean is not close to the next 5 means while the remain-
ing 14 means are yet lower, and all arms are in support with
equal probability. In Exp. B, the top two means are close and

the remaining 18 arms have same means, and the top mean is
in support while the second-best mean is not. In Exp. C, the
means are exactly the same as in Exp. B, but the top mean is
not in support while the second-best mean is.

Figs. 1a-1i show our results on synthetic data for the base-
lines as well as against our algorithm variants. The bound-
width-variation-over-time results (averaged over 100 trials)
in Figs. 1a, 1d, and 1g show that SAUCB is able to con-
sistently achieve a lower bound width over all time steps as
compared to the other baselines for all Exp. A, B, and C.
Note that UAS performs identically to uniform in Exp. A,
but performs almost as well as SAUCB in Exp. B and C. This
can be explained since Exp. A has all arms in support of the
mixed strategy, and so uniform sampling within the support
for any super-arm is equivalent to uniformly sampling over
all arms, which is much less effective than the derivative
approach. Also, as explained earlier, COCI performs quite
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Arm means

Exp. A [0.5, 0.42× 5, 0.38× 14]
Exp. B [0.5, 0.48, 0.37× 18]
Exp. C [0.5, 0.48, 0.37× 18]

Mixed strategy

Exp. A [0.05× 20]
Exp. B [0.2, 0, 0.3, 0.3, 0.1, 0.1, 0× 14]
Exp. C [0, 0.2, 0.3, 0.3, 0.1, 0.1, 0× 14]

Table 1: Arm means and mixed strategy for Exp A, B, and C

poorly primarily because its objective is to identify the best
super-arm, not to bound it. Modified SE performs as poorly
as COCI; in the appendix, we further dissect the reasons for
this. As a result, we do not use COCI or Modified SE for the
large-scale experiments.

Figs. 1b, 1e, and 1h show that SAUCB is able to get a
correct bounding interval with probability 1 in fewer sam-
ples compared to the baselines for all Exp. A, B, and C. A
point to note is that UAS has good performance in Exp. B
initially; this is potentially because Exp. B contains the best
arm in support and the support set is small, and hence UAS
initially gets to sample the best arm often, when the em-
pirical estimates of arm means are off. Figs. 1c, 1f, and 1i
show that SAUCB consistently outperforms the variants by
a large amount for Exp. A, B, and C in terms of the number
of samples required to get a lower bound width. Thus, we
choose SAUCB as our algorithm for the large-scale experi-
ments from among the variants.

Large-Scale Experiments

For our large-scale experiments, we use an empirical game
from past work in the domain of simulating and studying
strategic behavior in stock markets (Wang, Vorobeychik,
and Wellman 2018). The underlying strategic interaction in
stock markets is extremely complicated and so cannot be
described in a closed or compact form. Hence, the only in-
terface to the system is the observation of outcomes from an
agent-based simulator model of the stock market (Wellman
and Wah 2017). The underlying game has many players, is
dynamic and repeated, has partial observability of actions
and state, as well as stochasticity. As stated earlier, empirical
game-theoretic methods have been developed to solve such
complex games; Wang, Vorobeychik, and Wellman (2018)
calculate approximate NE using such techniques.

We examine two settings specified in this paper (the
LSHN-K0 and MSMN-K0 settings with no spoofer), and
bound the regret of the reported NE in each setting with
α = 0.05 and W = 0.1. An issue that arises in some such
practical settings is that the sub-gaussian parameter is un-
known. Thus, for these experiments, we pre-sample 10,000
deviating payoffs and clamp payoffs during the experiment
to [0, 1], taking anything above the 75th percentile as 1 and
below the 25th percentile as 0; we do so because otherwise
normalizing the full range of payoffs (which have extremely
high variance and very large outliers) results in a degener-

Figure 2: Bound width for LSHN-K0 (left) and MSMN-K0
(right) settings

ate case where all payoffs are near-identical. Figure 2 shows
our result, where the bound width varies a lot over time since
we are showing only one run of the algorithm (as this is how
SAUCB would be used in practice). The vertical lines show
when different algorithms achieve the width W . As can be
seen, SAUCB achieves the required bound in fewer samples
than the baselines. The run-time for each run of an algo-
rithm in these experiments is about 6 hours (on a 2.4GHz
CPU) due to the time-consuming stock market simulator, as
opposed to minutes for synthetic data.

Conclusion

We formulated a new kind of multi-armed bandit problem
in order to provide quantitative regret guarantees for the
approximate NE computed in empirical games. We pro-
posed an algorithm SAUCB and some variants and analyzed
these theoretically as well as experimentally in synthetic and
stock-market empirical-game scenarios. We found SAUCB
beat a wide range of alternate approaches quite convincingly.
Overall, we hope that this work provides a basis for more
principled guarantees about the equilibria output by various
methods in the area of empirical games.
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learning in multi-armed bandits. In ALT, 287–302.
Antos, A.; Grover, V.; and Szepesvári, C. 2010. Active
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