
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

An Efficient Explorative Sampling Considering the
Generative Boundaries of Deep Generative Neural Networks

Giyoung Jeon,∗ Haedong Jeong∗
Ulsan National Institute of Science and Technology

50, UNIST-gil, Ulsan 44919, Republic of Korea
{giyoung, haedong}@unist.ac.kr

Jaesik Choi†
Korea Advanced Institute of Science and Technology
291 Daehak-ro, Daejeon 34141, Republic of Korea

jaesik.choi@kaist.ac.kr

Abstract

Deep generative neural networks (DGNNs) have achieved
realistic and high-quality data generation. In particular, the
adversarial training scheme has been applied to many DGNNs
and has exhibited powerful performance. Despite of recent
advances in generative networks, identifying the image gener-
ation mechanism still remains challenging. In this paper, we
present an explorative sampling algorithm to analyze gener-
ation mechanism of DGNNs. Our method efficiently obtains
samples with identical attributes from a query image in a
perspective of the trained model. We define generative bound-
aries which determine the activation of nodes in the internal
layer and probe inside the model with this information. To
handle a large number of boundaries, we obtain the essential
set of boundaries using optimization. By gathering samples
within the region surrounded by generative boundaries, we
can empirically reveal the characteristics of the internal layers
of DGNNs. We also demonstrate that our algorithm can find
more homogeneous, the model specific samples compared to
the variations of ε-based sampling method.

1 Introduction

The primary objective of a generative model is to generate re-
alistic data. Recently proposed adversarial training schemes,
such as generative adversarial networks (GANs), have exhib-
ited remarkable performance not only in terms of the quality
of each instance but also the diversity of the generated data.
Despite those improvements, the generation mechanism in-
side the generative models is not well-studied.

In general, a generative model maps a point in the latent
space to a sample in the data space. In other words, data
instances are embedded as latent vectors in a perspective of
the trained generative model. A latent space is divided by
boundaries derived from the structure of the model, where
the vectors in the space represent the generation informa-
tion according to which side of boundaries they are placed.
We utilize these characteristics to examine the generation
mechanism of the model.

∗Equal Contribution
†Corresponding Author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When we select an internal layer and a latent vector in
the DGNNs, there exists the corresponding region which is
established by a set of boundaries. Samples in this region have
the same activation pattern and deliver similar generation
information to the next layer. The details of the delivered
information can be identified indirectly by comparing the
generated outputs from these samples. Given a DGNN trained
to generate human faces, for example, if we identify the
region in which samples share a certain hair color but vary in
others characteristics (eye, mouth, etc.), such a region would
be related to the generation of the same hair color.

However, it is non-trivial to obtain samples from the region
with desired properties of DGNNs because (1) thousands of
generative boundaries are involved in the generation mecha-
nism and (2) a linear modification in the input dimension may
cause a highly non-linear change in the internal units and the
output. Visiting the previous example again, there may exist
regions with different hair colors, distinct attributes, or their
combinations. Furthermore, a small linear modification of
the vector in the latent space may change the entire output
(Szegedy et al. 2013). To overcome this difficulty, an efficient
algorithm to identify the appropriate region and explore the
space are necessary.

In this paper, we propose an efficient, explorative sampling
algorithm to reveal the characteristics of the internal layer of
DGNNs. Our algorithm consists of two steps: (1) to handle a
large number of boundaries in DGNNs, our algorithm approx-
imates the set of critical boundaries of the query which is the
given latent vector using Bernoulli dropout approach (Chang
et al. 2018); (2) then our algorithm efficiently obtains samples
which share same attributions as the query in a perspective
of the trained DGNNs by expanding the tree-like exploring
structure (LaValle 1998) until it reaches the boundaries of the
region.

The advantages of our algorithm are twofold: (1) it can
guarantee sample acceptance in high dimensional space
where the rejection sampling based on the Monte Calro
method easily fails when the region area is unknown; (2)
it can handle sampling strategy in a perspective of the
model where the commonly used ε-based sampling (Erhan,
Courville, and Bengio 2010) is not precise to obtain samples
considering complex non-spherical generative boundaries

4288



E-GBAS (this paper)

-based sampling

E-GBAS (this paper)

-based sampling

DCGAN on MNIST PGGAN on LSUN Church

• A query

• Accepted samples

• Rejected samples

Figure 1: Illustrative examples of our explorative generative boundary aware sampling (E-GBAS) and εL2 -based sampling.

(Laugel et al. 2019). We experimentally verify that our algo-
rithm obtains more consistent samples compared to ε-based
sampling methods on deep convolutional GANs (DCGAN)
(Radford, Metz, and Chintala 2015) and progressive growing
of GANs (PGGAN) (Karras, Aila, and Laine 2015).

2 Related Work

Generative Adversarial Networks The adversarial train-
ing between a generator and a discriminator has highly im-
proved the quality and diversity of samples genereted by
DGNNs (Goodfellow et al. 2014). Many generative mod-
els have been proposed to generate room images (Radford,
Metz, and Chintala 2015) and realistic human face images
(Karras, Aila, and Laine 2015; Karras, Laine, and Aila
2019). Despite those improvements, the generation mech-
anisms of the GANs are not clearly analyzed yet. Recent
results revealed that the relationship between the input latent
space and the output data space in a trained GAN by show-
ing a manipulation in the latent vectors changes attributes
in the generated data (Radford, Metz, and Chintala 2015;
Zhu et al. 2016). Generation roles of some neural nodes in a
trained GAN are identified with the intervention technique
(Bau et al. 2019).

Explaining deep neural networks One can explain an out-
put of neural networks by the sensitivity analysis, which aims
to figure out which portion of an input contributes to the out-
put. The sensitivity can be calculated by class activation prob-
abilities (Zhou et al. 2016), relevance scores (Montavon et al.
2017) or gradients (Selvaraju et al. 2017). DeconvNet (Zeiler
and Fergus 2014), LIME (Ribeiro, Singh, and Guestrin 2016)
and SincNet (Ravanelli and Bengio 2018) trains a new model
to explain the trained model. Geometric analyis could also
reveal the internal structure indirectly (Montufar et al. 2014;
Lei et al. 2018; Fawzi et al. 2018). The activation maximiza-
tion (Erhan, Courville, and Bengio 2010), or GANs (Nguyen
et al. 2016) have been used to explain the neural network by
using examples. Our method is an example-based explana-
tion which brings a new geometric persprective to analyze
DGNNs.

Geometric analysis on the inside of deep neural networks
Geometric analysis attempts to analyze the internal working
process by relating the geometric properties, such as bound-
aries dividing the input space or manifolds along the bound-
aries, to the output of the model. The depth of a network with
nonlinear activations was shown to contribute to the forma-
tion of boundary shape (Montufar et al. 2014). This property
makes complex, non-convex regions surrounded by bound-
aries derived by internal layers. Although such regions are
complicated, each region for a single classification in DNN
classifiers is shown to be topologically connected (Fawzi et
al. 2018). It has also been shown that the manifolds learned
by DNNs and distributions over them are highly related to
the representation capability of a network (Lei et al. 2018).

Example-based explanation of the decision of the model
Activation maximization is one of example-based methods
to visualize the preferred inputs of neurons in a layer and
according patterns in hidden layers (Erhan, Courville, and
Bengio 2010). The learned deep neural representation can be
denoted by preferred inputs because it is related to the activa-
tion of specific neurons (Nguyen et al. 2016). The reliability
of examples for explanation also has been argued considering
the connectivity among the justified samples (Laugel et al.
2019).

3 Generative Boundary Aware Sampling in

Deep Generative Neural Networks
This section presents our main contribution, the explorative
generative boundary aware sampling (E-GBAS) algorithm,
which can obtain samples sharing the identical attributes
from the perspective of the DGNNs. Initially, we define the
terms used in our algorithm. Then we explain E-GBAS which
comprises of (1) an approximate representation of genera-
tive boundaries and (2) an efficient stochastic exploration to
obtain samples in the complex, non-convex generative region.

3.1 Deep Generative Neural Networks

Although there are various architecture of DGNNs, we rep-
resent the DGNNs in a unified form. Given DGNNs with

4289



L layers, the function of DGNNs model G is decomposed
into G(z) = fL(fL−1(· · · (f1(z)))) = fL:1(z), where z is
a vector in the latent space Z ⊂ R

Dz . f i
l:1(·) denotes the

value of i-th element and fl:1(z) ∈ R
Dl . In general, the oper-

ation fl(·) includes linear transformations and a non-linear
activation function.

3.2 Generative Boundary and Region

The latent space of the DGNNs is divided by hypersurfaces
learned during the training. The networks make the final gen-
eration based on these boundaries. We refer these boundaries
as the generative boundaries.

Definition 1 (Generative Boundary (GB)). The i-th gener-
ative boundary at the l-th layer is defined as

Bi
l = {z|f i

l:1(z) = 0, z ∈ Z}.
In general, there are numerous boundaries in the l-th layer

of the network and the configuration of the boundaries com-
prises the region. Because we are mainly interested in the
region created by a set of boundaries, we denote the definition
of halfspace which is a basic component of the region.

Definition 2 (Halfspace). Let a halfspace indicator Vl ∈
{−1, 0,+1}Dl for the l-th layer. Each element Vl

i indicates
either or both of two sides of the halfspace divided by the i-th
GB. We define the halfspace as

Hi
l =

{Z if V i
l = 0

{z|Vl
if i

l:1(z) ≥ 0} if Vl
i ∈ {−1,+1}.

The region can be represented by the intersection of each
halfspace in the l-th layer. For the case where Vl

i = 0, the
halfspace is defined as the entire latent space, so i-th GB does
not contribute to comprise the region.

Definition 3 (Generative Region (GR)). Given a halfspace
indicator Vl in the l-th layer, let the set of according half-
spaces H = {H1

l , . . . ,HDl

l }. Then the generative region
GRVl

is defined as

GRVl
= ∩H∈HH.

For a network with a single layer (l=1), the generative
boundaries are linear hyperplanes. The generative region is
constructed by those boundaries and appears as a convex
polytope. However, if the layers are stacked with nonlinear
activation functions (l>1), the generative boundaries are bent,
so the generative region will have a complicated non-convex
shape (Montufar et al. 2014; Raghu et al. 2017).

3.3 Smallest Supporting Generative Boundary Set

Decision boundaries have an important role in classification
task, as samples in the same decision region have the same
class label. In the same context, we manipulate the generative
boundaries and regions of the DGNNs.

Specifically, we want to collect samples that are placed in
the same generative region and have identical attributes in a
perspective of the DGNNs. To define this property formally,
we first define the condition under which the samples share
the neural representation.

Definition 4 (Neural Representation Sharing (NRS)).
Given a pair of latent vectors zi, zj ∈ Z satisfies the neural
representation sharing condition in l-th layer if

sign(fk
l:1(zi)) = sign(fk

l:1(zj)), ∀k ∈ {1, 2, . . . , Dl}.
It is practically challenging to find samples that satisfy

the above condition, because a large number of generative
boundaries exist in the latent space, as shown in Figure 2(a).
Various information represented by thousands of generative
boundaries makes it difficult to identify which boundary is in
charge of each piece of information. We relax the condition
of the neural representation sharing by considering a set of
the significant boundaries.
Definition 5 (Relaxed NRS). Given a subset S and a pair
of latent vectors zi, zj ∈ Z satisfies the relaxed neural repre-
sentation sharing condition if

sign(fkl:1(zi)) = sign(fkl:1(zj)), ∀k ∈ S ⊂ {1, 2, . . . , Dl}.
Then, we must select important boundaries for the relaxed

NRS in the l-th layer. We believe that not all nodes deliver
important information for the final output of the model as
some nodes could have low relevance of information (Morcos
et al. 2018). Furthermore, it has been shown that a subset
of features mainly contributes to the construction of outputs
in GAN (Bau et al. 2019). We define the smallest support-
ing generative boundary set (SSGBS), which minimizes the
influences of minor (non-critical) generative boundaries.
Definition 6 (Smallest Supporting Generative Boundary Set).
Given the generator G and a query z0 ∈ Z , for l-th layer
and any real value δ > 0, if there exists an indicator V∗

l such
that

‖G(z)−G(z0)‖ ≤ δ, z ∈ {z|fl−1:1(z) ∈ GRV∗
l
}

and there is no V′
l where ‖V′

l‖1 < ‖V∗
l ‖1 such that

‖G(z′)−G(z0)‖ ≤ δ, z′ ∈ {z′|fl−1:1(z
′) ∈ GRV′

l
}

then we denote a set BV∗
l

= {Bi
l |V ∗

l
i 	= 0, i ∈

{1, 2, . . . , Dl}} as the smallest supporting generative bound-
ary set (SSGBS).

In the same context, we denote the generative region
GRV∗

l
that corresponds to the SSGBS as the smallest sup-

porting generative region (SSGR).
It is impractical to explore all the combinations of bound-

aries to determine the optimal SSGBS, owing to the expo-
nential combinatoric search space.1 To avoid this problem,
we used the Bernoulli dropout approach (Chang et al. 2018)
to obtain the SSGBS. We define this dropout function as
φ(h, θ) = h
m, m∼Ber(θ), where 
 is an element-wise
multiplication. We optimize θ to minimize the loss function
L, which quantifies the degradation of generated image with
the sparsity of Bernoulli mask.

θ∗ = argmin
θ

L(z0, l, θ) (1)

= argmin
θ

‖fL:l+1(φ(fl:1(z0), θ))−G(z0)‖+λ‖θ‖1
1For example, a simple fully connected layer with N outputs

generates up to 2N generative boundary sets.

4290



(a) Original generative bound-
aries and generated digit image
of the query

(b) Generative boundaries in
the SSGBS and generated digit
image of the query

Figure 2: Results of optimization of the Bernoulli parameter
θ for the given arbitrary query z in the trained DCGAN on
MNIST with 2-D latent space(Radford, Metz, and Chintala
2015; LeCun, Cortes, and Burges 2010). The red box de-
notes the generated digit image and the blue box denotes
the magnified area nearby the query. (a) shows all generative
boundaries in the first hidden layer (l=1). (b) shows SSGBS
after optimization with constraint p > 0.5.

We iteratively update the parameter using gradient descent
to minimize the loss function in Equation (4). Then we obtain
the SSGBS BV∗

l
from the optimized Bernoulli parameter θ

with a proper threshold in the l-th layer. For each iteration, we
apply the element-wise multiplication between fl:1(z0) and
sampled mask m∼Ber(θ) to obtain masked feature value
and feed it to obtain the modified output.

Algorithm 1 Bernoulli Mask Optimization (BerOpt)
Input: z0: a query, G(.) = fL:1(.): a DGNN model,
l: a target layer
Output: θ: the optimized Bernoulli parameter for SSGBS

1: Initialize θ ∈ [0, 1]Dl

2: h0 = fl:1(z0)
3: while not converge do
4: Sample m∼Ber(θ)
5: hm = h0 
m
6: x0 = fL:l+1(h0), xm = fL:l+1(hm)
7: Compute loss L(z0, l, θ)
8: Update θ with ∇θL
9: return θ

After obtaining the optimal Bernoulli parameter θ∗, we
first define an optimal halfspace indicator V∗

l with the proper
probability threshold (e.g., p = 0.5). We set the value of
elements in V∗

l to zero for removing GBs which have minor
contributions to the generation mechanism. That is,

V ∗
l
i = I(θ∗ > p) · sign(f i

l:1(z0))

where I is indicator function. Representing SSGBS BV∗
l

and
SSGR GRV∗

l
is straightforward from the Definition 6 with

V∗
l . Figure 2 shows the generative boundaries and the gen-

erated digit of the SSGBS without and with the optimized
Bernoulli parameter θ∗ with p > 0.5. The generated digits

indicate that the effect of the removal of minor generative
boundaries on the output is not significant.

3.4 Explorative Generative Boundary Aware Sampling

After obtaining SSGR GRV∗
l

, we gather samples in the re-
gion and compare the generated outputs of them. Because the
GRV∗

l
possesses a complicated shape, simple neighborhood

sampling methods such as ε-based sampling cannot guaran-
tee exploration inside the GRV∗

l
. To guarantee the relaxed

NRS, we apply the GB constrained exploration algorithm in-
spired by the rapidly-exploring random tree (RRT) algorithm
(LaValle 1998), which is invented for the robot path planning
in complex configuration spaces. We refer to the modified ex-
ploration algorithm as generative boundary constrained RRT
(GB-RRT). Figure 3(a) depicts the explorative trajectories of
GB-RRT.

Algorithm 2 Generative boundary constrained rapidly-
exploring random tree (GB-RRT)
Input: z0: a query, GRV∗

l
: SSGR

Parameters: I: a sampling interval,
N : a maximum number of iterations, δ: a step size
Output: Q: samples in the SSGR

1: Initialize queue Q0 = {z0}
2: for i = 1 . . . N do
3: Sample zi ∼ U(z0 − I, z0 + I)
4: qi = nearest(Qi−1,zi)
5: z′i = (zi − qi)/‖zi − qi‖ ∗ δ + qi
6: if z′ ∈ GRV∗

l
and ‖z′ − nearest(Qi−1, z

′)‖>δ
7: then Qi = Qi−1 ∪ {z′}
8: return QN

(a) (b)

Figure 3: (a) Visualization of explorative trajectories of GB-
RRT for a given query (red dot) in the first hidden layer
(l=1) of DCGAN-MNIST and (b) generated outputs from
uniform randomly chosen samples (blue dot in (a)). The red
box denotes the generated output of the query.

We name the entire sample exploration process for DGNNs
which is comprised of finding SSGBS in arbitrary layer and
efficiently sampling in SSGR as explorative generative bound-
ary aware sampling (E-GBAS).

4291



Algorithm 3 Explorative generative boundary aware sam-
pling (E-GBAS)
Input: z0: a query, G(.) = fL:1(.): DGNN model,
l: a target layer, p: threshold for SSGBS selection
Output: Z: a set of samples in the same SSGR of z0

1: Optimize θ∗ = BerOpt(z0, G, l)

2: Compute V∗
l = [V ∗

l
1, . . . V ∗

l
Dl ]T

where V ∗
l
i = I(θ∗ > p) · sign(fl:1(z0))

3: Derive GRV∗
l

4: Sample a set Z = GB-RRT(z0, GRV∗
l
)

5: return Z

4 Experimental Evaluations

This section presents analytical results of our algorithm and
empirical comparisons with variants of ε-based sampling
method. We select three different DGNNs; (1) DCGAN (Rad-
ford, Metz, and Chintala 2015) with the wasserstein distance
(Arjovsky, Chintala, and Bottou 2017) trained on MNIST,
(2) PGGAN (Karras, Aila, and Laine 2015) trained on the
church dataset of LSUN (Yu et al. 2015) and (3) the celebA
dataset (Liu et al. 2015).

The ε-based sampling collects samples based on Lp dis-
tance metric. We choose L2 and L∞ distance as baseline,
and sample in each ε-ball centered at the query. use In prac-
tice, the value of ε is manually selected. We use the set of
accepted samples and rejected samples, Zaccept and Zreject,
obtained by the E-GBAS to set the ε for fair comparisons. We
set the average of accepted samples zavg which can represent
the middle point of the SSGR, then we calculate εL2 with
min/max distance between zavg and Zreject as,

εL2
=

1

2

(
max

z∈Zreject

‖zavg − z‖+ min
z∈Zreject

‖zavg − z‖
)
.

Figure 4 indicates the visualization of calculating ε in the
DCGAN-MNIST. After εL2

is set, εL∞ are determined to
have the same volume as the εL2

-ball. Figure 5 shows the
geometric comparisons of each sampling method in the first
hidden layer (l=1) of DCGAN-MNIST.

4.1 Qualitative Comparison of E-GBAS and
ε-based Sampling

We first demonstrate how the generated samples vary if they
are inside or outside of the obtained GR. As shown in Figure
1, we mainly compare the samples generated from E-GBAS
(blue region) to the samples from the εL2

-based sampling
(red region). A given query and a target layer, E-GBAS ex-
plores the SSGR and obtains samples that satisfy the relaxed
NRS. Figure 7 depicts the results of the generated images
from E-GBAS and the εL2-based sampling. We observed
that the images generated by E-GBAS share more consistent
attributes (e.g., composition of view and hair color) which
is expected property of NRS. For example, in the first row
of celebA results, we can identify the sampled images share
the hair color and angle of face with different characteristics
such as hair style. In LSUN dataset, the second row of results
share the composition of buildings (right aligned) and the
weather (cloudy).

(a) (b)

Figure 4: (a) The accepted samples (black dots), rejected
samples (red dots) and average of the accepted samples (blue
dot) by E-GBAS. (b) Visualizing the selection of εL2

to make
the area close to that of SSGR. The εL2

-balls of each distance.
min (red), max (orange) and average of min/max distance
(blue).

(a) E-GBAS (b) εL2 (c) εL∞

Figure 5: Geometric comparison of (a) E-GBAS, (b) εL2 and
(c) εL∞-based sampling methods. Although the two ε-balls
cover some area of the GR, they cannot cover all of the GR
and have a possibility to include infeasible area. Whereas, the
E-GBAS includes the only feasible area of GR for sampling.

We try to analyze the generative mechanism of DGNNs
along the depth of layer by changing the target layer. Figure
6 shows the examples and the standard deviations of the
generated images by E-GBAS in each target layer. From
the results, we discover that the variation of images is more
localized as the target layer is set to be deeper. We argue that
the GB in the lower layer attempts to maintain an abstract and
generic information (e.g., angle of scene/entire shape of face),
while those in the deeper layer tends to retain a concrete and
localized information (e.g., edge of wall/mustache).

4.2 Quantitative Results

The Similarity of Activation Values in Discriminator A
DGNN with the adversarial training has a discriminator to
measure how realistic is the output created from a generator.
During the training, the discriminator learns features to judge
the quality of generated images. In this perspective, we ex-
pect that generated outputs from samples which satisfy NRS
have similar feature values in the internal layers of the dis-
criminator. We use cosine similarity between feature values
of samples and the query. The relative evaluations of NRS for
each sampling method are calculated by the average of simi-
larities. When we denote a discriminator D(X) = dL:1(X),
the query z0 and the obtained set of samples Z, the similarity

4292



DCGAN-MNIST PGGAN-LSUN PGGAN-celebA
Layer # 1 2 3 4 2 4 6 2 4 6

εL2 -based sampling 0.0819 0.0711 0.0718 0.0343 0.4951 0.4971 0.4735 0.5150 0.4994 0.4892
εL∞ -based sampling 0.0834 0.0722 0.0720 0.0344 0.4641 0.4322 0.3365 0.4859 0.4799 0.3384

E-GBAS 0.0781 0.0694 0.0675 0.0323 0.3116 0.2558 0.1748 0.2980 0.2789 0.1446

Table 1: Standard deviations of generated images in each sampling methods. The number indicates the index of layer that GB
constraint is applied in each DGNNs, where higher number is close to the output generation. The E-GBAS shows the lowest
standard deviations compared to ε-based sampling methods.

6543

(a) PGGAN-LSUN
6543

(b) PGGAN-celebA

Figure 6: Examples of variations of generated images for
each target layer. The first row shows the standard deviations
of generated images for each target layer.

of feature values in the l-th layer is defined as the Equation
(2). The operation d consists of linear transformations and a
non-linear activation function.

Sdl
= Ez∈Z

[
dl(G(z))T dl(G(z0))

‖dl(G(z))‖ ‖dl(G(z0))‖

]
, l ∈ {1, 2, . . . , L}

(2)
Table 2 shows the results of measuring the similarity for each
internal layer in the discriminator.

Variations of Generated Image To quantify the consis-
tency in attributes of the generated images, we calculate the
standard deviation of generated images sampled by E-GBAS
and variants of the ε-based sampling. The standard deviation
is calculated as Equation (3). The experimental results are
shown in Table 1.

σ =
√

Ez∈GRV
[G(z)− Ez∈GRV

[G(z)]] (3)

We randomly select 10 query samples and compute the av-
erage standard deviation of generated sets. Table 1 indicates

Layer # 1 2 3 4

M
N

IS
T εL2

-based 0.722 0.819 0.864 0.991
εL∞ -based 0.727 0.823 0.867 0.991
E-GBAS 0.747 0.838 0.878 0.992

L
SU

N εL2
-based 0.578 0.602 0.957 0.920

εL∞ -based 0.551 0.613 0.960 0.946
E-GBAS 0.578 0.637 0.967 1.000

ce
le

bA εL2
-based 0.678 0.718 0.785 0.963

εL∞ -based 0.684 0.720 0.789 0.965
E-GBAS 0.702 0.733 0.804 0.970

Table 2: Comparisons of the average cosine similarity of
feature values of the discriminator. The number indicates the
index of layer in a discriminator.

that our E-GBAS has lower loss (i.e., consistent with the
input query) compared to the ε-based sampling in all three
models and target layers.

5 Conclusion

In this study, we propose the explorative algorithm for analyz-
ing the GR to identify generation mechanism in the DGNNs.
Especially, we probe the internal layer in the trained DGNNs
without additional training by introducing the GB of DGNNs.
To gather samples which satisfy the NRS condition in the
complicated and non-convex GR, we applied GB-RRT. We
empirically show that the collected samples in the latent space
with the NRS condition share the same generative properties.
We also qualitatively indicate that the NRS in the distinct
layers implies different generative attributes. Furthermore,
the concept of the proposed algorithm is general and can also
be used to probe the decision boundary in the classifier. So
we believe that our method can be extended to different types
of deep neural networks.

Acknowledgement

This work was supported by the Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Ministry of Science and ICT (MSIT),
Korea (No. 2017-0-01779, XAI) and the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment(MSIT), Korea (NRF-2017R1A1A1A05001456).

4293



A query -based sampling E-GBAS

Figure 7: Generated samples from a query input (left), ε-based sampling (middle) and E-GBAS sampling (right) of the three
DGNNs (DCGAN-MNIST, PGGAN-LSUN and PGGAN-celebA.). We confirm that the generated images by E-GBAS have
more consistent information compared to the εL2

-based sampling.

4294



References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International Conference
on Machine Learning, 214–223.
Bau, D.; Zhu, J.-Y.; Strobelt, H.; Bolei, Z.; Tenenbaum, J. B.;
Freeman, W. T.; and Torralba, A. 2019. Gan dissection: Vi-
sualizing and understanding generative adversarial networks.
In International Conference on Learning Representations.
Chang, C.-H.; Creager, E.; Goldenberg, A.; and Duvenaud,
D. 2018. Explaining image classifiers by adaptive dropout
and generative in-filling. arXiv preprint arXiv:1807.08024.
Erhan, D.; Courville, A.; and Bengio, Y. 2010. Understanding
representations learned in deep architectures. Department
dInformatique et Recherche Operationnelle, University of
Montreal, QC, Canada, Tech. Rep 1355:1.
Fawzi, A.; Moosavi-Dezfooli, S.-M.; Frossard, P.; and Soatto,
S. 2018. Empirical study of the topology and geometry of
deep networks. In IEEE Conference on Computer Vision and
Pattern Recognition.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Conference on Neural Infor-
mation Processing Systems, 2672–2680.
Karras, T.; Aila, T.; and Laine. 2015. Progressive growing
of gans for improved quality, stability, and variation. arXiv
preprint arXiv:1710.10196.
Karras, T.; Laine, S.; and Aila, T. 2019. A style-based genera-
tor architecture for generative adversarial networks. In IEEE
Conference on Computer Vision and Pattern Recognition,
4401–4410.
Laugel, T.; Lesot, M.-J.; Marsala, C.; Renard, X.; and De-
tyniecki, M. 2019. The dangers of post-hoc interpretabil-
ity: Unjustified counterfactual explanations. arXiv preprint
arXiv:1907.09294.
LaValle, S. M. 1998. Rapidly-exploring random trees: A new
tool for path planning. Technical report, Computer Science
Department, Iowa State University.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. Mnist hand-
written digit database. AT&T Labs [Online]. Available:
http://yann. lecun. com/exdb/mnist 2:18.
Lei, N.; Luo, Z.; Yau, S.-T.; and Gu, D. X. 2018. Ge-
ometric understanding of deep learning. arXiv preprint
arXiv:1805.10451.
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learning
face attributes in the wild. In International Conference on
Computer Vision.
Montavon, G.; Lapuschkin, S.; Binder, A.; Samek, W.; and
Müller, K.-R. 2017. Explaining nonlinear classification deci-
sions with deep taylor decomposition. Pattern Recognition
65:211–222.
Montufar, G. F.; Pascanu, R.; Cho, K.; and Bengio, Y. 2014.
On the number of linear regions of deep neural networks.
In Conference on Neural Information Processing Systems,
2924–2932.

Morcos, A. S.; Barrett, D. G.; Rabinowitz, N. C.; and
Botvinick, M. 2018. On the importance of single directions
for generalization. arXiv preprint arXiv:1803.06959.
Nguyen, A.; Dosovitskiy, A.; Yosinski, J.; Brox, T.; and
Clune, J. 2016. Synthesizing the preferred inputs for neurons
in neural networks via deep generator networks. In Confer-
ence on Neural Information Processing Systems, 3387–3395.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Raghu, M.; Poole, B.; Kleinberg, J.; Ganguli, S.; and Dick-
stein, J. S. 2017. On the expressive power of deep neural
networks. In International Conference on Machine Learning,
2847–2854.
Ravanelli, M., and Bengio, Y. 2018. Interpretable convolu-
tional filters with sincnet. arXiv preprint arXiv:1811.09725.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. Why should
i trust you?: Explaining the predictions of any classifier. In
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 1135–1144.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual expla-
nations from deep networks via gradient-based localization.
In IEEE International Conference on Computer Vision, 618–
626.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199.
Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; and
Xiao, J. 2015. Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365.
Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference on
computer vision, 818–833.
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba,
A. 2016. Learning deep features for discriminative local-
ization. In IEEE conference on computer vision and pattern
recognition, 2921–2929.
Zhu, J.-Y.; Krähenbühl, P.; Shechtman, E.; and Efros, A. A.
2016. Generative visual manipulation on the natural image
manifold. In European Conference on Computer Vision, 597–
613.

4295


