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Abstract
The cross-domain representation learning plays an impor-
tant role in tasks including domain adaptation and trans-
fer learning. However, existing cross-domain representation
learning focuses on building one shared space and ignores
the unlabeled data in the source domain, which cannot effec-
tively capture the distribution and structure heterogeneities in
cross-domain data. To address this challenge, we propose a
new cross-domain representation learning approach: MUlti-
ple Lipschitz-constrained AligNments (MULAN) on partially-
labeled cross-domain data. MULAN produces two represen-
tation spaces: a common representation space to incorporate
knowledge from the source domain and a complementary
representation space to complement the common represen-
tation with target local topological information by Lipschitz-
constrained representation transformation. MULAN utilizes
both unlabeled and labeled data in the source and target
domains to address distribution heterogeneity by Lipschitz-
constrained adversarial distribution alignment and structure
heterogeneity by cluster assumption-based class alignment
while keeping the target local topological information in
complementary representation by self alignment. Moreover,
MULAN is effectively equipped with a customized learning
process and an iterative parameter updating process. MULAN
shows its superior performance on partially-labeled semi-
supervised domain adaptation and few-shot domain adapta-
tion and outperforms the state-of-the-art visual domain adap-
tation models by up to 12.1%.

Introduction
Learning tasks including domain adaptation (DA) (Rozant-
sev, Salzmann, and Fua 2018), transfer learning (TL) (Pan
and Yang 2010), and image-image translation (Liu et al.
2018a; Lee et al. 2018) aim to acquire knowledge from one
domain to enhance that of the other. Typically, such tasks
transfer a knowledge representation from a source domain
to a target domain by jointly learning a common represen-
tation across domains. To date, learning the cross-domain
representation is still highly challenging due to the hetero-
geneities of data distributions and structures between do-
mains, which widely exist in real-world applications. In ad-
dition to the common information shared across domains,
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning heterogeneous but complementary information be-
tween domains for representation is promising yet challeng-
ing. It will be very promising if a representation learning
approach can effectively learn complementary information
from other domains, which enables the knowledge of ma-
chines to be self-evolutionary. However, it is still a challeng-
ing task for existing cross-domain representation learning
methods because only limited consensus data (e.g., labeled
data) are available to construct the linkage between domains
and the data distributions and structures are usually highly
heterogeneous in different domains.

Inspired by this, we propose a novel cross-domain repre-
sentation learning approach: Multiple Lipschitz-constrained
Alignments (MULAN) to construct both common repre-
sentations and complementary representations for partially-
labeled cross-domain data. Different from existing semi-
supervised (Motiian et al. 2017; Tzeng et al. 2015) or unsu-
pervised domain adaptation methods (Haeusser et al. 2017;
Shu et al. 2018; Xie et al. 2018) in which the fully-labeled
source data is available during learning, MULAN utilizes
partially labeled data in both source and target domains,
which is more common in real-life applications. Also, clas-
sic cross-domain representation learning aims to build one
common feature space in which the local topological and
distribution information of the target domain may be ig-
nored during the alignment with the source domain. In con-
trast, MULAN involves Lipschitz-constrained representa-
tion transformation to generates two representation spaces:
a common representation space and a complementary rep-
resentation space. In the common space, the representations
of target data follow the distribution of the source domain,
while the representations in the complementary space aim to
keep the topological information of the target domain which
complements the information loss of the common space.

Our key idea is to build multiple alignments based on the
Lipschitz-constrained transformation, i.e., class alignment,
distribution alignment and self alignment between source
and target domains. The class alignment makes use of the
labeled data and is based on the cluster assumption which
is widely taken in semi-supervised learning in order to help
the source and target alignment in the common space. The
distribution alignment uses adversarial learning to generate
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a common representation of target domain which follows
the distribution of source domain. Moreover, the self align-
ment between original target feature space and complemen-
tary representation space emphasizes the local information
in target domain and also constrains the learning of class
alignment and distribution alignment. All these three align-
ments jointly build a training target to learn the represen-
tations with a customized parameter learning process. The
contributions of this work include:

• A new cross-domain representation learning approach
MULAN produces two representation spaces, i.e., com-
mon representation and complementary representation for
the target domain, which addresses the shortage of exist-
ing methods by only learning common representation.

• MULAN only takes partially-labeled data in both source
and target domains to accomplish the alignment between
two domains while also keeps the local topological infor-
mation in the complementary representation.

• A customized parameter learning process is designed for
MULAN so that the multiple alignments can be jointly
and effectively learned in the training process.

We show that our method beats the state-of-the-art DA meth-
ods on the representative VisDA dataset in both partially-
labeled semi-supervised domain adaptation and limited-
labeled few-shot domain adaptation.

Related Work
The most related problems studied on cross-domain repre-
sentation learning are domain adaptation and representation
disentanglement.

Domain Adaptation DA leverages labels in one to mul-
tiple source domains to predict the labels in a target domain
with inconsistent data distribution. The core aspect of DA
is to find a domain invariant representation or embedding
space. Existing methods use various metrics to measure the
similarity between the representations of source data and tar-
get data. Maximum mean discrepancy is a popular metric
in most kernel-based DA methods (Kulis, Saenko, and Dar-
rell 2011; Gong et al. 2012). Associative Domain Adaptation
(ADA) (Haeusser et al. 2017) utilizes association (Haeusser,
Mordvintsev, and Cremers 2017) in semi-supervised train-
ing to enforce similar embeddings. Adversarial methods
(Ganin et al. 2016; Tzeng et al. 2017; Shen et al. 2018;
Long et al. 2018) have received more focus recently. More-
over, to address some limitations of domain adversarial
training, the authors in (Shu et al. 2018) proposed a vir-
tual adversarial DA model with Decision-boundary Itera-
tive Refinement Training with a Teacher (DIRT-T). Gener-
ative adversarial networks recently show their potential in
DA (Yi et al. 2017; Kim et al. 2017) for generating virtual
samples. Some Siamese architectures (Tzeng et al. 2015;
Sun and Saenko 2016) are proposed to optimize the domain
invariance to facilitate domain transfer and learn a discrim-
inative embedding subspace, where the mapped domains
are semantically aligned yet maximally separated. The work
(Motiian et al. 2017) utilizes few target examples to build
Classification and Contrastive Semantic Alignment (CCSA)

for domain adaptation and generalization. However, exist-
ing DA models only generate one common feature space
which may lose information from the target domain. Method
in (Bousmalis et al. 2016) builds shared representation space
and private representation space for each domain while these
private representation cannot complement the target domain
learning.

Representation Disentanglement To learn cross-domain
representation, representative methods (Liu et al. 2018a;
Lee et al. 2018; Liu et al. 2018b) try to disentangle the
underlying factors of data from different domains in or-
der to help cross-domain knowledge share and transfer.
Recently, most methods (Odena, Olah, and Shlens 2017;
Higgins et al. 2017; Chen et al. 2016; Kingma et al. 2014;
Liu et al. 2018b) are based on generative adversarial net-
works (GAN) (Goodfellow et al. 2014) and Variational Au-
toencoder (VAE) (Rezende, Mohamed, and Wierstra 2014).
The method (Liu et al. 2018b) utilizes the fully-labeled
source data to perform representation learning and disen-
tanglement in the resulting shared latent space. The work
(Gonzalez-Garcia, van de Weijer, and Bengio 2018) disen-
tangles representation from two domains through VAEs and
construct common representation. Another work (Liu et al.
2018a) achieves multiple domain confusions in order to cus-
tomize image generation and translation. However, the rep-
resentation disentanglement highly depends on a few ex-
planatory factors and assumptions (Rezende, Mohamed, and
Wierstra 2014).

Problem Formalization
For a cross-domain representation learning problem, we de-
note the domain data distribution as D with a label set C
on the input feature X and a labeling function l : X �→ C
to retrieve the labels. Let us consider two domains, (Ds, ls)
denotes the source domain and (Dt, lt) denotes the target
domain. The inputs Xs and Xt are the pre-trained features
of source and target domains. Hs and Ht are the projected
representation spaces w.r.t. the source and target domains.
Ht-s and Ht-s-t denote the common representation space
and complementary representation space of the target do-
main respectively. Hs and Ht-s are compatible and follow
the same distribution. And h denotes the specific represen-
tation of one data sample in corresponding representation
space H.

In partially-labeled DA task, we have the labeled data
X l

s ∈ Xs with the labels Y l
s = {ys = ls(xs)|xs ∈ X l

s}
and unlabeled data X u

s ∈ Xs in the source domain which is
more consistent with real-world data. Similarly, we have the
labeled data (X l

t ,Y l
t) and unlabeled dataX u

t ∈ Xt in the tar-
get domain. Our goal is to find a labeling function h from a
hypothesis space H, which can minimize the generalization
errors over X u

t .

Multiple Lipschitz-constrained Alignments
MULAN defines a two-stage representation learning process
corresponding to learning common representation and learn-
ing complementary representation with the constraints of
three alignments, as illustrated in Figure 1. In the first stage,
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Figure 1: The overview of the working mechanism of MULAN, which generates two representation spaces for the target
domain.

the common representation ht-s is learned by following the
class alignment and distribution alignment with source pro-
jected representation hs (in terms of the learning objective
Eqn. 7 and Eqn. 8). In the second stage, the complemen-
tary representation ht-s-t is mainly aligned with the target-
projected representation ht through self alignment (in terms
of learning objective Eqn. 9). Moreover, the three alignments
are jointly optimized through two combined loss functions
(see the loss function in Eqn. 12). And the two losses are
optimized iteratively to update the parameters.

Common Representation Learning

The common representation learning is built on the pro-
jected representation spaces, Ht and Hs, which are encoded
from target and source data by the representation projection
models, i.e., fs(Xs; θs) : Xs �→ Hs and ft(Xt; θt) : Xt �→
Ht, where θs and θt are the model parameters. Since Ht and
Hs are from different domains and follow different distribu-
tions, they are not directly comparable. Hence, we transform
Ht into the common representation space Ht-s which com-
plies with the the distribution of Hs to align source labeling
information with the target. And the transformation func-
tion is fc(ht;ϕc, ϕd) : Ht �→ Ht-s, where ϕc and ϕd are
the parameters in class alignment and distribution alignment
respectively. More specifically, the transformation function
f(ht;ϕc, ϕd) can be divided as the following:

ht-s = f(ht;ϕc, ϕd) = (1− γ)fc(ht;ϕc) + γfd((ht;ϕd)
(1)

To keep the local geometric information in ht, we constrain
fc(ht;ϕc) and fd(ht;ϕd) satisfying 1-Lipschitz which is
defined in Definition 1. And γ is the hyper-parameter which
will be introduced in detail with the distribution alignment.
Due to the convex combination, we can easily verify that
f(ht;ϕc, ϕd) also satisfy 1-Lipschitz in terms of the trian-
gle inequality. According to the definition and properties of
Lipschitz continuity, f has bounded first derivative which
means the local structure is kept during transformation.

Definition 1. (Lipschitz continuity). A vector-valued func-
tion f : Rn �→ R

m is K-Lipschitz continuous on R
n if there

is a constant K such that

‖f(x)− f(y)‖ ≤ K‖x− y‖ for all x,y ∈ R
n (2)

where the smallest K is a Lipschitz constant which equals
supx ‖∇f(x)‖.

In particular, we employ the multilayer perceptrons with
spectral normalization (SNMLPs) (Miyato et al. 2018) to
implement 1-Lipschitz functions in this work.

During the learning of common representation, the class
alignment searches a configuration of fc(ht;ϕc) to align tar-
get and source with labeled data while the distribution align-
ment finds a configuration of fc(ht;ϕd) by finely aligning
the target distribution with the source distribution using both
labeled and unlabeled data.

Cluster Assumption-based Class Alignment Although
the domain consensus information, i.e., class labels, between
source and target domains are limited, it still plays a criti-
cal role in aligning two domains, especially when the con-
ditional distribution Dt(X|C) is significantly different from
Ds(X|C), which will be discussed with distribution align-
ment. Cluster Assumption is commonly made to account for
the success of semi-supervised learning (SSL) (Ben-David
and Urner 2014; Shu et al. 2018), which assumes that the
input distribution can be divided into clusters separated by
low-density regions, where the data points in the same clus-
ter share almost the same label. According to the cluster as-
sumption, for the cross-domain learning tasks, the limited
consensus class information is significantly helpful to align
the clusters associated with the same major labels across do-
mains. As a result, we consider the max-margin class sepa-
ration (MMCS) loss to enlarge the margin of data represen-
tation w.r.t. different classes for clearer cluster boundaries.
The general form of MMCS w.r.t. two domains is as follows:

LC
m(A|B) = Ea∈AEbi,bj∈B(δl · [d(a,bi)−d(a,bj)+m]0)

(3)
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where d(·, ·) is a metric function, and it is considered as Eu-
clidean distance in this paper without further notification,
and [x]0 denotes max(0, x). δl is an indicator w.r.t. the la-
beling function l under the class distribution C:

δl =

{
1, if l(a) = l(bi) ∧ l(a) 	= l(bj)

0, otherwise
(4)

Minimizing MMCS loss separates the input with different
labels into different clusters by a margin m. The class align-
ment minimizes a complex MMCS loss LCA composed of
an intra-domain MMCS loss Lintra within target domain
and source domain and an inter-domain MMCS loss Linter

between target and source domains.

Lintra = LC
m(Ht|Ht) + LC

m(Hs|Hs) (5)

= LC
m(ft(X l

t )|ft(X l
t )) + LC

m(fs(X l
s)|fs(X l

s))

Linter = LC
m(Ht-s|Hs) + LC

m(Hs|Ht-s) (6)

= LC
m(f(ft(X l

t ))|fs(X l
s) + LC

m(fs(X l
s)|f(ft(X l

t ))

LCA = Lintra + Linter (7)

Minimizing Lintra constructs representation spaces Ht and
Hs that less violate the cluster assumption in each domain.
Due to the 1-Lipschitz constraint, Ht-s can preserve the local
cluster topology of Ht. Moreover, minimizing Linter aligns
the clusters in Hs with those in Ht-s associated with the
same labels as in Hs, i.e., inter-domain alignment. As a re-
sult, Ht-s and Hs are compatible spaces. Note that, we fix
the parameters ϕd of fd in Eqn. 1 when we optimize con-
sensus alignment w.r.t. ϕc of fc.

Adversarial Distribution Alignment Traditional semi-
supervised DA methods only consider labeled data in the
source domain. Due to the cluster assumption, the unla-
beled data also imply class structures. To exploit unlabeled
data (including labeled data without involving their labels),
a straightforward way is to align the distributions between
target and source. However, arbitrarily aligning distribution
through unlabeled data may lead to a wrong alignment be-
tween classes. For example, if the conditional target distribu-
tionDt(Xc1 |c1) of class c1 is closer to the conditional source
distribution Ds(Xc2 |c2) of a heterogeneous class c2 than to
the homogeneous class c), it tends to be aligned falsely.

Note that common representation transformation function
f consists of two transformation functions, fc and fd (cf.
Eqn. 1), the distribution alignment aims to find an optimal
fd by optimizing parameter ϕd with fixing ϕc of fc. To
find the optimal transformation function, fd, we minimize
the following Wasserstein distance with adversarial learning,
where fc is a 1-Lipschitz function implemented by SNMLP
(Miyato et al. 2018) to serve as the critic:

LDA = supfc Ehs∈Hs
[fc(hs; η)]− Eht∈Ht

[fc(ht-s; η)]
(8)

The distribution alignment and the class alignment alter-
nately optimize the common representation space based
on each other’s results. Given the common representation
space Ht-s optimized by the class alignment, the distribu-
tion alignment searches a h̃t-s in the vicinity of ht-s ∈ Ht-s

within the radius γ‖ht-s‖ (note that γ is the hyper-parameter
in Eqn. 1 and fd is spectral normalized with a unity spec-
tral radius). Since Ht-s has been optimized under cluster as-
sumption through the MMMC loss (cf. Eqn. 7) with clear
margins, the distribution alignment can set a small γ (we set
γ = 0.02 in this paper through empirical test) to constrain
the distribution alignment inside a cluster where the target
data and source data are associated with the same major la-
bels. Obviously, such cluster-specific distribution alignment
avoids the aforementioned inconsistent class alignment is-
sue.

Complementary Representation Learning
The complementary representation learning aims to find a
transformation function, i.e., fp(ht-s;φ) : Ht-s �→ Ht-s-t,
which integrates the knowledge from common representa-
tion space Ht-s into Ht-s-t without losing original knowl-
edge in the target domain.

Self Alignment To preserve the cluster topology in Ht-s,
we also equip fp with SNMLPs to be a 1-Lipschitz function.
Each ht-s-t ∈ Ht-s-t should be able to retrieve the corre-
sponding ht ∈ Ht that represents the identical target object.
To enable this self alignment, we again apply the MMCS
loss where the class labels C′ are the object IDs.

LSA = LC′
mε

(Ht-s-t|Ht) (9)

= LC′
mε

(fp(f(ft(Xt)))|ft(Xt)

Minimizing this loss forces the two representation vectors,
i.e., ht ∈ Ht and ht-s-t ∈ Ht-s-t, of the identical object
to be closer than those of any other objects. We set a small
margin mε = 1e−3 in Eqn. 9 to avoid overfitting to the target
representation space Ht.

Analysis
In this section, we analysis the error bound of classification
on common representation space Ht-s according to the do-
main adaptation theory (Ben-David and Urner 2014) and the
diameter relationship between the projected target represen-
tation space, common representation space and complemen-
tary representation space.

Let h : H �→ R be a hypothesis in class H, and ht-s =
h ◦ f ◦ ft : Ht-s �→ R and hs = h ◦ fs : Hs �→ R be
the compositions, then we have the following error bound
on Ht-s:

εt(ht-s) ≤ εs(hs)+dH�H(DHs
,DHt-s

)+εs(h
∗
s)+εt(h

∗
t-s)

where DHs
and DHt-s

denote the corresponding distribu-
tions of Hs and Ht-s respectively. dH�H(DHs

,DHt-s
) de-

notes theH�H distance and we omit the constant factor 2
in the original paper (Ben-David et al. 2010):

dH�H(DHs ,DHt-s) = sup
h,h′∈H

|εt(h, h′)− εs(h, h
′)|

h∗ denotes the ideal joint hypothesis which minimizes the
combined error:

h∗ = argmin
h

[εs(h ◦ fs) + εt(h ◦ f ◦ ft)]
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Considering the triangle inequality for classification er-
ror (Ben-David et al. 2010), for any labeling functions
h1, h2, h3, we have ε(h1, h2) ≤ ε(h1, h3)+ ε(h2, h3). Then

εt(ht-s)

≤ εt(ht-s, h
∗
t-s) + εt(h

∗
t-s)

= εt(h
∗
t-s) + εs(hs, h

∗
s) + εt(ht-s, h

∗
t-s)− εs(hs, h

∗
s)

≤ εt(h
∗
t-s) + εs(hs, h

∗
s) + |εt(ht-s, h

∗
t-s)− εs(hs, h

∗
s)|

≤ εt(h
∗
t-s) + εs(hs) + εs(h

∗
s)

+ |εt(ht-s, h
∗
t-s)− εs(hs, h

∗
s)|

= εt(h
∗
t-s) + εs(hs) + εs(h

∗
s)

+ |Eh∼f(ft(Xt))[|h(h)− h∗(h)|]
− Eh∼fs(Xs)[|h(h), h∗(h)|])|

≤ εs(hs) + dH�H(DHs
,DHt-s

) + εs(h
∗
s) + εt(h

∗
t-s)

Optimizing the adversarial distribution alignment (Eqn.
8) can minimize the dH�H(DHs

,DHt-s
) according to the

Theorem 1 in (Shen et al. 2018). Further, our method uti-
lizes the labeled data in the source domain to minimize the
MMCS loss LC

m(Hs|Hs) (Eqn. 5) for low-density separa-
tions which make the classification boundary clearer in Hs

and may lead to lower source error εs(h∗
s) given the optimal

labeling function h∗. Also the clearer decision boundary and
more compact cluster structure in Ht-s could be achieved ac-
cording to the diameter relationship between subsets in Ht,
Ht-s and Ht-s-t. The definition of diameter is as follows:
Definition 2. (Diameter of a subset). The diameter d of a
subset S of a metric space is the least upper bound of the set
of all distances between pairs of points in the subset.

D(S) = sup
x,y∈S

{‖x− y‖} (10)

Given any label c ∈ C, we can obtain the subsets of the
projected target representation: Gc

t ⊂ Ht, common repre-
sentation space: Gc

t-s ⊂ Ht-s and complementary represen-
tation space: Gc

t-s-t ⊂ Ht-s-t associated with c. Recall that
transformation functions f and fp are 1-Lipschitz continu-
ity. For all h1

t ,h
2
t ∈ Gc

t , we have:

‖f(h1
t )− f(h2

t )‖ ≤ ‖h1
t − h2

t‖
Similarly the fp can keep the local distance relationship of
Gc

t-s in Gc
t-s-t. Then,

D(Gc
t-s-t) ≤ D(Gc

t-s) ≤ D(Gc
t) (11)

Considering the above diameter relationships and MMCS
loss LC

m(Ht|Ht) (Eqn. 5), the intra-class cluster structure
in Ht-s is more compact than that in Ht and inter-classes
margin is also clearer. Therefore it is easier to find the de-
cision boundary inside Ht-s and Ht-s-t than that inside Ht,
which benefits the classification and may lead to lower target
error.

Algorithm and Parameter Learning Process
The overall loss of MULAN is:{ LCASA = LCA + LSA

LDASA = LDA + LSA
(12)

Algorithm 1 The Learning Process of MULAN
Let Ω = {θt, θs, ϕc, φ} and Φ = {ϕd, η}
for iteration = 1 to # max-iteration do

Freezing the parameters in Φ
for i = 1 to # training batches do

Sample a minibatch Bt and B−t from Xt

Sample a minibatch Bs and B−s from Xs

Ht ← ft(Bt; θt),Hs ← fs(Bs; θs)
H−

t ← ft(B−t ; θt),H−
s ← fs(B−s ; θs)

Ht-s ← f(Ht;ϕc, ϕd),Ht-s-t ← fp(Ht-s;φ)
Linter ← LC

m(Ht-s|Hs) + LC
m(Hs|Ht-s)

Lintra ← LC
m(Ht|H−

t ) + LC
m(Hs|H−

s )LCA ← Lintra + Linter

LSA ← LC
m(Ht-s-t|Ht)

LCASA ← LCA + LSA

Ω← Ω−Adam[∇ΩLCASA]
end for
Freezing the parameters in Ω
for j = 1 to # training batches do

for k = 1 to # critic sub-iteration do
Sample a minibatch Bt and Bs
Ht-s ← f(ft(Bt; θt);ϕc, ϕd),Hs ← fs(Bs; θs)
L ←∑

ht-s∈Ht-s
fc(ht-s)−

∑
hs∈Hs

fc(hs; η)

η ← η −Adam[∇ηL]
end for
Sample a minibatch Bt
Ht ← ft(Bt; θt),Ht-s ← f(Ht;ϕc, ϕd)
LDA ← −

∑
ht-s∈Ht-s

fc(ht-s; η)

Ht-s-t ← fp(Ht-s;φ)
LSA ← LC

m(Ht-s-t|Ht)
LDASA ← LDA + LSA

ϕd ← ϕd −Adam[∇ϕd
LDASA]

end for
end for
The gradient-based optimization is based on Adam
(Kingma and Ba 2014).

These two losses are iteratively learned and the correspond-
ing parameters are updated as shown in Algorithm 1. The
learning process consists of two major steps: (1) refining
cluster assumption by fixing the parameters in LDA; and
(2) aligning domain distributions by fixing the parameters
in LCA and LSA. Note that the MMCS loss (Eqn. 3) is one
of the most critical components for MULAN, the empiri-
cal estimate of the MMCS loss can be effectively computed
with matrix operations over minibatches.

Experiments
Experimental Setup
Datasets and Evaluation Traditional visual DA datasets,
such as MNIST, USPS, and SVHN, have been reported that
they are over-evaluated to achieve very high accuracy for
almost all recent models (Tzeng et al. 2017; Motiian et
al. 2017). Therefore, we adopt the latest VisDA Challenge
dataset (Peng et al. 2017) in our experiments, which supports
object classification of synthetic- and real-object images. To
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Table 1: Semi-supervised DA. The classification accuracy (mean ±std%) of Synthetic→Real domain adaptation with 5-fold
validation on the VisDA Challenge dataset.

Labeled Source-only ADA DANN DIRT-T TADT CCSA MULANCom MULAN

10% 45.01±1.0 47.02±1.9 44.87±0.8 57.08±0.3 69.68±0.4 67.99±0.3 77.44±0.2 78.11±0.1

20% 42.45±0.7 47.90±0.9 42.54±0.3 59.61±0.2 72.97±0.2 69.65±0.2 78.48±0.2 79.15±0.2

50% 38.82±0.5 48.59±0.3 41.01±0.3 59.88±0.2 76.37±0.2 71.33±0.1 79.76±0.1 80.64±0.1

date, this dataset is the largest for cross-domain object clas-
sification, with over 280K images across 12 categories. In
the synthetic image domain, images were generated by ren-
dering 3D models of the same object categories as in the real
data from different angles and under different lighting con-
ditions. This domain contains 152,397 synthetic images. In
the real image domain, 55,388 images were collected from
MSCOCO (Lin et al. 2014).

Comparison Methods and Experimental Settings We
compare our method with the baseline Source-only (i.e.,
classifier trained only on source domain without adaptation),
and the state-of-the-art DA methods: DANN (Ganin et al.
2016), ADA (Haeusser et al. 2017), CCSA (Motiian et al.
2017), TADT (Tzeng et al. 2015), and DIRT-T (Shu et al.
2018). We also construct MULANCom which only contains
the common representation learning without complementary
representation learning for the ablation study. The configu-
ration for each model is used as default in original paper. We
evaluate MULAN with semi-supervised DA with partially-
labeled data in both source and target domains which are
more consistent with real data. All the image features, i.e.,
Xt and Xs in these methods are represented by ResNet50
features (He et al. 2016) that are pre-trained on ImageNet.

Semi-supervised DA
Performance Comparison Table 1 shows the classification
accuracy of all comparison methods on semi-supervised DA
w.r.t. different percentages of labeled data in both source
(synthetic images) and target (real images) domains. After
the training of MULAN, we train a classifier on the source
domain representation Hs and use the common represen-
tation Ht-s to predict labels for the target domain. Com-
pared with the state-of-the-art methods, MULAN consis-
tently achieves the best performance with all different pro-
portions of labeled data. With the increase of labeled source
data, the classifier trained on source domain without adap-
tation fits better to the source domain while it leads to the
poorer performance on the target domain due to significant
domain shift. Benefiting from the domain consensus infor-
mation, semi-supervised DA methods, i.e., CCSA, TADT,
and MULAN, outperform unsupervised DA methods, i.e.,
ADA, DANN, DIRT-T, especially with the increase of la-
beled data. Moreover, MULAN outperforms the state-of-
the-art methods up to 12.1% when 10% labeled data is avail-
able, which indicates that MULAN makes better use of la-
beled data in both domains through the class alignment and
distribution alignment without overfitting to the source do-
main.

Ablation Study In Table 1, MULANCom denotes the

MULAN model without the complementary representa-
tion learning and the loss becomes L = LCA + LDA.
MULANCom still outperforms the other comparison meth-
ods, which proves that the common representation learning
with class alignment and distribution alignment are powerful
component in cross-domain learning. Moreover, full MU-
LAN achieves better performance than MULANCom be-
cause the self alignment LSA helps target domain to keep its
own information to avoid overfitting to the source domain.
This self alignment not only directly affects the generation
of complementary representation but also benefits the learn-
ing of common representation.

Visualization Figure 2 visualizes the embedding space of
1,200 randomly sampled source domain instances and 1,200
target domain instances from the methods: Original (ResNet
features without adaptation), ADA, DIRT-T, TADT, CCSA,
and SPR from MULAN, through t-SNE. The original man-
ifold w.r.t. the source and target features show clear domain
shift. In Figure 2g, almost all classes are clearly separated,
and the source embedding and the target embedding are
well aligned together which reflects that the common rep-
resentation learned by MULAN well satisfies the cluster as-
sumption. In comparison, all the other methods either much
less clearly separate different classes or even fail to adapt
source to target. Figure 3 demonstrates the confusion matri-
ces which reflect the distance between classes of the target
domain and source domain in the shared or common repre-
sentation space. And the diagonal blocks in the confusion
matrix reflect the distance between the centroid of a target
class and the centroid of the corresponding source class. The
darker the block color, the smaller the distance is. Accord-
ing to Figure 3f, the source and target data are well aligned
in the common representation space learned by MULAN.

Few-shot DA
Performance Comparison Table 2 shows the classification
performance on few-shot DA where the source domain con-
tains 50% labeled real images and target domain contains
few synthetic image instances. In few-shot DA settings, we
test two types of classifiers: one is trained with the source
domain labeled data and the other is trained with the tar-
get domain labeled data. Among all the source classifiers,
the classifier using the common representation generated by
MULAN achieves the best performance. This is because the
labeled real images are limited, these supervised DA mod-
els, i.e., CCSA and TADT, cannot learn the domain shift
well. Especially, when only 5 labeled instances in each class
are available, the common representation learned by MU-
LAN shows its superior performance because MULAN bet-
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(a) Data sample from Synthetic and Real domain with legend

(b) Original (c) ADA (d) DIRT-T (e) TADT (f) CCSA (g) MULAN

Figure 2: The t-SNE visualization of shared embedding space of Original representation (ResNet features), ADA, DIRT-T,
TADT, CCSA, and MULAN. Note: “o” denotes source synthetic image and “x” denotes target real image as shown in (a).

(a) Original (b) ADA (c) DIRT-T (d) TADT (e) CCSA (f) MULAN

Figure 3: The confusion matrix of source and target domains in the shared embedding space of Original representation (ResNet
features), ADA, DIRT-T, TADT, CCSA, and MULAN.

Table 2: Few-shot DA. The classification accuracy of
Real→Synthetic adaptation.

Model 20-shot 10-shot 5-shot

Source only 39.04 39.01 39.51
ADA 41.31 42.63 40.97

Source DANN 38.21 37.34 35.27
Classifier DIRT-T 50.11 49.14 47.72

TADT 62.07 55.31 52.72
CCSA 57.34 50.77 49.65
MULAN(Comm) 64.40 58.17 56.02

Target Target-only 56.83 47.24 41.17
Classifier MULAN(Comp) 66.73 62.29 57.97

ter aligns the target distribution to the source distribution
with the distribution alignment constrained by cluster align-
ment through labeled data.

Comparison between Common and Complementary
Representations In Table 2, we compare common repre-
sentation (denoted by MULAN(Comm) in Table 2 ) and
complementary representation (denoted by MULAN(Comp)
in Table 2) which are both generated by MULAN, but
they have different characteristics and are used in different

scenarios. Common representation is compatible with the
source domain so that it is evaluated by the source classifier
while complementary representation is compatible with the
target domain and is evaluated by the target classifier. The
complementary representation not only inherits the source
domain information from common representation but also
emphasises the local information of the target domain. That
is why complementary representation achieves the best per-
formance on prediction and significantly outperforms the
Target-only classifier when the target labeled data in few-
shot DA is quite limited.

Conclusion and Future Work
In this paper, we propose a new cross-domain representa-
tion learning method, MULAN, which generates two repre-
sentation spaces for partially-labeled cross-domain data. We
apply MULAN to domain adaptation and demonstrate its su-
perior performance.

There are several future extensions of MULAN. One is to
extend MULAN to address multi-domain learning problem
since more alignments can be added into the model. Another
is to extend MULAN to multi-modal learning by customiz-
ing the original feature learning models.
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