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Abstract

Text-based games are a natural challenge domain for deep
reinforcement learning algorithms. Their state and action
spaces are combinatorially large, their reward function is
sparse, and they are partially observable: the agent is in-
formed of the consequences of its actions through textual
feedback. In this paper we emphasize this latter point and
consider the design of a deep reinforcement learning agent
that can play from feedback alone. Our design recognizes
and takes advantage of the structural characteristics of text-
based games. We first propose a contextualisation mecha-
nism, based on accumulated reward, which simplifies the
learning problem and mitigates partial observability. We then
study different methods that rely on the notion that most
actions are ineffectual in any given situation, following Za-
havy et al.’s idea of an admissible action. We evaluate these
techniques in a series of text-based games of increasing dif-
ficulty based on the TextWorld framework, as well as the
iconic game ZORK. Empirically, we find that these techniques
improve the performance of a baseline deep reinforcement
learning agent applied to text-based games.

1 Introduction

In a text-based game, also called interactive fiction (IF), an
agent interacts with its environment through a natural lan-
guage interface. Actions consist of short textual commands,
while observations are paragraphs describing the outcome
of these actions (Figure 1). Recently, interactive fiction has
emerged as an important challenge for AI techniques (Atkin-
son et al. 2018), in great part because the genre combines
natural language with sequential decision-making.

From a reinforcement learning perspective, IF domains
pose a number of challenges. First, the state space is typi-
cally combinatorial in nature, due to the presence of objects
and characters with which the player can interact. Since any
natural language sentence may be given as a valid command,
the action space is similarly combinatorial. The player ob-
serves its environment through feedback in natural language,
making this a partially observable problem. The reward
structure is usually sparse, with non-zero rewards only re-
ceived when the agent accomplishes something meaningful,
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Figure 1: The introductory gameplay from ZORK.

such as retrieving an important object or unlocking a new
part of the domain.

We are particularly interested in bringing deep reinforce-
ment learning techniques to bear on this problem. In this
paper, we consider how to design an agent architecture that
can learn to play text adventure games from feedback alone.
Despite the inherent challenges of the domain, we identify
three structural aspects that make progress possible:

• Rewards from subtasks. The optimal behaviour com-
pletes a series of subtasks towards the eventual game end;

• Transition structure. Most actions have no effect in a
given state;

• Memory as state. Remembering key past events is often
sufficient to deal with partial observability.

While these properties have been remarked on in previous
work (Narasimhan, Kulkarni, and Barzilay 2015; Zahavy et
al. 2018), here we relax some of the assumptions previously
made and provide fresh tools to more tractably solve IF do-
mains. More generally, we believe these tools to be useful in
partially observable domains with similar structure.

Our first contribution takes advantage of the special re-
ward structure of IF domains. In IF, the accumulated reward
within an episode correlates with the number of completed
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subtasks and provides a good proxy for an agent’s progress.
Our score contextualisation architecture makes use of this
fact by defining a piecewise value function composed of dif-
ferent deep network heads, where each piece corresponds
to a particular level of cumulative reward. This separation
allows the network to learn separate value functions for dif-
ferent portions of the complete task; in particular, when the
problem is linear (i.e., there is a fixed ordering in which sub-
tasks must be completed), our method can be used to learn a
separate value function for each subtask.

Our second contribution extends the work of Zahavy et al.
(2018) on action elimination. We make exploration and ac-
tion selection more tractable by determining which actions
are admissible in the current state. Formally, we say that an
action is admissible if it leads to a change in the underly-
ing game state. While the set of available actions is typi-
cally large in IF domains, there are usually few commands
that are actually admissible in any particular context. Since
the state is not directly observable, we first learn an LSTM-
based auxiliary classifier that predicts which actions are ad-
missible given the agent’s history of recent feedback. We use
the predicted probability of an action being admissible to
modulate or gate which actions are available to the agent at
each time step. We propose and compare three simple mod-
ulation methods: masking, drop out, and finally consistent
Q-learning (Bellemare et al. 2016b). Compared to Zahavy
et al.’s algorithm, our techniques are simpler in spirit and
can be learned from feedback alone.

We show the effectiveness of our methods on a suite of
seven IF problems of increasing difficulty generated using
the TextWorld platform (Côté et al. 2018). We find that com-
bining the score contextualisation approach to an otherwise
standard recurrent deep RL architecture leads to faster learn-
ing than when using a single value function. Furthermore,
our action gating mechanism enables the learning agent to
progress on the harder levels of our suite of problems.

2 Problem Setting
We represent an interactive fiction environment as a partially
observable Markov decision process (POMDP) with deter-
ministic observations. This POMDP is summarized by the
tuple (S,A, P, r,O, ψ, γ), where S is the state space, A the
action space, P is the transition function, r : S × A → R

is the reward function, and γ ∈ [0, 1) is the discount factor.
The function ψ : S ×A×S → O describes the observation
o = ψ(s, a, s′) provided to the agent when action a is taken
in state s and leads to state s′.

Throughout we will make use of standard notions from re-
inforcement learning (Sutton and Barto 1998) as adapted to
the POMDP literature (McCallum 1995; Silver and Veness
2010). At time step t, the agent selects an action according to
a policy π which maps a history ht := o1, a1, . . . , ot to a dis-
tribution over actions, denoted π(· |ht). This history is a se-
quence of observations and actions which, from the agent’s
perspective, replaces the unobserved environment state st.
We denote by B(s |ht) the probability or belief of being in
state s after observing ht. Finally, we will find it convenient
to rely on time indices to indicate the relationship between a
history ht and its successor, and denote by ht+1 the history

resulting from taking action at in ht and observing ot+1 as
emitted by the hidden state st+1.

The action-value function Qπ describes the expected dis-
counted sum of rewards when choosing action a after ob-
serving history ht, and subsequently following policy π:

Qπ(ht, a) = E
[∑

i≥0

γir(st+i, at+i) |ht, a
]
,

where we assume that the action at time t + j is drawn
from π(· |ht+j); note that the reward depends on the se-
quence of hidden states st+1, st+2, . . . implied by the belief
state B(· |ht). The action-value function satisfies the Bell-
man equation over histories

Qπ(ht, a) = E
st,st+1

[
r(st, a) + γmax

a′∈A
Qπ(ht+1, a

′)
]
.

When the state is observed at each step (O = S), this sim-
plifies to the usual Bellman equation for Markov decision
processes:

Qπ(st, a) = r(st, a) + γ E
st+1∼P

max
a′∈A

Qπ(st+1, a
′). (1)

In the fully observable case we will conflate st and ht.
The Q-learning algorithm (Watkins 1989) over histories

maintains an approximate action-value function Q which is
updated from samples ht, at, rt, ot+1 using a step-size pa-
rameter α ∈ [0, 1):

Q(ht, at)← Q(ht, at) + αδt

δt = rt + γmax
a∈A

Q(ht+1, a)−Q(ht, at). (2)

Q-learning is used to estimate the optimal action-value func-
tion attained by a policy which maximizes Qπ for all histo-
ries. In the context of our work, we will assume that this
policy exists. Storing this action-value function in a lookup
table is impractical, as there are in general an exponential
number of histories to consider. Instead, we use recurrent
neural networks approximate the Q-learning process.

2.1 Consistent Q-Learning

Consistent Q-learning (Bellemare et al. 2016b) learns a
value function which is consistent with respect to a local
form of policy stationarity. Defined for a Markov decision
process, it replaces the term δt in (2) by

δCQL
t = rt+

{
γmaxa∈A Q(st+1, a)−Q(st, at) st+1 �= st

(γ − 1)Q(st, at) st+1 = st.

(3)
Consistent Q-learning can be shown to decrease the action-
value of suboptimal actions while maintaining the action-
value of the optimal action, leading to larger action gaps
and a potentially easier value estimation problem.

Observe that consistent Q-learning is not immediately
adaptable to the history-based formulation, since ht+1 and
ht are sequences of different lengths (and therefore not com-
parable). One of our contributions in this paper is to derive
a related algorithm suited to the history-based setting.
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2.2 Admissible Actions

We will make use of the notion of an admissible action, fol-
lowing terminology by Zahavy et al. (2018).1

Definition 1. An action a is admissible in state s if

P (s | s, a) < 1.

That is, a is admissible in s if its application may result in
a change in the environment state. When P (s | s, a) = 1, we
say that an action is inadmissible.

We extend the notion of admissibility to histories as fol-
lows. We say that an action a is admissible given a history
h if it is admissible in some state that is possible given h, or
equivalently:

∑

s∈S
B(s |h)P (s | s, a) < 1.

We denote by ξ(s) ⊆ A the set of admissible actions in state
s. Abusing notation, we define the admissibility function

ξ(s, a) := I[a∈ξ(s)]

ξ(h, a) := Pr{a ∈ ξ(S)}, S ∼ B(· |h).
We write At for the set of admissible actions given his-
tory ht, i.e. the actions whose admissibility in ht is strictly
greater than zero. In IF domains, inadmissible actions are
usually dominated, and we will deprioritize or altogether
rule them out based on our estimate of ξ(h, a).

3 More Efficient Learning for IF Domains

We are interested in learning an action-value function which
is close to optimal and from which can be derived a near-
optimal policy. We would also like learning to proceed in a
sample-efficient manner. In the context of IF domains, this
is hindered by both the partially observable nature of the
environment and the size of the action space. In this paper
we propose two complementary ideas that alleviate some of
the issues caused by partial observability and large action
sets. The first idea contextualizes the action-value function
on a surrogate notion of progress based on total reward so
far, while the second seeks to eliminate inadmissible actions
from the exploration and learning process.

Although our ideas are broadly applicable, for concrete-
ness we describe their implementation in a deep reinforce-
ment learning framework. Our agent architecture (Figure 2)
is derived from the LSTM-DRQN agent (Yuan et al. 2018)
and the work of Narasimhan, Kulkarni, and Barzilay (2015).

3.1 Score Contextualisation

In applying reinforcement learning to games, it is by now
customary to translate the player’s score differential into
rewards (Bellemare et al. 2013; OpenAI 2018). Our set-
ting is similar to Arcade Learning Environment in the sense
that the environment provides the score. In IF, the player is

1Note that our definition technically differs from Zahavy et al.
(2018)’s, who define an admissible action as one that is not ruled
out by the learning algorithm.
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Figure 2: Our IF architecture consists of three modules: a
representation generator ΦR that learns an embedding for a
sentence, an action scorer ΦA that chooses a network head
i (a feed-forward network) conditional on score ut, learns
its Q-values and outputs Q(ht, :, ut) and finally, an auxil-
liary classifier ΦC that learns an approximate admissibility
function ξ̂(ht, :). The architecture is trained end-to-end.

awarded points for acquiring an important object, or com-
pleting some task relevant to progressing through the game.
These awards occur in a linear, or almost linear structure,
reflecting the agent’s progression through the story, and are
relatively sparse. We emphasize that this is in contrast to
the more general reinforcement learning setting, which may
provide reward for surviving, or achieving something at a
certain rate. In the video game SPACE INVADERS, for ex-
ample, the notion of “finishing the game” is ill-defined: the
player’s objective is to keep increasing their score until they
run out of lives.

We make use of the IF reward structure as follows. We
call score the agent’s total (undiscounted) reward since the
beginning of an episode, remarking that the term extends
beyond game-like domains. At time step t, the score ut is

ut :=

t−1∑

i=0

ri.

In IF domains, where the score reflects the agent’s progress,
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it is reasonable to treat it as a state variable. We pro-
pose maintaining a separate action-value function for
each possible score. This action-value function is denoted
Q(ht, at, ut). We call this approach score contextualisation.
The use of additional context variables has by now been
demonstrated in a number of settings (Rakelly et al. (2019);
Icarte et al. (2018); Ghosh et al. (2018)). First, credit assign-
ment becomes easier since the score provides clues as to the
hidden state. Second, in settings with function approxima-
tion we expect optimization to be simpler since for each u,
the function Q(·, ·, u) needs only be trained on a subset of
the data, and hence can focus on features relevant to this part
of the environment.

In a deep network, we implement score contextualisation
using K network heads and a map J : N → {1, . . . ,K}
such that the J (ut)th head is used when the agent has re-
ceived a score of ut at time t. This provides the flexibility to
either map each score to a separate network head, or multi-
ple scores to one head. Taking K = 1 uses one monolothic
network for all subtasks, and fully relies on this network to
identify state from feedback. In our experiments, we assign
scores to networks heads using a round-robin scheme with a
fixedK. Using Narasimhan, Kulkarni, and Barzilay (2015)’s
terminology, our architecture consists of a shared represen-
tation generator ΦR with K independent LSTM heads, fol-
lowed by a feed-forward action scorer ΦA(i) which outputs
the action-values (Figure 2).

3.2 Action Gating Based on Admissibility

In this section we revisit the idea of using the admissibility
function to eliminate or more generally gate actions. Con-
sider an action a which is inadmissible in state s. By defini-
tion, taking this action does not affect the state. We further
assume that inadmissible actions produce a constant level of
reward, which we take to be 0 without loss of generality:

a inadmissible in s =⇒ r(s, a) = 0.

This assumption is reasonable in IF domains, and more gen-
erally holds true in domains that exhibit subtask structure,
such as the video game MONTEZUMA’S REVENGE (Belle-
mare et al. 2016a). We can combine knowledge of P and r
for inadmissible actions with Bellman’s equation (1) to de-
duce that for any policy π,
a inadmissible in s =⇒ Qπ(s, a) ≤ max

a′∈A
Qπ(s, a′) (4)

If we know that a is inadmissible, then we do not need to
learn its action-value.

We propose learning a classifier whose purpose is to pre-
dict the admissibility function. Given a history h, this clas-
sifier outputs, for each action a, the probability ξ̂(h, a) that
this action is admissible. Because of state aliasing, this prob-
ability is in general strictly between 0 and 1; furthermore, it
may be inaccurate due to approximation error. We therefore
consider action gating schemes that are sensitive to interme-
diate values of ξ̂(h, a). The first two schemes produce an ap-
proximately admissible set Ât which varies from time step
to time step; the third directly uses the definition of admis-
sibility in a history-based implementation of the consistent
Bellman operator.

Dropout. The dropout method randomly adds each action
a to Ât with probability ξ̂(ht, a).

Masking. The masking method uses an elimination
threshold c ∈ [0, 1). The set Ât contains all actions a whose
estimated admissibility is at least c:

Ât := {a : ξ̂(ht, a) ≥ c}.
The masking method is a simplified version of Zahavy et
al. (2018)’s action elimination algorithm, whose threshold
is adaptively determined from a confidence interval, itself
derived from assuming a value function and admissibility
functions that can be expressed linearly in terms of some
feature vector.

In both the dropout and masking methods, we use the ac-
tion set Ât in lieu of the the full action setA when selecting
exploratory actions.

Consistent Q-learning for histories (CQLH). The third
method leaves the action set unchanged, but instead drives
the action-values of purportedly inadmissible actions to 0.
This is done by adapting the consistent Bellman operator
(3) to the history-based setting. First, we replace the indica-
tor I[st+1 �=st] by the probability ξ̂t := ξ̂(ht, at). Second, we
drive Q(st, at) to 0 in the case when we believe the state is
unchanged, following the argumentation of (4). This yields
a version of consistent Q-learning which is adapted to histo-
ries, and makes use of the predicted admissibility:

δCQLH
t = rt + γmax

a∈A
Q(ht+1, a)ξ̂t

+ γQ(ht, at)(1− ξ̂t)−Q(ht, at). (5)

One may ask whether this method is equivalent to a belief-
state average of consistent Q-learning when ξ̂(ht, at) is ac-
curate, i.e. equals ξ(ht, at). In general, this is not the case:
the admissibility of an action depends on the hidden state,
which in turns influences the action-value at the next step.
As a result, the above method may underestimate action-
values when there is state aliasing (e.g., ξ̂(ht, at) ≈ 0.5),
and yields smaller action gaps than the state-based version
when ξ̂(ht, at) = 1. However, when at is known to be inad-
missible (ξ̂(ht, at) = 0), the methods do coincide, justifying
its use as an action gating scheme.

We implement these ideas using an auxiliary classifier
ΦC . For each action a, this classifier outputs the estimated
probability ξ̂(ht, a), parametrized as a sigmoid function.
These probabilities are learned from bandit feedback: after
choosing a from history ht, the agent receives a binary sig-
nal et as to whether a was admissible or not. In our setting,
learning this classifier is particularly challenging because
the agent must predict admissibility solely based on the his-
tory ht. As a point of comparison, using the information-
gathering commands LOOK and INVENTORY to establish the
state, as proposed by Zahavy et al. (2018), leads to a simpler
learning problem, but one which does not consider the full
history. The need to learn ξ̂(ht, a) from bandit feedback also
encourages methods that generalize across histories and tex-
tual descriptions.
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4 A Synthetic IF Benchmark

Both score contextualisation and action gating are tailored to
domains that exhibit the structure typical of interactive fic-
tion. To assess how useful these methods are, we will make
use of a synthetic benchmark based on the TextWorld frame-
work (Côté et al. 2018). TextWorld provides a reinforcement
learning interface to text-based games along with an envi-
ronment specification language for designing new environ-
ments. Environments provide a set of locations, or rooms,
objects that can picked up and carried between locations,
and a reward function based on interacting with these ob-
jects. Following the genre, special key objects are used to
access parts of the environment.

Our benchmark provides seven environments of increas-
ing complexity, which we call levels. We control complexity
by adding new rooms and/or objects to each successive level.
Each level also requires the agent to complete a number of
subtasks (Table 1), most of which involve carrying one or
more items to a particular location. Reward is provided only
when the agent completes one of these subtasks. Themat-
ically, each level involves collecting food items to make a
salad, inspired by the first TextWorld competition. Exam-
ple objects include an apple and a head of lettuce, while ex-
ample actions include get apple and slice lettuce
with knife. Accordingly we call our benchmark Salad-
World.

SaladWorld provides a graded measure of an agent archi-
tecture’s ability to deal with both partial observability and
large action spaces. Indeed, completing each subtasks re-
quires memory of what has previously been accomplished,
along with where different objects are. Together with this,
each level in the SaladWorld involves some amount of
history-dependent admissibility i.e the admissibility of the
action depends on the history rather than the state. For ex-
ample, put lettuce on counter can only be accom-
plished once take lettuce (in a different room) has
happened. Keys pose an additional difficulty as they do
not themselves provide reward. As shown in Table 1, the
number of possible actions rapidly increases with the num-
ber of objects in a given level. Even the small number of
rooms and objects considered here preclude the use of tab-
ular representations, as the state space for a given level is
the exponentially-sized cross-product of possible object and
agent locations. In fact, we have purposefully designed Sal-
adWorld as a small challenge for IF agents, and even our
best method falls short of solving the harder levels within
the allotted training time. Full details are given in Table 2 in
the appendix.

5 Empirical Analysis

In the first set of experiments, we use SaladWorld to es-
tablish that both score contextualisation and action gat-
ing provide positive benefits in the context of IF domain.
We then validate these findings on the celebrated text-
based game ZORK used in prior work (Fulda et al. 2017;
Zahavy et al. 2018).

Our baseline agent is the LSTM-DRQN agent (Yuan et al.
2018) but with a different action representation. We augment

Table 1: Main characteristics of each level in our synthetic
benchmark.

LEVEL # ROOMS # OBJECTS # SUB-TASKS |A|
1 4 2 2 8
2 7 4 3 15
3 7 4 3 15
4 9 8 4 50
5 11 15 5 141
6 12 20 6 283
7 12 20 7 295

this baseline with either or both score contextualisation and
action gating, and observe the resulting effect on agent per-
formance in SaladWorld. We measure this performance as
the fraction of subtasks completed during an episode, aver-
aged over time. In all cases, our results are generated from 5
independent trials of each condition. To smooth the results,
we use moving average with a window of 20,000 training
steps. The graphs and the histograms report average ± std.
deviation across the trials.

Score contextualisation uses K = 5 network heads; the
baseline corresponds to K = 1. Each head is trained using
the Adam optimizer (Kingma and Ba 2015) with a learn-
ing rate α = 0.001 to minimize a Q-learning loss (Mnih et
al. 2015) with a discount factor of γ = 0.9. The auxiliary
classifier ΦC is trained with the binary cross-entropy loss
over the selected action’s admissibility (recall that our agent
only observes the admissibility function for the selected ac-
tion). Training is done using a balanced form of prioritized
replay which we found improves baseline performance ap-
preciably. Specifically, we use the sampling mechanism de-
scribed in Hausknecht and Stone (2015) with prioritization
i.e we sample τp fraction of episodes that had atleast one
positive reward, τn fraction with atleast one negative reward
and 1− τp − τn from whole episodic memory D. For prior-
itization, τp = τn = 0.25.

Actions are chosen from the estimated admissible set Ât

according to an ε-greedy rule, with ε annealed linearly from
1.0 to 0.1 over the first million training steps. To simplify
exploration, our agent further takes a forced LOOK action
every 20 steps. Each episode lasts for a maximum T steps.
For Level 1 game, T = 100, whereas for rest of the levels
T = 200.

5.1 Score Contextualisation

We first consider the effect of score contextualisation on our
agents’ ability to complete tasks in SaladWorld. We ask,

Does score contextualisation mitigate the negative ef-
fects of partial observability?

We begin in a simplified setting where the agent knows the
admissible set At. We call this setting oracle gating. This
setting lets us focus on the impact of contextualisation alone.
We compare our score contextualisation (SC) to the base-
line and also to two “tabular” agents. The first tabular agent
treats the most recent feedback as state, and hashes each
unique description-action pair to a Q-value. This results in
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Table 2: Subtasks information and scores possible for each level of the suite.

Level Subtasks Possible Scores

1 Following subtasks with reward and fulfilling condition:
• 10 points when the agent first enters the vegetable market.
• 5 points when the agent gets lettuce from the vegetable market and puts lettuce on

the counter.

10, 15

2 All subtasks from previous level plus this subtask:
• 5 points when the agent takes the blue key from open space, opens the blue door,

gets tomato from the supermarket and puts it on the counter in the kitchen.

5, 10, 15, 20

3 All subtasks from level 1 plus this subtask:
• 5 points when the agent takes the blue key from open space, goes to the garden,

opens the blue door with the blue key, gets tomato from the supermarket and puts it
on the counter in the kitchen.

Remark: Level 3 game differs from Level 2 game in terms of number of steps required
to complete the additional sub-task (which is greater in case of Level 3)

5, 10, 15, 20

4 All subtasks from previous level plus this subtask:
• 5 points when the agent takes parsley from the backyard and knife from the cutlery

shop to the kitchen, puts parsley into fridge and knife on the counter.

5, 10, 15, 20, 25

5 All subtasks from previous level plus this subtask:
• 5 points when the agent goes to fruit shop, takes chest key, opens container with

chest key, takes the banana from the chest and puts it into the fridge in the kitchen.

5, 10, 15, 20, 25, 30

6 All subtasks from previous level plus this subtask:
• 5 points when the agent takes the red key from the supermarket, goes to the play-

room, opens the red door with the red key, gets the apple from cookhouse and puts
it into the fridge in the kitchen.

5, 10, 15, 20, 25, 30,
35

7 All subtasks from previous level plus this subtask:
• 5 points when the agent prepares the meal.

5, 10, 15, 20, 25, 30,
35, 40

a memoryless scheme that ignores partial observability. The
second tabular agent performs the information-gathering ac-
tions LOOK and INVENTORY to construct its state descrip-
tion, and also hashes these to unique Q-values. Accordingly,
we call this the “LI-tabular” agent. This latter scheme has
proved to be a successful heuristic in the design of IF agents
(Fulda et al. 2017), but can be problematic in domains where
taking information-gathering actions can have negative con-
sequences (as is the case in ZORK).

Figure 3 shows the performance of the four methods
across SaladWorld levels, after 1.3 million training steps.
We observe that the tabular agents’ performance suffers as
soon as there are multiple subtasks, as expected. The base-
line agent performs well up to the third level, but then shows
significantly reduced performance. We hypothesize that this
occurs because the baseline agent must estimate the hid-
den state from longer history sequences and effectively learn
an implicit contextualisation. Beyond the fourth level, the
performance of all agents suffers, suggesting the need for

a better exploration strategy, for example using expert data
(Tessler et al. 2019).

We find that score contextualisation performs better than
the baseline when the admissible set is unknown. Figure 4
compares learning curves of the SC and baseline agents with
oracle gating and using the full action set, respectively, in
the simplest of levels (Level 1 and 2). We find that score
contextualisation can learn to solve these levels even without
access to At, whereas the baseline cannot. Our results also
show that oracle gating simplifies the problem, and illustrate
the value in handling inadmissible actions differently.

We hypothesize that score contextualisation results in a
simpler learning problem in which the agent can more eas-
ily learn to distinguish which actions are relevant to the task,
and hence facilitate credit assignment. Our result indicates
that it might be unreasonable to expect contextualisation to
arise naturally (or easily) in partially observable domains
with large actions sets. We conclude that score contextuali-
sation mitigates the negative effects of partial observability.

4333



Figure 3: Fraction of tasks solved by each method at the end
of training for 1.3 million steps. The tabular agents, which
do not take history into account, perform quite poorly. LI
stands for “look, inventory” (see text for details).

Learning Curves With and Without Oracle Gating (Level 1)

Baseline

SC

Baseline(oracle)

SC(oracle)

Figure 4: Comparing whether score contextualisation as an
architecture provides a useful representation for learning to
act optimally. Row 1 and 2 correspond to Level 1 and 2 re-
spectively.

5.2 Score Contextualisation with Learned Action
Gating

The previous experiment (in particular, Figure 4) shows the
value of restricting action selection to admissible actions.
With the goal in mind of designing an agent that can operate
from feedback alone, we now ask:

Can an agent learn more efficiently when given bandit
feedback about the admissibility of its chosen actions?

We address this question by comparing our three action gat-
ing mechanisms. As discussed in Section 3.2, the output of

Figure 5: Fraction of tasks solved by each method at the end
of training for 1.3 million steps. Except in Level 1, action
gating by itself does not improve end performance.

Masking

No gating

Dropout

CQLH

Figure 6: Effectiveness of action gating with score contextu-
alisation in Level 3. Of the three methods, masking performs
best.

the auxiliary classifier describes our estimate of an action’s
admissibility for a given history.

As an initial point of comparison, we tested the perfor-
mance of the baseline agent when using the auxiliary clas-
sifier’s output to gate actions. For the masking method, we
selected c = 0.001 from a larger initial parameter sweep.
The results are summarized in Figure 5. While action gating
alone provides some benefits in the first level, performance
is equivalent for the rest of the levels.

However, when combined with score contextualisation
(see Fig 6, 7), we observe some performance gains. In Level
3 in particular, we almost recover the performance of the SC
agent with oracle gating. From our results we conclude that
masking with the right threshold works best, but leave as an
open question whether the other action gating schemes can
be improved.

Figure 8 shows the final comparison between the base-
line LSTM-DRQN and our new agent architecture which
incorporates action gating and score contextualisation . Our
results show that the augmented method significantly out-
performs the baseline, and is able to handle more complex
IF domains. From level 4 onwards, the learning curves in
the appendix show that combining score contextualisation
with masking results in faster learning, even though final
performance is unchanged. We posit that better exploration
schemes are required for further progress in SaladWorld.
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Figure 7: Fraction of tasks solved by each method at the
end of training for 1.3 million steps. For first 3 levels, SC
+ Masking is better or equivalent to SC. For levels 4 and
beyond, better exploration strategies are required.

Figure 8: Score contextualisation and masking compared to
the baseline agent. We show the fraction of tasks solved by
each method at the end of training for 1.3 million steps.

5.3 Zork

As a final experiment, we evaluate our agent architecture
on the interactive fiction ZORK I, the first installment of the
popular trilogy. ZORK provides an interesting point of com-
parison for our methods, as it is designed by and for hu-
mans – following the ontology of Bellemare et al. (2013), it
is a domain which is both interesting and independent. Our
main objective is to compare the different methods studied
with Zahavy et al. (2018)’s AE-DQN agent. Following their
experimental setup, we take γ = 0.8 and train for 2 million
steps. All agents use the smaller action set (131 actions). Un-
like AE-DQN, however, our agent does not use information-
gathering actions (LOOK and INVENTORY) to establish the
state.

Figure 9 shows the corresponding learning curves. De-
spite operating in a harder regime than AE-DQN, the score
contextualizing agent reaches a score comparable to AE-
DQN, in about half of the training steps. All agents eventu-
ally fail to pass the 35-point benchmark, which corresponds
to a particularly difficult in-game task (the “troll quest”)
which involves a timing element, and we hypothesize re-
quires a more intelligent exploration strategy.

6 Related Work

RL applied to Text Adventure games: LSTM-DQN by
Narasimhan, Kulkarni, and Barzilay (2015) deals with
parser-based text adventure games and uses an LSTM to
generate feedback representation. The representation is then

SC

Baseline

SC + Masking

Figure 9: Learning curves for different agents in Zork.

used by an action scorer to generate scores for the action
verb and objects. The two scores are then averaged to de-
termine Q-value for the state-action pair. In the realm of
choice-based games, He et al. (2016) uses two separate deep
neural nets to generate representation for feedback and ac-
tion respectively. Q-values are calculated by dot-product of
these representations. None of the above approaches deals
with partial observability in text adventure games.

Admissible action set learning: Tao et al. (2018) ap-
proach the issue of learning admissible set given context as
a supervised learning one. They train their model on (input,
label) pairs where input is context (concatenation of feed-
backs by LOOK and INVENTORY) and label is the list of ad-
missible commands given this input. AE-DQN (Zahavy et
al. 2018) employs an additional neural network to prune in-
admissible actions from action set given a state. Although
the paper doesn’t deal with partial observability in text ad-
venture games, authors show that having a tractable admis-
sible action set led to faster convergence. Fulda et al. (2017)
work on bounding the action set through affordances. Their
agent is trained through tabular Q-Learning.

Partial Observability: Yuan et al. (2018) replace the
shared MLP in Narasimhan, Kulkarni, and Barzilay (2015)
with an LSTM cell to calculate context representation. How-
ever, they use concatenation of feedbacks by LOOK and IN-
VENTORY as the given state to make the game more observ-
able. Their work also doesn’t focus on pruning in-admissible
actions given a context. Finally, Ammanabrolu and Riedl
(2019) deal with partial observability by representing state
as a knowledge graph and continuously updating it after ev-
ery game step. However, the graph update rules are hand-
coded; it would be interesting to see they can be learned
during gameplay.

7 Conclusions and Future work

We introduced two algorithmic improvements for deep rein-
forcement learning applied to interactive fiction (IF). While
naturally rooted in IF, we believe our ideas extend more gen-
erally to partially observable domains and large discrete ac-
tion spaces. Our results on SaladWorld and ZORK show the
usefulness of these improvements. Going forward, we be-
lieve better contextualisation mechanisms should yield fur-
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ther gains. In ZORK, in particular, we hypothesize that going
beyond the 35-point limit will require more tightly coupling
exploration with representation learning.
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