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Abstract

We propose the Heterogeneous Thurstone Model (HTM) for
aggregating ranked data, which can take the accuracy levels of
different users into account. By allowing different noise distri-
butions, the proposed HTM model maintains the generality of
Thurstone’s original framework, and as such, also extends the
Bradley-Terry-Luce (BTL) model for pairwise comparisons
to heterogeneous populations of users. Under this framework,
we also propose a rank aggregation algorithm based on alter-
nating gradient descent to estimate the underlying item scores
and accuracy levels of different users simultaneously from
noisy pairwise comparisons. We theoretically prove that the
proposed algorithm converges linearly up to a statistical er-
ror which matches that of the state-of-the-art method for the
single-user BTL model. We evaluate the proposed HTM model
and algorithm on both synthetic and real data, demonstrating
that it outperforms existing methods.

1 Introduction

Rank aggregation refers to the task of recovering the or-
der of a set of objects given pairwise comparisons, partial
rankings, or full rankings obtained from a set of users or
experts. Compared to rating items, comparison is a more
natural task for humans which can provide more consistent
results, in part because it does not rely on arbitrary scales.
Furthermore, ranked data can be obtained not only by explic-
itly querying users, but also through passive data collection,
i.e., by observing user behavior, for example product pur-
chases, clicks on search engine results, choice of movies in
streaming services, etc. As a result, rank aggregation has a
wide range of applications, from classical social choice ap-
plications (de Borda 1781) to information retrieval (Dwork
et al. 2001), recommendation systems (Baltrunas, Makcin-
skas, and Ricci 2010), and bioinformatics (Aerts et al. 2006;
Kim, Farnoud, and Milenkovic 2015).

In aggregating rankings, the raw data is often noisy and
inconsistent. One approach to arrive at a single ranking is
to assume a generative model for the data whose parame-
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ters include a true score for each of the items. In particu-
lar, Thurstone’s preference model (Thurstone 1927) assumes
that comparisons or partial rankings result from comparing
versions of the true scores corrupted by additive noise. Spe-
cial cases of Thurstone’s model include the popular Bradley-
Terry-Luce (BTL) model for pairwise comparisons and the
Placket-Luce (PL) model for partial rankings. In these set-
tings, estimating the true scores from data will allow us to
identify the true ranking of the items. Various estimation and
aggregation algorithms have been developed for Thurstone’s
preference model and its special cases, including (Hunter
2004; Guiver and Snelson 2009; Hajek, Oh, and Xu 2014;
Chen and Suh 2015; Vojnovic and Yun 2016; Negahban, Oh,
and Shah 2017).

Conventional models of ranked data and aggregation algo-
rithms that rely on them make the assumption that the data
is either produced by a single user1 or from a set of users
that are similar. In real-world datasets, however, users that
provide the raw data are usually diverse with different levels
of familiarity with the objects of interest, thus providing data
that is not uniformly reliable and should not have equal in-
fluence on the final result. This is of particular importance in
applications such as aggregating expert opinions for decision-
making and aggregating annotations provided by workers in
crowd sourcing settings.

In this paper, we study the problem of rank aggrega-
tion for heterogeneous populations of users. We present a
generalization of Thurstone’s model, called the heteroge-
neous Thurstone model (HTM), which allows users with
different noise levels, as well as a certain class of adver-
sarial users. Unlike previous efforts on rank aggregation
for heterogeneous populations such as (Chen et al. 2013;
Kumar and Lease 2011), the proposed model maintains the
generality of Thurstone’s framework and thus also extends its
special cases such as BTL and PL models. We evaluate the
performance of the method using simulated data for different
noise distributions. We also demonstrate that the proposed ag-
gregation algorithm outperforms the state-of-the-art method
for real datasets on evaluating the difficulty of English text

1We use the term user to refer to any entity that provides ranked
data. In specific applications other terms may be more appropriate,
such as voter, expert, judge, worker, and annotator.
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and comparing the population of a set of countries.
Our Contributions: Our main contributions are summarized
as follows

• We propose a general model called the heterogeneous
Thurstone model (HTM) for producing ranked data based
on heterogeneous sources, which reduces to the hetero-
geneous BTL (HBTL) model when the noise follows the
Gumbel distribution and to the heterogeneous Thurstone
Case V (HTCV) model when the noise follows the normal
distribution respectively.

• We develop an efficient algorithm for aggregating pair-
wise comparisons and estimating user accuracy levels for
a wide class of noise distributions based on minimizing
the negative log-likelihood loss via alternating gradient
descent.

• We theoretically show that the proposed algorithm con-
verges to the unknown score vector and the accuracy vector
at a locally linear rate up to a tight statistical error under
mild conditions.

• For models with specific noise distributions such as the
HBTL and HTCV, we prove that the proposed algo-
rithm converges linearly to the unknown score vector
and accuracy vector up to statistical errors in the order
of O(n2 log(mn2)/(mk)), where k is sample size, n is
the number of items and m is the number of users. When
m = 1, the statistical error matches the error bound in the
state-of-the-art work for single user BTL model (Negah-
ban, Oh, and Shah 2017).

• We conduct thorough experiments on both synthetic and
real world data to validate our theoretical results and
demonstrate the superiority of our proposed model and
algorithm.

The reminder of this paper is organized as follows. In Sec-
tion 2, we review the most related work in the literature. In
Section 3, we propose a family of heterogeneous Thurstone
models. In Section 4, we propose an efficient algorithm for
learning the ranking from pairwise comparisons. We theo-
retically analyze the convergence of the proposed algorithm
in Section 5. Thorough experimental results are presented in
Section 6 and Section 7 concludes the paper.

2 Additional Related Work

The problem of rank aggregation has a long history, dat-
ing back to the works of (de Borda 1781) and (de Condorcet
1785) in the 18th century, where the problems of social choice
and voting were discussed. More recently, the problem of
aggregating pairwise comparisons, where comparisons are in-
correct with a given probability p, was studied by (Braverman
and Mossel 2008) and (Wauthier, Jordan, and Jojic 2013).
Instead of assuming the same probability for all comparisons
to be incorrect, it is natural to assume that the comparison
of similar items is more likely to be noisy than those items
that are distinctly different. This intuition is reflected in the
random utility model (RUM), also known as Thurstone’s
model (Thurstone 1927), where each item has a true score,
and users provide rankings of subsets of items by comparing

approximate version of these scores corrupted by additive
noise.

When restricted to comparing pairs of items, Thurstone’s
model reduces to the BTL model (Zermelo 1929; Bradley
and Terry 1952; Luce 1959; Hunter 2004) if the noise fol-
lows the Gumbel distribution, and to the Thurstone Case
V (TCV) model (Thurstone 1927) if the noise is normally
distributed. Recently, (Negahban, Oh, and Shah 2012) pro-
posed Rank Centrality, an iterative method with a random
walk interpretation and showed that it performs as well
as the maximum likelihood (ML) solution (Zermelo 1929;
Hunter 2004) for BTL models and provided non asymptotic
performance guarantees. (Chen and Suh 2015) studied iden-
tifying the top-K candidates under the BTL model and its
sample complexity.

Thurstone’s model can also be used to describe data from
comparisons of multiple items. (Hajek, Oh, and Xu 2014)
provided an upper bound on the error of the ML estima-
tor and studied its optimality when data consists of partial
rankings (as opposed to pairwise comparisons) under the
PL model. (Yu 2000) studied order statistics under the nor-
mal noise distribution with consideration of item confusion
covariance and user perception shift in a Bayesian model.
(Weng and Lin 2011) proposed a Bayesian approximation
method for game player ranking with results from two-team
matches. (Guiver and Snelson 2009) studied the ranking
aggregation problem with partial ranking (PL model) in a
Bayesian framework. However, due to the nature of Bayesian
method, above mentioned work provided few theoretical anal-
ysis. (Vojnovic and Yun 2016) studied the parameter estima-
tion problem for Thurstone models where first choices among
a set of alternatives are observed. (Raman and Joachims 2014;
2015) proposed the peer grading methods for solving a simi-
lar problem as ours, while the generative models to aggregate
partial rankings and pairwise comparisons are completely
different. Very recently, (Zhao, Villamil, and Xia 2018) pro-
posed the k-RUM model which assumes that the rank dis-
tribution has a mixture of k RUM components. They also
provided the analyses of identifiability and efficiency of this
model.

Almost all aforementioned works assume that all the data
is provided by a single user or that all users have the same
accuracy. However, this assumption is rarely satisfied in real-
world datasets. The accuracy levels of different users are
considered in (Kumar and Lease 2011), which assumes that
each user is correct with a certain probability and studies the
problem via simulation methods such as naive Bayes and
majority voting. In their pioneering work, (Chen et al. 2013)
studied rank aggregation in a crowd-sourcing environment for
pairwise comparisons, modeled via the BTL or TCV model,
where noisy BTL comparisons are assumed to be further
corrupted. They are flipped with a probability that depends
on the identity of the worker. The k-RUM model proposed
by (Zhao, Villamil, and Xia 2018) considered a mixture of
ranking distributions, without using extra information on
who contributed the comparison, it may suffer from common
mixture model issues.
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3 Modeling Heterogeneous Ranked Data

Before introducing our Heterogeneous Thurstone Model, we
start by providing some preliminaries of Thurstone’s prefer-
ence model in further detail. Consider a set of n items. The
score vector for the items is denoted by s = (s1, . . . , sn)

�.
These items/objects are evaluated by a set of m indepen-
dent users. Each user may be asked to express their prefer-
ence concerning a subset of items {i1, . . . , ih} ⊆ [n], where
2 ≤ h ≤ n. For each item i, the user first estimates an
empirical score for it as

zi = si + εi, (3.1)

where εi is a random noise introduced by this evaluation
process. This coarse estimate of score zi is still implicit and
cannot be queried or observed by the ranking algorithm. In-
stead, the user only produces a ranking of these h items by
sorting the scores zi. We thus have

Pr (π1 � π2 � · · · � πh) = Pr (zπ1
> zπ2

> · · · > zπh
) ,

(3.2)
where i � j indicates that i is preferred to j by this user and
{π1, . . . , πh} is a permutation of {i1, . . . , ih}. Each time
item i is compared with other items, a new score estimate zi
is produced by the user for are commonly assumed to be i.i.d.
(Braverman and Mossel 2008; Negahban, Oh, and Shah 2012;
Wauthier, Jordan, and Jojic 2013).

The Heterogeneous Thurstone Model

In real-world applications, users often have different levels
of expertise and some may even be adversarial. Therefore, it
is natural for us to propose an extension of the Thurstone’s
model presented above, referred to as the Heterogeneous
Thurstone Model (HTM), which has the flexibility to reflect
the different levels of expertise of different users. Specifically,
we assume that each user has a different level of making
mistakes in evaluating items, i.e., the evaluation noise of user
u is controlled by a scaling factor γu > 0. The proposed
model is then represented as follows:

zui = si + εi/γu. (3.3)

Based on the estimated scores of each user for each item, the
probability of a certain ranking of h items provided by user u
is again given by (3.2). While this extension actually applies
to both pairwise comparisons and multi-item orderings, we
mainly focus on pairwise comparisons in this paper.

When two items i and j are compared by user u, we denote
by Y u

ij the random variable representing the result,

Y u
ij =

{
1 if i � j;

0 if i ≺ j.
(3.4)

Observation of Y u
ij = 1 event is due to random variables

zui > zuj . Let F denote the CDF of εj − εi, where εi and εj
are two i.i.d. random variables. We have

Pr(Y u
ij = 1; si, sj , γu) = Pr(εj − εi < γu(si − sj))

= F (γu(si − sj)) . (3.5)

It is clear that the larger the value of γu, the more accurate
the user is, since large γu > 0 increases the probability of
preferring an item with higher score to one with lower score.
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Figure 1: The effect of γu on the probability of error for
a BTL comparison in which items have scores 0 and 1. In
particular, for large negative values of γu, the user is accurate
(with a high level of expertise) but adversarial.

We now consider several special cases arising from specific
noise distributions. First, if εi follows a Gumbel distribution
with mean 0 and scale parameter 1, then we obtain the fol-
lowing Heterogeneous BTL (HBTL) model:

log Pr(Y u
ij = 1; si, sj , γu) = log

eγusi

eγusi + eγusj

= − log(1 + exp(−γu(si − sj))), (3.6)

which follows from the fact that the difference between two
independent Gumbel random variables has the logistic distri-
bution. We note that setting γu = 1 recovers the traditional
BTL model (Bradley and Terry 1952).

If εi follows the standard normal distribution, we obtain the
following Heterogeneous Thurstone Case V (HTCV) model:

log Pr(Y u
ij = 1; si, sj , γu) = logΦ

(
γu(si − sj)√

2

)
, (3.7)

where Φ is the CDF of the standard normal distribution.
Again, when γu = 1, this reduces to Thurstone’s Case V
(TCV) model for pairwise comparisons (Thurstone 1927).

Adversarial users: Under our heterogeneous framework,
we can also model a certain class of adversarial users, whose
goal is to make the estimated ranking be the opposite of the
true ranking, so that, for example, an inferior item is ranked
higher than the alternatives. We assume for adversarial users,
the score of item i is C − si, for some constant C. Chang-
ing si to C − si in (3.5) is equivalent to assuming the user
has a negative accuracy γu. In this way, the accuracy of the
user is determined by the magnitude |γu| and its trustworthi-
ness by sign(γu), as illustrated in Figure 1. When adversarial
users are present, this will facilitate optimizing the loss func-
tion, since instead of solving the combinatorial optimization
problem of deciding which users are adversarial, we simply
optimize the value of γu for each user.

One relevant work to ours is the CrowdBT algorithm pro-
posed by (Chen et al. 2013), where they also explored the
accuracy level of different users in learning a global rank-
ing. In particular, they assume that each user has a prob-
ability ηu of making mistakes in comparing items i and j:
Pr(Y u

ij = 1; si, sj , ηu) = ηu Pr(i � j)+(1−ηu) Pr(j � i),
where Pr(i � j) and Pr(j � i) follow the BTL model. This
translates to introducing a parameter in the likelihood func-
tion to quantify the reliability of each pairwise comparison.
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This parameterization, however, deviates from the additive
noise in Thurstonian models defined as in (3.1) such as BTL
and Thurstone’s Case V. Specifically, the Thurstonian model
explains the noise observed in pairwise comparisons as result-
ing from the additive noise in estimating the latent item scores.
Therefore, the natural extension of Thurstonian models to a
heterogeneous population of users is to allow different noise
levels for different users, as was done in (3.3). As a result,
CrowdBT cannot be easily extended to settings where more
than two items are compared at a time. In contrast, the model
proposed here is capable to describe such generalizations of
Thurstonian models, such as the PL model.

4 Optimization and Rank Aggregation

In this section, we define the pairwise comparison loss func-
tion for the population of users and propose an efficient and
effective optimization algorithm to minimize it. We denote
by Du the set of all pairwise comparisons made by user u
on any two distinct items from set [n]. We denote by Y u the
matrix containing all pairwise preferences Y u

ij of user u on
items i and j. The entries of Y u are 0/1/?, where ? indicates
that the pair was not compared by the user. We define the loss
function for each user u as

Lu (s, γu;Y
u) = − 1

ku

∑
(i,j)∈Du

log Pr(Y u
ij = 1; si, sj , γu)

= − 1

ku

∑
(i,j)∈Du

logF (γu(si − sj)) ,

where ku = |Du| is the number of comparisons by user u.
Then, the total loss function for m users is

L (s,γ;Y ) =
1

m

m∑
u=1

Lu (s, γu;Y
u) , (4.1)

where γ = (γ1, . . . , γm)�, Y = (Y 1, . . . ,Y m). We denote
the unknown true score vector as s∗ and the true accuracy
vector as γ∗. Given observation D, our goal is to recover s∗
and γ∗ via minimizing the loss function in (4.1). To ensure
the identifiability of s∗, we follow (Negahban, Oh, and Shah
2017) to assume that 1�s∗ =

∑n
i=1 s

∗
i = 0, where 1 ∈ R

n

is the all one vector. The following proposition shows that
the loss function L is convex in s and in γ separately if the
PDF of εi is log-concave.
Proposition 4.1. If the distribution of the noise εi in (3.3) is
log-concave, then the loss function L(s,γ;Y ) given in (4.1)
is convex in s, and in γ respectively.

The log-concave family includes many well-known distri-
butions such as normal, exponential, Gumbel, gamma and
beta distributions. In particular, the noise distributions used
in BTL and Thurstone’s Case V (TCV) models fall into this
category. Although the loss function L is non convex with
respect to the joint variable (s,γ), Proposition 4.1 inspires
us to perform alternating gradient descent (Jain, Netrapalli,
and Sanghavi 2013) on s and γ to minimize the loss function.
As is shown in Algorithm 1, we perform alternating gradient
descent update on s (or γ) while fixing γ (or s) at each it-
eration. In addition to the alternating gradient descent steps,

Algorithm 1 HTMs with Alternating Gradient Descent

1: input: learning rates η1, η2 > 0, initial points s(0) and
γ(0) satisfying ‖s(0)−s∗‖22+‖γ(0)−γ∗‖22 ≤ r, number
of iteration T , comparison results by users Y .

2: for t = 0, . . . , T − 1 do
3: s̃(t+1) = s(t) − η1∇sL

(
s(t),γ(t);Y

)
4: s(t+1) = (I− 11�/n)s̃(t+1)

5: γ(t+1) = γ(t) − η2∇γL
(
s(t),γ(t);Y

)
6: end for
7: output: s(T ), γ(T ).

we shift s(t) in Line 4 of Algorithm 1 such that 1�s(t) = 0
to avoid the aforementioned identifiability issue of s∗. After
T iterations, given the output s(T ), the estimated ranking of
the items is obtained by sorting {s(T )

1 , . . . , s
(T )
n } in descend-

ing order (item with the highest score in s(T ) is the most
preferred).

As we will show in the next section, the convergence of
Algorithm 1 to the optimal points s∗ and γ∗ is guaranteed
if an initialization such that s(0) and γ(0) are close to the
unknown parameters is available. In practice, to initialize
s, we can use the solution provided by the rank centrality
algorithm (Negahban, Oh, and Shah 2012) or start from uni-
form or random scores. In this paper, we initialize s and γ,
as s(0) = 1 and γ(0) = 1. We note that multiplying s or γ
by a negative constant does not alter the loss but reverses the
estimated ranking. Implicit in our initialization is the assump-
tion that the majority of the users are trustworthy and thus
have positive γ. When data is sparse, there may be subsets
of items that are not compared directly or indirectly. In such
cases, regularization may be necessary, which is discussed in
further detail in Section 6.

5 Theoretical Analysis of the Proposed

Algorithm

In this section, we provide the convergence analysis of Algo-
rithm 1 for the general loss function defined in (4.1). Without
loss of generality, we assume the number of observations
ku = k for all users u ∈ [m] throughout our analysis. Since
there’s no specific requirement on the noise distributions in
the general HTM model, to derive the linear convergence
rate, we need the following conditions on the loss function L,
which are standard in the literature of alternating minimiza-
tion (Jain, Netrapalli, and Sanghavi 2013; Zhu et al. 2017;
Xu, Zhang, and Gu 2017; Xu, Ma, and Gu 2017; Zhang,
Wang, and Gu 2018; Chen et al. 2018). Note that all these
conditions can actually be verified once we specify the noise
distribution in specific models. Due to the space limit, we
provide the justifications of these conditions in the longer
version of the paper.

Condition 5.1 (Strong Convexity). L is μ1-strongly convex
with respect to s ∈ R

n and μ2-strongly convex with respect
to γ ∈ R

m. In particular, there is a constant μ1 > 0 such that
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for all s, s′ ∈ R
n,

L(s,γ) ≥ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉
+ μ1/2‖s− s′‖22.

And there is a constant μ2 > 0 such that for all γ,γ′ ∈ R
m,

it holds

L(s,γ) ≥ L(s,γ′) + 〈∇γL(s,γ′),γ − γ′〉
+ μ2/2‖γ − γ′‖22.

Condition 5.2 (Smoothness). L is L1-smooth with respect
to s ∈ R

n and L2-smooth with respect to γ ∈ R
m. In

particular, there is a constant L1 > 0 such that for all s, s′ ∈
R

n, it holds

L(s,γ) ≤ L(s′,γ) + 〈∇sL(s′,γ), s− s′〉
+ L1/2‖s− s′‖22.

And there is a constant L2 > 0 such that for all γ,γ′ ∈ R
m,

it holds

L(s,γ) ≤ L(s,γ′) + 〈∇γL(s,γ′),γ − γ′〉
+ L2/2‖γ − γ′‖22.

The next condition is a variant of the usual Lipschitz gra-
dient condition. It is worth noting that the gradient is derived
with respect to s (or γ), while the upper bound is the dif-
ference of γ (or s). This condition is commonly imposed
and verified in the analysis of expectation-maximization al-
gorithms (Wang et al. 2015) and alternating minimization
(Jain, Netrapalli, and Sanghavi 2013).
Condition 5.3 (First-order Stability). There are constants
M1,M2 > 0 such that L satisfies

‖∇sL(s,γ)−∇sL(s,γ′)‖2 ≤ M1‖γ − γ′‖2,
‖∇γL(s,γ)−∇γL(s′,γ)‖2 ≤ M2‖s− s′‖2,

for all s, s′ ∈ R
n and γ,γ′ ∈ R

m.
Note that the loss function in (4.1) is defined based on

finitely many samples of observations. The next condition
shows how close the gradient of the sample loss function is
to the expected loss function.
Condition 5.4. Denote L̄ as the expected loss, where the
expectation of L is taken over the random choice of the
comparison pairs and the observation D. With probability at
least 1− 1/n, we have

‖∇sL(s,γ)−∇sL̄(s,γ)‖2 ≤ ε1(k, n),

‖∇γL(s,γ)−∇γL̄(s,γ)‖2 ≤ ε2(k, n),

where n is the number of items and k is the number of obser-
vations for each user. In addition, ε1(k, n) and ε2(k, n) will
go to zero when sample size k goes to infinity.
ε1(k, n) and ε2(k, n) in Condition 5.4 are also called the

statistical errors (Wang et al. 2015; Xu, Ma, and Gu 2017)
between the sample version gradient and the expected (popu-
lation) gradient.

Now we deliver our main theory on the linear convergence
of Algorithm 1 for general HTM models. Due to the space
limit, full proofs can be found in the the longer version of the
paper.

Theorem 5.5. For a general HTM model, assume Conditions
5.1, 5.2, 5.3 and 5.4 hold and that M1,M2 ≤ √

μ1μ2/4.
Denote that ‖s∗‖∞ = smax and ‖γ∗‖∞ = γmax. Suppose
the initialization guarantees that ‖s(0) − s∗‖22 + ‖γ(0) −
γ∗‖22 ≤ r2, where r = min{μ1/(2M1), μ2/(2M2)}. If we
set the step size η1 = η2 = μ/(12(L2 +M2)), where L =
max{L1, L2}, μ = min{μ1, μ2} and M = max{M1,M2},
then the output of Algorithm 1 satisfies

‖s(T ) − s∗‖22 + ‖γ(T ) − γ∗‖22
≤ r2ρT +

ε1(k, n)
2 + ε2(k, n)

2

μ2

with probability at least 1− 1/n, where the contraction pa-
rameter is ρ = 1− μ2/(48(L2 +M2)).
Remark 5.6. Theorem 5.5 establishes the linear conver-
gence of Algorithm 1 when the initial points are close to
the unknown parameters. The first term on the right-hand
side is called the optimization error, which goes to zero
as iteration number t goes to infinity. The second term
is called the statistical error of the HTM model, which
goes to zero when sample size mk goes to infinity. Hence,
the estimation error of our proposed algorithm converges
to the order of O((ε1(k, n)

2 + ε2(k, n)
2)/μ2) after t =

O(log((ε1(k, n)
2 + ε2(k, n)

2)/μ2r2)/ log ρ) iterations.
Note that the results in Theorem 5.5 hold for any general

HTM models with Algorithm 1 as a solver. In particular,
if we run the alternating gradient descent algorithm on the
HBTL and HTCV models proposed in Section 3, we will also
obtain linear convergence rate to the true parameters up to a
statistical error in the order of O(n2 log(mn2)/(mk)), which
matches the state-of-the-art statistical error for such models
(Negahban, Oh, and Shah 2017). Due to space limit, we
provide the implications of Theorem 5.5 on specific models
in the longer version of the paper.

6 Experiments

In this section, we present experimental results to show the
performance of the proposed algorithm on heterogeneous
populations of users. The experiments are conducted on both
synthetic and real data with both benign users and adversarial
users. We use the Kendall’s tau correlation (Kendall 1948)
between the estimated and true rankings to measure the sim-
ilarity between rankings, which is defined as τ = 2(c−d)

n(n−1) ,
where c and d are the number of pairs on which the two rank-
ings agree and disagree, respectively. Pairs that are tied in at
least one of the rankings are not counted in c or d.

Baseline methods: In Gumbel noise setting, we compare
Algorithm 1 based on our proposed HBTL model with (1) the
BTL model that can be optimized through iterative maximum-
likelihood methods (Negahban, Oh, and Shah 2012) or spec-
tral methods such as Rank Centrality (Negahban, Oh, and
Shah 2017); and (2) the CrowdBT algorithm (Chen et al.
2013), which is a variation of BTL that allows users with
different levels of accuracy. In the normal noise setting, we
compare Algorithm 1 based on our proposed HTCV model
with TCV model. We also implemented a TCV equivalent of
CrowdBT and report its performance as CrowdTCV.
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Experimental Results on Synthetic Data

We first evaluate our algorithms on synthetic data produced
by a heterogeneous population of users.
Data generation: We set number of items n = 20, number
of users m = 9 and set the ground truth score vector s to
be uniformly distributed in [0, 1]. We divide the m users into
groups A and B, consisting of 3 and 6 users respectively.
These two groups of users generate heterogeneous data in
the sense that users in group A are more accurate than those
in group B. We vary γA in the range of {2.5, 5, 10} and
γB in the range of {0.25, 1, 2.5}, which leads to in total 9
configurations of data generation. For each configuration, we
conduct the experiment under the following two settings:
(1) Benign: γ1, . . . , γ3 = γA (Group A); γ4, . . . , γ9 = γB

(Group B).
(2) Adversarial: γ1 = −γA, γ2, γ3 = γA (Group A);

γ4, γ5 = −γB , γ6, . . . , γ9 = γB (Group B).
For each user and a given pair of items, pairwise comparison
data is generated by comparing values produced according to
the HTM model (3.3) with noise. Each pair of items is sent to
the user 2 times for evaluation and is observed in the training
dataset with probability α ∈ (0, 1). Due to the space limit,
we only present the experimental results with α = 0.4 here
and defer more results to the the longer version of the paper.

Under setting (1), we perform rank aggregation using all
the baseline methods. The experiment is repeated 100 times
with different random seeds. We plot the estimation error of
Algorithm 1 v.s. number of iterations for HBTL model in
Figures 2a-2b. In all settings, our algorithm enjoys a linear
convergence rate to the true parameters up to statistical errors,
which is well aligned with the theoretical results in Theorem
5.5.

Under setting (1), the ranking results for Gumbel noises
under different configurations of γA and γB are shown in the
first part of Table 1, where each cell presents the Kendall’s tau
correlation between the aggregated ranking and the ground
truth, averaged over 100 trials. For each experimental setting,
we use the bold text to denote the method which achieved
the highest performance. We also underline the highest score
whenever there is a tie. It can be observed that in almost all
cases, HBTL provides much more accurate rankings than
BTL. In particular, the larger the difference between γA and
γB is, the more significant the improvement is. The only
exception is when γA = γB = 2.5, in which case the data
is not heterogeneous and our HTM model has no advantage.
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Figure 2: Evolution of estimation errors vs. number of itera-
tions t for HBTL model.

Nevertheless, our method still achieve comparable perfor-
mance as BTL for non-heterogeneous data. It can also be
observed that HBTL generally outperforms CrowdBT. But
the advantage is not large, as CrowdBT also includes the
different accuracy levels of different users. Importantly, how-
ever, as discussed in Section 3, CrowdBT is not compatible
with the additive noise in Thurstonian models and cannot be
extended naturally to ranked data other than pairwise compar-
ison. In addition, unlike CrowdBT, our method enjoys strong
theoretical guarantees while maintaining a good performance.
Table 1 also illustrates an important fact: If there are users
with high accuracy, the presence of low quality data does not
significantly impact the performance of Algorithm 1.

Under setting (2), we consider adversarial users whose
accuracy level γu may take negative values as discussed
above. The results for Gumbel noise under setting (2) are
shown in the second part of Table 1. It can be seen that in
this case, the difference between the methods is even more
pronounced.

Due to the space limit, we defer the results with normal
noise to the the longer version of the paper.

Experimental Results on Real-World Data

We evaluate our method on two real-world datasets. The first
one named “Reading Level” (Chen et al. 2013) contains
English text excerpts whose reading difficulty level is com-
pared by workers. 624 workers annotated 490 excerpts which
resulting in a total of 12, 728 pairwise comparisons. Another
dataset named “Country Population,” collected by the authors,
contains responses for pairwise comparison of populations of
15 countries from 199 workers. Each annotator was asked to
provide 16 responses randomly generated from all possible
country pairs. A detailed description is given in the the longer
version of the paper. These two datasets were both collected
in online crowdsourcing environments so that we can expect
varying worker accuracy where effectiveness of our approach
can be demonstrated.

In real-world datasets, it may happen that two items
from two subsets are never compared with each other, di-
rectly or indirectly. In such cases, the ranking will not be
unique. Furthermore, if data is sparse, the estimates may
suffer from overfitting. To address these issues, regular-
ization is often used. While this can be done in a variety
of ways, for the sake of comparison with CrowdBT, we
use virtual node regularization (Chen et al. 2013). Specif-
ically, it is assumed that there is a virtual item of utility
s0 = 0 which is compared to all other items by a vir-
tual user. This leads to the loss function L + λ0L0, where
L0 = −∑

i∈[n] logF (s0 − si) − ∑
i∈[n] logF (si − s0)

and λ0 ≥ 0 is a tuning parameter.
We evaluate the performance of the methods for λ0 =

0, 1, 5, 10. For different values of λ0, HBTL performs best
more often than any other method and, in particular, it per-
forms best for λ0 = 0. Table 2 reports the best performance
of each method across different regularization values. It can
be observed that HBTL and HTCV outperform their coun-
terparts, CrowdBT and CrowdTCV, as well as the uniform
models, BTL and TCV. Complete results are presented in the
longer version of the paper.
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Table 1: Kendall’s tau correlation for different methods under Gumbel noise. Group A users all have the accuracy level γA and
Group B users all have the accuracy level γB . In setting (1), i.e., the Benign setting, all the users have positive accuracy levels. In
setting (2), i.e., the Adversarial setting, 1/3 of the users in both groups have negative accuracy levels.

Settings γB Methods γA

2.5 5 10

Benign

0.25
BTL 0.671±0.062 0.761±0.053 0.812±0.048

CrowdBT 0.764±0.065 0.872±0.037 0.933±0.024
HBTL 0.769±0.061 0.873±0.034 0.934±0.022

1.0
BTL 0.791±0.051 0.844±0.043 0.866±0.035

CrowdBT 0.798±0.050 0.889±0.029 0.934±0.027
HBTL 0.806±0.051 0.891±0.031 0.936±0.026

2.5
BTL 0.882±0.034 0.910±0.030 0.919±0.027

CrowdBT 0.879±0.034 0.912±0.026 0.943±0.022
HBTL 0.880±0.032 0.916±0.028 0.945±0.020

Adversarial

0.25
BTL 0.323±0.130 0.405±0.132 0.485±0.109

CrowdBT 0.742±0.169 0.877±0.033 0.934±0.025
HBTL 0.766±0.059 0.877±0.035 0.933±0.024

1.0
BTL 0.448±0.118 0.544±0.096 0.583±0.094

CrowdBT 0.810±0.044 0.886±0.031 0.934±0.026
HBTL 0.819±0.045 0.891±0.031 0.934±0.029

2.5
BTL 0.627±0.087 0.660±0.075 0.698±0.063

CrowdBT 0.879±0.034 0.913±0.027 0.939±0.023
HBTL 0.880±0.032 0.914±0.029 0.948±0.022

Table 2: Performance of ranking algorithms on real-world dataset.

Dataset BTL TCV CrowdBT CrowdTCV HBTL HTCV

Reading Level 0.3472 0.3452 0.3737 0.3672 0.3763 0.3729
Country Population 0.7524 0.7524 0.7714 0.7714 0.7905 0.7714

7 Conclusions and Future Work

In this paper, we propose the heterogeneous Thurstone model
for pairwise comparisons and partial rankings when data
is produced by a population of users with diverse levels
of expertise, as is often the case in real-world applications.
The proposed model maintains the generality of Thurstone’s
framework and thus also extends common models such as
Bradley-Terry-Luce, Thurstone’s Case V, and Plackett-Luce.
We also developed an alternating gradient descent algorithm
to estimate the score vector and expertise level vector si-
multaneously. We prove the local linear convergence of our
algorithm for general HTM models satisfying mild condi-
tions. We also prove the convergence of our algorithm for
the two most common noise distributions, which leads to the
HBTL and HTCV models. Experiments on both synthetic
and real data show that our proposed model and algorithm
generally outperforms the competing methods, sometimes by
a significant margin.

There are several interesting future directions that could
be explored. First, it would be of great importance to devise
a provable initialization algorithm since our current analysis
relies on certain initialization methods that are guaranteed

to be close to the true values. Another direction is extending
the algorithm and analysis to the case of partial ranking such
as the Plackett-Luce model. Finally, lower bounds on the
estimation error would enable better evaluating algorithms
for rank aggregation in heterogeneous Thurstone models.
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