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Abstract

In machine learning, predictors trained on a given data distri-
bution are usually guaranteed to perform well for further ex-
amples from the same distribution on average. This often may
involve disregarding or diminishing the predictive power on
atypical examples; or, in more extreme cases, a data distribu-
tion may be composed of a mixture of individually “atypical”
heterogeneous populations, and the kind of simple predictors
we can train may find it difficult to fit all of these populations
simultaneously. In such cases, we may wish to make predic-
tions for an atypical point by selecting a suitable reference
class for that point: a subset of the data that is “more simi-
lar” to the given query point in an appropriate sense. Closely
related tasks also arise in applications such as diagnosis or ex-
plaining the output of classifiers. We present new algorithms
for computing k-DNF reference classes and establish much
stronger approximation guarantees for their error rates.

Introduction

In practice, every document, every scene, or every patient for
which we wish to use machine learning to make predictions
is atypical in its own way. Fortunately, these idiosyncracies
are often irrelevant enough to the task at hand that we can ig-
nore them, and make successful predictions with a relatively
simple model. But, the dream of “personalized medicine,”
for example, is that we can somehow identify when a pa-
tient’s case is atypical in some significant way. Rosenfeld
et al. (2015) showed for example that there are subpopula-
tions with risk factors for gastrointestinal cancer that are not
significant risk factors in the overall population. For a given
patient, we want to be able to identify what, if any, such
subpopulations that patient belongs to that might yield such
risk factors. The algorithm of Hainline et al. (2019) (dis-
cussed below) finds a subpopulation on which accurate pre-
diction is possible. Thus, in particular, the linear predictors
found by their algorithm can make use of these special risk
factors for the subpopulation the patient belongs to. Or, in
artificial intelligence applications, we may wish to identify
when a scene or a conversation is atypical in some signifi-
cant way, so that we can select similarly atypical examples to
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use for prediction. These similar examples are called a refer-
ence class for the example in question. Roth (1995) showed
how, by filtering the data used for inference in an appropri-
ate way – thus using an appropriate reference class – classic
nonmonotonic reasoning problems may be solved easily.

In other words, a reference class captures the “relevant
context” for probabilistic inference. This view of refer-
ence classes, and especially their role in artificial intelli-
gence, was largely developed by Kyburg (1974) and Pollock
(1990), building on a view of probability originally proposed
by Reichenbach (1949). In Kyburg and Pollock’s proposals,
one should select the most specific available reference class,
ruling out disjunctive reference classes.

Bacchus et al. (1996) provide a critical review of this
framework (and the decision to disallow disjunctions). One
of the main criticisms of the reference-class framework is
that it is often unclear how to select an appropriate reference
class for inference; making the class too specific may lead us
with few prior examples or none at all. Such a problem al-
most always arises when reference classes are invoked. For
example, in Valiant’s “neuroidal” cognitive model (Valiant
1994; 2000), the class of scenes to be used to make a pre-
diction (a reference class, essentially) are chosen by the cur-
rently “firing” model neurons, which could easily be overly
specific. The key question is, how can we find a reference
class for which (i) we have sufficient data to make an in-
formed prediction, but that is nevertheless (ii) sufficiently
specific to help inform our prediction?

Juba (2016) and Hainline et al. (2019) proposed a formu-
lation of the reference class selection problem in the context
of making certain kinds of predictions. Specifically, Juba
considered a variant of reference class selection as a means
to perform diagnosis, or more generally abduction: we try to
find the most likely reference class in our overall data dis-
tribution from some specified family of representations such
that a property of interest, to be diagnosed, holds. Hainline
et al. subsequently sought to find a reference class on which
to perform linear regression: they seek a class that is suffi-
ciently likely, and such that the squared-error loss (or some
other �p-loss) is approximately minimized. These works fo-
cus on algorithms for finding k-DNF reference classes (ORs
of ANDs of at most k Boolean literals—attributes or their
negations) since (as we observe here—see Proposition 2)
solving such tasks for conjunctions, or any representation
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that can express general conjunctions, would enable PAC-
learning of general DNFs in the standard, “distribution-free”
model. Apart from being a notorious open problem, recent
work by Daniely and Shalev-Shwartz (2016) shows that al-
gorithms for learning DNF would have further strong con-
sequences. (See also Durgin and Juba 2019.) It follows that
among the usual, natural classes of representations, k-DNF
is the most expressive class for which we have any hope of
solving such problems.

Our contribution We present algorithms for finding k-
DNF reference classes that achieve better approximations to
the optimal loss than the O(nk)-approximations presented
by Juba (2016) and Hainline et al. (2019) based on the “tol-
erant elimination” algorithm (originally proposed for abduc-
tion), respectively for diagnosis and linear regression. Our
algorithms are analogues of the improved algorithms for
exception-tolerant abduction obtained by Juba et al. (2018)
and Zhang et al. (2017). Our algorithms, like these, respec-
tively obtain an Õ(r log log n)-approximation when there is
an r-term k-DNF, and an Õ(nk/2)-approximation in gen-
eral. We note that the first guarantee is particularly strong
when the formula contains few terms. This of particular in-
terest in cases where the formula is to be provided for human
inspection, and thus must be small to be useful.

Both of the abduction algorithms are, at their core, based
on approximation algorithms for variants of partial set cover.
We observe that these algorithms only fail to solve the refer-
ence class problem because there is no guarantee that the
partial covers found by these algorithms will include the
point corresponding to the query. So, we consider two new
variants of partial set cover in which there is a distinguished
point that must be covered. In the standard, additive-cost
variant of partial set cover used by Juba et al., which was first
considered by Kearns (1990) and analyzed fully by Slavı́k
(1997), this is almost immediate. But, the variant used by
Zhang et al. considers the ratio of the cost to the number of
elements covered, which is significantly more difficult. The
main technical issue is that the sets containing the distin-
guished point may have a much worse cost ratio than any set
the greedy algorithm would normally choose. As a conse-
quence of this, many of the observations used in the analy-
sis of the greedy algorithm for partial cover no longer hold;
indeed, a naı̈ve modification of the usual greedy partial set
cover algorithm will not achieve the usual approximation ra-
tio. It may be necessary to include sets covering significantly
more than the bare minimum number of elements in order
to “dilute” the cost of the set containing the distinguished
element. Nevertheless, we show how to repair the greedy al-
gorithm and give an analysis.

We stress that Zhang et al. showed that tolerant elimina-
tion performed far worse than their abduction algorithm on
a synthetic data task, and moreover, Qi et al. (2018) ob-
tained similar findings when using the algorithms to per-
form a real-world webcam anomaly explanation applica-
tion. It seems that tolerant elimination fails in all but sim-
ple cases where there is a planted solution with a small
amount of independent noise. Indeed, tolerant elimination

completely failed at anomaly explanation, whereas the al-
gorithm of Zhang et al. was quantitatively competitive with
the random forest baseline they considered. We include an
empirical demonstration that our large formula algorithm
can be used in practice for a similar application, explain-
ing the decisions of classifiers on a given point. We find
that our algorithm can compete with the previous algo-
rithms for this task (Ribeiro, Singh, and Guestrin 2016;
2018) while providing theoretical guarantees. Similarly, the
small formula algorithm of Juba et al. (2018) was used for
the conditional linear regression experiments of Hainline et
al. (2019), and found to be effective in practice.

Relationship to other work Our work thus takes the ap-
proaches of Zhang et al. (2017) and Juba et al. (2018) for ob-
taining better guarantees for the abduction task that does not
make reference to a specific query point x∗, and adapts them
to solve the reference class search problem. The previous al-
gorithms for finding reference classes, by Juba (2016) and
Hainline et al. (2019), only found O(nk)-approximations.

Beyond these directly relevant works, the most similar
work to our reference class search algorithms is work on pro-
ducing “explanations” of anomalies or classifications, see
for example the survey by Biran and Cotton (2017) for an
overview of such work. While our reference class search al-
gorithms could be used for such problems, most of these
works are specific to diagnosing the decisions made by a
given classifier based on its structure, and often focus on
identifying which attributes were most influential, whereas
our formulation and algorithms are generic. The closest is
work by Ribeiro et al. (2016), which is not tied to a specific
classifier. Given a query point, they sample points nearby in
the feature space, and train a simpler classifier on this neigh-
borhood. Needless to say, the semantics of these “explana-
tions” are quite different. The follow-up work by Ribeiro et
al. (2018) again samples in the neighborhood of a point of
interest, but seeks to optimize precision and coverage objec-
tives that are very similar to ours, using conjunctive rules.
Nevertheless, their objective is often not tied to the actual
data distribution (but rather, a synthetic “neighborhood” dis-
tribution), in contrast to ours, and they do not attempt to pro-
vide theoretical guarantees. As we have noted, we believe it
is not possible to provide strong theoretical guarantees for
conjunctions in general, in contrast to k-DNFs.

Preliminaries

A basic version of the task we consider (from Juba 2016)
is as follows. We will work in a PAC-learning style frame-
work, in which the data is drawn i.i.d. from an arbitrary dis-
tribution D over n Boolean attributes. (Later we will also
extend this to consider regression tasks in which there are
additional, real-valued attributes.) We suppose that we are
given a query point x∗, for which we are interested in pre-
dictions, and a property c(x) that we would like to be true of
our reference class. We would then like to find a formula h
describing as likely an event as possible under D that, in par-
ticular, includes x∗, and such that c(x) is always true when
h(x) is. Formally:
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Definition 1 The (optimal) reference class search task for
a class of representations H over n attributes is as fol-
lows. Given an observation example x∗ ∈ {0, 1}n and a
query representation c for some arbitrary distribution D
over {0, 1}n such that D(x∗) > 0, if there exists some
h∗ ∈ H such that h∗(x∗) = 1, Pr[c(x) = 1|h∗(x) =
1] = 1, and Pr[h∗(x) = 1] ≥ μ, using examples drawn
from D, find a circuit h in time polynomial in n, 1/ε, 1/μ,
and 1/δ such that with probability 1 − δ over the exam-
ples, h(x∗) = 1, Pr[c(x) = 1|h(x) = 1] ≥ 1 − ε, and
Pr[h(x) = 1] ≥ (1 − ε)μ. Such an h is said to be a refer-
ence class for x∗ relative to c. The learning to abduce task
is the variant of this task in which we do not require either
h∗(x∗) = 1 or h(x∗) = 1 (i.e., in which there is no query
point).

Such reference classes can be used to propose candidate
diagnoses as follows: c(x) represents some condition that
we wish to diagnose. We typically restrict the attributes that
H may use to avoid trivial diagnoses such as c(x) itself, or
we may think of c(x) as being represented by a separate
label attribute b. Then the output of reference class search is
a formula h(x) such that h(x) is often true, empirically, such
that h(x) empirically entails c(x), and such that h(x) is true
of x∗ in particular. Or, in “learning to reason” (Valiant 1994;
Roth 1995; Valiant 2000) it may be used to test if there exists
an optimistic “precondition” for reasoning under which c(x)
would be true in the specific instance x∗; roughly, whether
or not there is a plausible justification for inferring c(x∗).

For example, let’s consider the anomaly explanation set-
ting of Qi et al. (2018), which was built on the learning to
abduce task. There, an anomaly detector computes a label
for images from a webcam indicating whether or not these
images are anomalies; Qi et al. considered a vector of meta-
data attributes x associated with each image, and searched
for rules h(x) (i.e., formulated in terms of these meta-data
attributes) that reliably indicated that a μ-fraction of the ex-
amples were classified as anomalies. For example, the meta-
data attributes may indicate the time of day, weather, or pres-
ence or absence of certain kinds of objects in the image,
and the “explanations” are formulated in terms of these at-
tributes. In our variant of the task, we may be interested in
why a specific image was classified as an anomaly. By pre-
senting the vector of meta-data attributes x∗ associated with
this image in the reference class task, we then should find
some rule h(x) that not only is a reliable indicator that the
corresponding images will be labeled as anomalies, but also
that the image in question (with metadata x∗) in particular is
included among these images.

We will focus on cases where H is taken to be the class
of k-DNFs, ORs of ANDs of at most k “literals,” Boolean
attributes or their negations. The reason is that it follows
from results by Juba (2016) or earlier results by Bshouty
and Burroughs (2005) that any H that can represent arbi-
trary conjunctions (ANDs of literals) gives rise to an in-
tractable problem. Indeed, they show that if the learning to
abduce task for conjunctions can be solved in polynomial
time, then supervised PAC-learning of (general) DNF can
also be solved in polynomial time. In addition to being a

notoriously difficult problem, Daniely and Shalev-Shwartz
(2016) presented evidence that this task is intractable. (We
can obtain slightly stronger consequences for our task, see
Durgin and Juba 2019 for details.) These results carry over
to reference classes, so we likewise restrict our attention to
k-DNFs.
Proposition 2 Suppose that reference class search can be
solved for some H that can express conjunctions. Then there
is a polynomial time algorithm for PAC-learning DNF.
Proof: We show that the abduction task for conjunctions
can be reduced to the reference class task; the claim then fol-
lows from the analogous reduction of PAC-learning of DNF
to abduction of conjunctions (Juba 2016, Theorem 5).

The reduction is as follows. Given a set of exam-
ples (x, b)(1), . . . , (x, b)(m) on {0, 1}n+1 (where b indi-
cates the condition to be explained), we construct examples
(y, b)(1), . . . , (y, b)(m) on {0, 1}2n+1 by taking the first n
attributes of y(i) to be identical to the corresponding x(i),
and taking the final n attributes to be negations of the first
n attributes. Now, we take our distinguished point to be
(1, 1, . . . , 1), and try to solve the reference task class on this
input. Suppose the algorithm returns a circuit C(y). We con-
vert this to a circuit C ′(x) = C(x1, . . . , xn,¬x1, . . . ,¬xn),
and return this as a solution for (improper) abduction. Note
that if the reference class algorithm was “proper,” ie., actu-
ally returns a conjunction C, then C ′ is also a conjunction
and hence the resulting abduction algorithm is also “proper.”

Observe that if there is a conjunction C∗(x) for the ab-
duction task (occupying probability μ and with error rate
ε), then the following monotone (negation-free) conjunction
C∗∗ is a solution to the reference class task: if C∗ contains
xi, put yi in C∗∗, and if C∗ contains ¬xi, then put yi+n in
C∗∗. Since C∗∗ is monotone, it is satisfied by (1, 1, . . . , 1),
and it is true on our distribution on y with precisely the same
probability and precision as C∗ is for the original distribu-
tion on x by construction. Thus, assuming the correctness of
our algorithm for reference classes, it returns a circuit C(y)
solving the reference class task. But again, C ′(x) similarly
has the same probability and precision as C(y), and hence it
is also a solution to the abduction task as needed.

We remark that this task remains hard even if we weaken
our requirement on h to only have probability polynomially
related to h∗ in the various parameters.

The basic reference class task may be extended in multi-
ple ways. Juba et al. (2018), for example, consider a partial
information version of the task. While it is possible to ex-
tend our results to address the partial information analogues
of the reference class problems, since the setting is rather
involved we leave this extension to the interested reader.
A second natural extension, which we will consider, is the
weighted variant, first introduced by Hainline et al. (2019):
Definition 3 The weighted k-DNF reference class search
task is as follows. Given an observation example x∗ ∈
{0, 1}n and an arbitrary distribution D over {0, 1}n× [0, b]
such that PrD[x∗] > 0, if there exists some k-DNF h∗

such that h∗(x∗) = 1, E(x,w)∈D[w|h∗(x) = 1] ≤ ε∗,
and PrD[h∗(x) = 1] ≥ μ, using examples drawn from
D, find a circuit h in time polynomial in n, max{b, 1/b},
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1/ε0, 1/γ, 1/μ, and 1/δ such that with probability 1 − δ
over the examples, h(x∗) = 1, ED[w|h(x) = 1] ≤
α(n, ε0, b, μ, δ, γ))max{ε0, ε∗}, and Pr[h(x) = 1] ≥ (1 −
γ)μ. We say that α is the approximation factor for the refer-
ence class h.

In applications, the weights w represent some loss value,
such as prediction error, for including the example in the ref-
erence class. Using solutions to the weighted reference class
task, one can solve richer tasks such as the reference class
regression task introduced by Hainline et al. (2019), below:

Definition 4 Reference class �p-norm regression is the fol-
lowing task. We are given a query point x∗ ∈ {0, 1}n, target
density μ ∈ (0, 1), ideal loss bound ε0 > 0 approximation
parameter η > 0, confidence parameter δ > 0, and ac-
cess to i.i.d. examples drawn from a joint distribution over
(x, y, z) ∈ {0, 1}n × {y ∈ R

d : ‖y‖2 ≤ b} × [−b, b]. We
wish to find â ∈ R

d with ‖â‖2 ≤ b and a reference class
k-DNF ĥ such that with probability 1− δ,
1. ĥ(�x∗) = 1,
2. Pr[ĥ(x) = 1] ≥ (1− η)μ, and
3. for a fixed approximation factor α > 1, E[|〈â, y〉 −
z|p|ĥ(x) = 1]1/p ≤ αmax{ε∗, ε0} where ε∗ is the op-
timal �p loss E[|〈a∗, y〉 − z|p|h∗(x)]1/p over a∗ ∈ R

d of
‖a∗‖2 ≤ b and k-DNFs h∗ such that h∗(x∗) = 1 and
Pr[h∗(x) = 1] ≥ μ.

If we also require both â and a∗ to have at most s nonzero
components, then this is the reference class s-sparse �p-norm
regression task.

It follows from the reductions of Proposition 2 and Theo-
rem 7 of Juba (2017) that solving the reference class regres-
sion task requires solving the corresponding reference class
task; thus, we again must focus on k-DNFs.

Reference classes for small formulas

We first consider the variant of the task in which the k-
DNF is known to be small, using at most r terms. Juba et
al. (2018) considered abduction for such small formulas, and
obtained a Õ(r log log n)-approximation to the optimal error
rate. We will see that it is easy to extend their approach to
obtain such guarantees for reference classes.

The first ingredient in their approach is the sample com-
plexity bound of Haussler (1988) for r-term k-DNFs: he
found that only O( rkε log n

δ ) examples are statistically nec-
essary; an essentially similar analysis shows that m =
O( brk

ε0γ2 log
n
δ ) examples suffice to guarantee an error rate

that is competitive with ε∗ ≥ ε0. But, as also observed by
Haussler, actually finding a k-DNF with this fixed num-
ber of terms is an NP-hard problem; by allowing a slight
increase in the number of terms to r logm (when an r-
term formula exists), and thus using slightly more examples,
computationally efficient greedy algorithms can be used.
We will also follow this approach; see Juba et al. (2018)
for a more careful derivation of the sample complexity
bound for the related abduction task. Concretely, m =

O
(

brk
μεγ2 log

n
δ log

(
brk
εγ2 log

n
δ

))
examples will suffice.

Since the weights are nonnegative, if h∗ has error ε∗, it
follows that every term of h∗ must also give error at most
με∗ in the distribution. So, any term that has an empirical
error rate significantly greater than με∗ cannot be in h∗, and
we can safely ignore such terms. Now, Juba et al. treat the
problem as an instance of unweighted partial set cover on
a universe of size m (i.e., the examples): the sets corre-
spond to the terms with error at most (1 + γ)με∗, where
the set “covers” an example in the training set if it satis-
fies the corresponding term. Slavı́k (1997) shows that when
we seek to cover a μ-fraction of the universe, the greedy
algorithm (which simply chooses the set that covers the
most remaining elements until μm elements have been cov-
ered) obtains a H(μm)-approximation to the smallest cover,
where H(i) =

∑i
j=1

1
j . Thus, since h∗ covers so many el-

ements with a cover of size r, the greedy algorithm finds
a cover of size rH(μm) = O

(
r log

(
brk
ε0γ2 log

n
δ

))
. Due

to the guarantee that the individual terms have an error rate
of at most με∗, the resulting formula has a total error rate
of at most O(rH(μm)με∗), and is satisfied with probability
at least (1 − γ)μ overall; thus, it achieves a O(rH(μm))-
approximation to h∗.

The only problem with the algorithm of Juba et al. for the
reference class selection problem is that the formula they
construct is not necessarily satisfied by x∗, so it may not be
a reference class. We observe that it suffices to substitute an
algorithm for partial set cover that is guaranteed to cover a
distinguished point x∗ for their partial set cover algorithm:

Definition 5 Given a universe U = {x1, · · · , xm} of m
elements, and collection S = {S1, · · · , SN} of subsets of
U , the Partial set cover task with a must-cover element x∗

is to find a subcollection T of S, such that T contains
the specified element x∗, T covers a μ-fraction of U , i.e.,
|
⋃

Si∈T Si| ≥ μ|U |, and such that |T | is minimized.

Our modification is that after we run the greedy algo-
rithm for partial set cover, if the cover it finds does not in-
clude x∗, we include an arbitrary set that covers x∗. Note
that since h∗(x∗) = 1 and the terms of h∗ have empiri-
cal error at most (1 + γ)με∗, such a term must exist. The
formula now has at most one more term, so it has at most
rH(μm) + 1 = O

(
r log

(
brk
ε0γ2 log

n
δ

))
terms. By a union

bound over the terms, the formula we have constructed
therefore has error at most O((1 + γ)(rH(μm) + 1)ε) =

Õ
(
(1 + γ)r log

(
brk
ε0γ2 log

n
δ

)
ε∗
)

. This is our first theorem:

Theorem 6 There is a polynomial-time algorithm for
weighted reference class search when the condition has r
terms using m = Õ( brk

μεγ2 log
n
δ ) examples achieving an

Õ(r logm)-approximation using a k-DNF with Õ(r logm)
terms with probability 1− δ.

Hainline et al. (2019) observe that we can obtain algo-
rithms for reference class regression by simply plugging in
algorithms for reference class search into an algorithm that
first produces a list of candidate parameter vectors, and then
uses the reference class search algorithm to winnow the list
down to parameter vectors that provide low loss on a large
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subset. Thus, given our algorithm for the weighted reference
class search problem with this improved guarantee, we can
follow the same strategy to immediately obtain an improved
algorithm for reference class regression:

Theorem 7 For any constant s and γ > 0, and m =

Θ̃
(

1
μ

(
brk
ε0γ2 log

nd
δ + b2p

ε2p0
(b2 + ln 1

δ )
))

examples, if there is
a r-term k-DNF solution to the s-sparse �p reference-class
regression task, then using our algorithm for reference class
search in the algorithm of Hainline et al. (2019) gives an
algorithm that runs in polynomial time and solves the task
with a Õ(r logm)-term k-DNF with α = Õ(r logm).

Specifically, the sample complexity bound is obtained
from the guarantee of Theorem 6 by replacing δ with δγ

dm0

where m0 = O
(

1
μ

b2p

ε2p0
(b2 + log 1

δ )
)

, and adding m0 to the
resulting expression. So the sample complexity bound is
actually O

(
brk
μεγ2 log

ndm0

δγ log
(

brk
εγ2 log

ndm0

δγ

)
+m0

)
and

the approximation ratio α is actually

O

(
(1 + γ)r log

(
brk

εγ2
log

ndm0

δγ
log

(
brk

εγ2
log

ndm0

δγ

)))
.

Large k-DNF reference classes

We now consider algorithms for finding reference classes
that scale better with the number of terms: using the ap-
proach of Zhang et al. (2017), we show that it is possible
to obtain Õ(

√
nk)-approximate reference classes. When the

reference class contains more than ∼
√
nk terms, this is su-

perior to the algorithms of the previous section.
Zhang et al. cast the abduction task as a red-blue partial

set cover problem with a ratio objective, which they solve,
building on earlier work by Peleg (2007). In the variant con-
sidered by Zhang et al., the universe consists of two types of
elements, red elements and blue elements, and the objective
is to cover a prescribed number of blue elements, while min-
imizing the ratio of the number of red elements covered to
the number of blue elements covered. The appropriate gen-
eralization of this problem to a weighted problem for use
in the regression task is by instead assigning each “red” el-
ement a weight in the range [0, b]. The objective is then to
minimize the ratio of the total weight covered to the number
of blue points covered, given that the desired minimum num-
ber of blue points have been covered. In any case, at its core,
Zhang et al’s algorithm solves a variant of weighted partial
set-cover in which the objective is to minimize the ratio of
the total weight to the number of points covered, again sub-
ject to the restriction that a sufficient number of points are
covered.

Unlike the approach of the previous section, however, the
extension is now nontrivial. If we try to modify the definition
of the weighted set cover problem along the lines of Defini-
tion 5, simply adding the requirement that the distinguished
point x∗ must be included, a significant complication arises.
Natural modifications of the standard greedy algorithm that
only add another set with x∗ – either the one with lowest
effective ratio or the one that optimal cover uses – fail to

satisfy the original approximation bound of 3H(μm). The
difficulty is that if the sets containing the distinguished point
all have high weight, an optimal cover may need to “dilute”
the cost of using one of these sets to cover x∗ by covering
more than the minimum number of points.

Let’s consider an example. Suppose on some universe U
we want to cover at least 10 elements while minimizing the
cost-to-size ratio. This is a case of the original problem in
Zhang et al., and we can construct an example in which the
optimal cover has cost 70 and size 100, while the greedy
cover has cost 10 and size 10. This is achievable, as dis-
cussed in Lemma 11 in the appendix of Zhang et al. Now
we want to add a new set to U that only contains x∗ and has
cost 10000 (x∗ is not contained in any other sets). Then we
want a cover with at least 10 elements including x∗ (the new
problem). To satisfy the requirements we must use the new
set in our cover though its cost-to-size ratio is large. If we
simply add the new set to the original greedy cover, then the
ratio of the new greedy cover is 10010

11 , while the cover con-
structed by adding the new set to the original optimal cover
achieves a ratio of 10070

101 . The original approximation bound
thus no longer holds.

To summarize this example, the set with x∗ we added
could break the approximation guarantee because the choice
of adding that set to the cover does not necessarily satisfy
the properties of the greedy choices used by Zhang et al. If
the cost-to-size ratio of that set is very large and the size of
greedy cover is too small, then the added set will dominate
the combined ratio. Thus, moreover, the properties typically
used to analyze the greedy algorithm are not satisfied by
this problem, and we need a different analysis. We therefore
present a modified greedy algorithm to solve our ratio vari-
ant of weighted partial set cover with a distinguished point
that we must cover. Similar to the previous section, given an
algorithm for our new variant of set cover, it is then rela-
tively straightforward to obtain algorithms for our reference
class tasks that obtain guarantees that are similar to those of
Zhang et al. Thus, the heart of our approach is to solve the
following problem.

Definition 8 Given a universe U = {x1, . . . , xm} of m el-
ements with weights w1, . . . , wm such that each wj ∈ [0, b],
and collection S = {S1, . . . , SN} of subsets of U , the partial
weighted set cover task with ratio objective and must-cover
element x∗ is to find a subcollection T of S, such that T con-
tains the specified element x∗ and T covers a μ-fraction of

U , i.e., |
⋃

Si∈T Si| ≥ μ|U |, minimizing the ratio
∑

Si∈T wi

|
⋃

Si∈T Si| .

We propose Algorithm 1 as a solution.

Theorem 9 Let T be a collection of sets T1 . . . , Td on a
universe V with corresponding weights ω(T1), . . . , ω(Td).
Suppose that there is a sub-collection T ∗ ⊆ T such that
T ∗ =

⋃
T∈T ∗ T contains at least μ|V | distinct elements and

a specified element x∗, and
∑

T∈T ∗ ω(T ) = ω(T ∗). Then
Algorithm 1 finds a subcollection T̃ such that

⋃
T∈T̃ T also

contains at least μ|V | elements and the specified element x∗,

and
∑

Tt∈T̃ ω(Tt)

|⋃Tt∈T̃ Tt| ≤ 3H(|V |) · ω(T ∗)
|T∗| .
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Input: finite set T = {T1, ..., Td}, costs
{c1, ..., cd}, μ ∈ (0, 1], target element x∗

Output: μ-partial cover solution set T̃
for every set Ti that contains the target element x∗ do

Set T̃ = {Ti}, and Tt = Tt \ Ti for each Tt ∈ T except
Ti.

while r = μm−
∣∣⋃

t∈T̃ Tt

∣∣ > 0 do

Choose the first Tj ∈ T \ T̃ that minimizes ct/|Tt|,
for t ∈ T \ T̃ and Tj �= ∅, and add Tj to T̃

for each Tt ∈ T except Tj do Set Tt = Tt \ Tj ;
end

while the cost-to-size ratio cost(T̃ )

|T̃ | does not increase do

Choose the first Tj ∈ T \ T̃ that minimizes ct/|Tt|,
for t ∈ T \ T̃ and Tj �= ∅, and add Tj to T̃

for each Tt ∈ T except Tj do Set Tt = Tt \ Tj ;
end

end

Return T̃ with the smallest approximation ratio cost(T̃ )

|T̃ |
Algorithm 1: Partial Greedy Algorithm

Proof: Suppose some optimal set cover OPT contains the
set T ′ that covered the target point x∗. Because we iterate
through all the sets that contain x∗, we must have chosen
T ′ as the first set to be added to T̃ in some iteration. Let’s
consider this iteration only. For O = OPT−T ′, we propose
the following lemma:

Lemma 10 If the cost to size ratio of a greedy cover G is
bounded by 3H(m − |T ′|) times of the cost to size ratio of
another cover O on U \ T ′ (both covers cover the arbitrary
required number of elements), and the other cover O is no
more than 3 times larger than the greedy cover G, then the
cost to size ratio of G ∪ T ′ is bounded by 3H(m − |T ′|)
times of the cost to size ratio of another cover O ∪ T ′ on U .

The proof of Lemma 10 is deferred to the appendix.
What remains to be done is to find a greedy cover that sat-

isfies |O| ≤ 3 |G|. Suppose we could invoke the algorithm
of Zhang et al. with target size |O| on U − T ′. Although
we do not know |O|, if we keep adding elements follow-
ing the algorithm, then it must be able to return a greedy
cover containing more than or equal to |O| elements at some
step, where the greedy ordering to add sets guarantees this
set cover will obtain an approximation ratio of 3H(|O|). Be-
cause |O| ≤ m − |T ′|, the existence of a qualifying greedy
cover also implies that the greedy cover that achieves the
minimum ratio during the run of greedy algorithm must also
be bounded by the approximation ratio of 3H(m− |T ′|).

The reason that we can stop adding sets when the cost-to-
size ratio cost(T̃ )

|T̃ | begins to increase is as follows. The ratio

of the greedy cover is a weighted average of each chosen
set’s “effective” ratio cj

|Tj | at the iteration where we choose
Tj to add to the cover. So, at this point the greedy ratio will
only increase when we add more sets to the cover; otherwise
it means we added a set with smaller “effective” ratio af-
ter a set with larger “effective” ratio, which contradicts our
greedy ordering. (Note that the effective ratios of each set

Tt only increase as T ′ covers more elements.) Then, even
though we forced T ′ to be the first chosen set, which may vi-
olate the greedy ordering, the combined ratio will only have
a unique local minimum (thus also the global minimum),
which appears right before the combined ratio begins to in-
crease by its minimality. We compute the combined cost-to-
size ratio every time we add a set to the greedy cover after
we have covered μm − |T ′| elements in U \ T ′. Once we
find that adding another set will increase the combined ra-
tio, it means we are right at the global minimum, that must
also achieve a 3H(m − |T ′|) approximation bound, so we
can accept that set cover.

Because 3H(m − |T ′|) is always at most 3H(m), we
achieve a 3H(m) approximation ratio as claimed.

Partial red-blue set cover with a must-cover
element and ratio objective

In this section, we introduce the partial red-blue set cover
problem with a must-cover element, a natural variant of red-
blue set cover. We will show how our algorithm for our
weighted partial set cover problem can be used to adapt the
algorithms for the previous variants of red-blue set cover to
solve this new variant. Subsequently, we will present our
guarantees for finding reference classes.

Definition 11 Consider a finite universe U comprised of
two disjoint sets, of red elements R and blue elements B.
We let β denote the number of blue elements. We suppose
that we are given a collection S of d sets S1, . . . Sd that are
subsets of U .

For any sub-collection S ′ ⊆ S , let U(S ′) denote⋃
Si∈S′ Si, B(S ′) denote U(S ′) ∩ B and R(S ′) denote

U(S ′) ∩ R. The goal of the partial red-blue set cover task
with a must-cover element and ratio objective is to choose
a S ′ ⊆ S that covers a special element x∗ in addition to
at least μ fraction of all the elements of B while minimiz-
ing |R(S ′)|/|B(S ′)|, i.e., the number of red elements in S ′

relative to the number of blue elements.

As described in the paper, we modify Zhang et al’s Algo-
rithm 3, LOW DEG, to use Algorithm 1 instead of the stan-
dard greedy algorithm, and to fit the new approximation ra-
tio. Specifically, we set Y =

√
d

H(β) in this case, yielding
Algorithm 2.

Following essentially the same argument as Lemma 2 of
Zhang et al., we derive the following lemma. The only dif-
ference is we used the new approximation ratio of 3H(β)
instead of 3H(μβ).

Lemma 12 (Zhang et al. Lemma 2) In step 2, the partial
set cover algorithm yields an approximation ratio of Δ(S) ·
3H(β) where Δ(S) = maxri∈R |S ∈ S : ri ∈ S| is the
“maximum degree” of red elements (to sets in S).

Zhang et al’s Algorithm 4 (Low Deg Partial 2), which
simply searches for the best value of X , remains the same.
Therefore, we propose Theorem 13 for our final guarantee
for the algorithm on our special partial red-blue set cover
problem.
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Input: finite set S = {S1, ..., Sd}, μ ∈ (0, 1], integer
X , must-cover point x∗

Output: μ-partial cover solution S̃X and corresponding
error rate ε̃

Discard sets in S that contain more than X red elements: set
SX ← {Si ∈ S : R(Si) ≤ X}.

If |B(SX )|
|B| < μ, then return FAIL � SX is not feasible

Set Y =
√

d
H(β)

Identify the high degree red elements: RH is the set of red
elements contained in more than Y members of SX .

Discard elements of RH in SX to obtain SX,Y

Apply Algorithm 1 to the set cover instance obtained by
setting the weight of each Ti ∈ SX,Y to R(Ti) (with the
same μ and x∗), and obtain a solution S̃X,Y for it.

Add the dropped red elements back to obtain the
corresponding result S̃X .

For the set of blue elements B̃ and red elements R̃
respectively covered by S̃X , calculate the error rate ε̃ =

˜|R|
˜|B|

and return it and S̃X .
Algorithm 2: Low Deg Partial(X)

Theorem 13 (Zhang et al. Theorem 4; Peleg Theorem
3.5) Low Deg Partial 2 solves the partial red-blue set cover
problem with must-cover element, with an approximation
ratio of 4

√
d ·H(β).

The proof of Theorem is virtually identical to the proof of
Theorem 4 of Zhang et al. (and the proof Theorem 3.5 of
Peleg 2007), with 3H(β) replacing the original 3H(μβ) ap-
proximation ratio.

We now observe that, given an appropriate number of ex-
amples, our algorithms for our variant of the partial red-blue
set cover problem can be used to find reference classes.

Theorem 14 (Zhang et al. Theorem 5) Suppose we are
given m = Θ( 1

γ2με0
(nk + log 1

δ )) examples. Then our al-
gorithm can be used to solve the reference class search task
in time polynomial in m and nk with approximation ratio

O(
√
nk logm) = O(

√
nk log n+log 1/δ

γμε0
).

The proof of this theorem is almost identical except for
the change of a 3H(β) approximation ratio for our algo-
rithm. Similarly, by plugging our reference class algorithm
in to the algorithm by Hainline et al. (2019), we can obtain
an algorithm for reference class regression with the same
guarantee as for conditional regression:

Theorem 15 For any constant s and γ > 0, and m =

Θ̃
(

1
μ

(
b3

ε0γ2 (n
k + log d

δ ) +
b2p

ε2p0
(b2 + ln 1

δ )
))

examples, the
algorithm of Hainline et al. (2019) modified to use the
reference-class algorithm of Theorem 14 runs in polynomial
time and solves the conditional s-sparse �p regression task
with α = O(

√
nk logm).

As with Theorem 7, for m0 = O
(

1
μ

b2p

ε2p0
(b2 + log 1

δ )
)

, The-

orem 15 actually requires O
(

b3

γ2με0
(nk + log dm0

δγ ) +m0

)

examples, and actually obtains an approximation ratio of

O

(√
nk log

(
b

γμε0
(n+ log dm0

δγ )
))

.

Example application: explaining classifiers

Our reference classes can serve as high-precision model-
agnostic “explanations,” along the lines of the anchors con-
structed by Ribeiro et al. (2018). These are intended to help
a human user better understand the behavior of a relatively
opaque classifier representation such as gradient boosted
trees or neural nets, by generating an explanation of what
points the classifier labels similarly to a point of interest.
In this application, we seek a rule that (a) predicts that a
given classifier will produce a given label with high preci-
sion, (b) predicts, in particular, that a given point of inter-
est will receive the label given by the classifier, and (c) is
easy for a human user to interpret. If we use the condition
that a given classifier produces a given label as the condi-
tion for the reference class, this is an instance of our ref-
erence class search problem. Specifically, recall that cover-
age is essentially our μ and precision is essentially the error
rate conditioned on the rule being satisfied, just as in our
reference classes. To satisfy the final requirement, Ribeiro
et al. produce conjunctive rules, ANDs of some Boolean at-
tributes derived from the features of examples in the domain.
We produce a k-DNF representation (ORs of ANDs of k
Boolean attributes). DNFs have widely been presumed to be
easy to interpret (Hayes and Shah 2017; Wang et al. 2015;
Hauser et al. 2010). A recent study suggests that while DNFs
are not uniquely easy to interpret, they at least satisfy many
of the necessary properties needed for interpretability, as
long as the formulas are small (Booth, Muise, and Shah
2019).

We now compare the performance of our algorithms for
this task to the beam-search algorithm for conjunctive con-
ditions proposed by Ribeiro et al. In particular, one evalua-
tion considered by Ribeiro et al. evaluates the average preci-
sion and coverage achieved when generating these explana-
tions for points drawn from a validation set. We compared
the performance of our algorithm to the method proposed
by Ribeiro et al. for one dataset (Lending) and the same set-
tings they used in this particular experiment. In particular,
we use our method to find a k-DNF reference class of a data
point as an explanation for that data point, with coverage that
matches that of the (conjunctive) anchor rule discovered by
Ribeiro et al., and we compare the precision of the two rules.
In the interest of achieving a balance between expressive
power, comprehensibility, and running time, we only con-
sidered 3-DNFs rules for our method. Code for the experi-
ments can be found at https://github.com/lihengxuan-wustl/
Refclass-KDNF.

We note that conjunctive rules, like our k-DNFs, can only
be written in terms of Boolean conditions, and we use the
same transformation of the real-valued and categorical fea-
tures to Boolean attributes as used by Ribeiro et al. In par-
ticular, categorical features are represented as literals assert-
ing that the categorical attribute takes a specific value. Af-
ter this transformation, the Lending data set has 36 Boolean
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Table 1: Average precision and coverage of explanations
Precision Coverage

anchor lime-t 3-dnf anchor lime-t 3-dnf

lr 95.6 81 82.6 10.7 21.6 33.6
gbt 96.2 81 82.5 9.7 20.2 35
nn 95.6 79.6 83.5 7.6 17.3 21

features. Since it is meaningless for more than one of these
binary features that belong to the same original categorical
feature to appear in the same term, we modified our algo-
rithm to only use terms that contain at most one literal for
each categorical feature. An example of such a 3-DNF ex-
planation on the Lending dataset is:
(loan history= >10 years and Employment= Employed and
total payment= <10000) or (grade=A and purpose=car and
term=60 months) or (fico range=800 and Loan status=Fully
paid and home ownership=mortgage) ⇒ Good Loan

Thus, using the same settings as Ribeiro et al. we split the
Lending dataset into three parts: a training set with 5635 ex-
amples, and a validation set and test set of 1134 examples
each. On the training set, we trained three different mod-
els: logistic regression (lr), 400 gradient boosted trees (gb)
and a multilayer perceptron with two layers of 50 units each
(nn). Then we utilized these models to predict each point in
the validation set to generate a corresponding c(x). For each
data point in the validation set, we set it as the distinguished
point x∗ for our reference class, and ran our algorithm (Al-
gorithm 2) using the training set to produce a 3-DNF refer-
ence class. We evaluated the precision and coverage of each
3-DNF on the (held-out) test set and averaged them to get
the reported values, shown in Table 1.

Discussion

We observe that our large 3-DNF algorithm performs better
than LIME (Ribeiro, Singh, and Guestrin 2016) (the baseline
chosen by Ribeiro et al.) both in terms of coverage and pre-
cision. Comparing to Anchors, while achieving nearly 3×
coverage, the precision of 3-DNF falls behind more than
10%. Although we set the target coverage for 3-DNF to be
the same as Anchors, the precision keeps improving as terms
are added, yielding the results above. On the other hand, the
performance of the 3-DNFs is guaranteed by our bound, but
Anchors (using conjunctions) cannot have such a theoretical
guarantee as discussed earlier. In any case, the representa-
tions are not strictly comparable, and conjunctions might be
better suited to some distributions, and 3-DNFs to others.

A downside of our large 3-DNF algorithm (compared to
Anchors and LIME) is that it is much more computation-
ally expensive. Our single-threaded Cython implementation
takes about two days to compute a reference class on this
data set. But, the outer loop that searches over terms that
contain the target element x∗ in Algorithm 1 can be safely
run in parallel. (The iterations do not depend on each other.)
Similarly, the runs of Algorithm 2 for different values of X
in Low Deg Partial 2 can also be safely run in parallel.1 We

1We also can only consider X of the form �(1 + γ)i	 for i =
1, 2, . . . , log |R|.

thus expect that the time to compute a reference class for
such a parallelized variant of the algorithm should decrease
roughly linearly with the number of cores available.

If a more computationally efficient method is needed, we
note that the much simpler and faster algorithm we gave
for small k-DNFs may be more appropriate. In experiments
with a similar, simple greedy baseline, Zhang et al. (2017)
found that their analogous algorithm for abduction gave only
a small improvement. Also, Hainline et al. (2019) used the
actual method of Juba et al. (2018) in their experiments, and
found it to be effective in practice. Thus, the small k-DNF
algorithm may present a more appealing trade-off.

Directions for future work

One undesirable property of our algorithm for finding large
reference classes is that it simply enumerates the choices of
sets containing x∗, and runs a greedy algorithm for each of
them. If the number of sets is large, this may substantially
increase the running time. It is natural to conjecture that
it is possible to simply make a greedy choice of set cov-
ering x∗ before the greedy algorithm would terminate, and
then continue the same as our algorithm given this choice.
This would eliminate the overhead from enumerating the
sets containing x∗, but this algorithm seems to be signifi-
cantly more difficult to analyze.

Furthermore, similar to the abduction task, we have no
idea whether or not the approximation ratios we achieve are
anywhere near optimal. The difficulty is partially that the
problem has an “agnostic improper learning” formulation,
which makes it very challenging to analyze.
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Appendix: proof of Lemma 10

We will need the following lemmas used by Zhang et
al. (2017):

Lemma 16 (Lemma 8, Zhang, Mathew, and Juba 2017)
There is an optimal μ-partial cover of U in which only the
final set in any greedy ordering may contain more than μ|U |
elements, and the collection of all prior sets covers fewer
than μ|U | elements.

Lemma 17 (Lemma 2, Slavı́k 1997) If {A1, . . . , A�} is an
optimal μ-partial cover of U , the greedy algorithm ob-
tains a cover of cost at most

∑�−1
s=1 w(As)H(|As|) +

w(A�)H(min{�μ|U |�, |A�|}).
We are given

w(G)

|G| ≤ 3H(m− |T ′|)w(O)

|O| (1)

and
|O| ≤ 3 |G| . (2)
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We want to prove

w(T ′) + w(G)

|T ′|+ |G| ≤ 3H(m− |T ′|)w(T
′) + w(O)

|T ′|+ |O| .

Clearing denominators, this is equivalent to

w(T ′) |T ′|+ w(T ′) |O|+ w(G) |T ′|+ w(G) |O| ≤
3H(m− |T ′|)w(T ′) |T ′|+ 3H(m− |T ′|)w(T ′) |G|
+ 3H(m− |T ′|)w(O) |T ′|+ 3H(m− |T ′|)w(O) |G| .

First, w(T ′) |T ′| ≤ 3H(m− |T ′|)w(T ′) |T ′|, so we can re-
duce the above to proving

w(T ′) |O|+ w(G) |T ′|+ w(G) |O| ≤
3H(m− |T ′|)w(T ′) |G|+ 3H(m− |T ′|)w(O) |T ′|
+ 3H(m− |T ′|)w(O) |G| .

Clearing denominators in inequality 1, we get

w(G) |O| ≤ 3H(m− |T ′|)w(O) |G| . (3)

Given the terms from inequality 3, we only need to prove

w(T ′) |O|+ w(G) |T ′| ≤
3H(m− |T ′|)w(T ′) |G|+ 3H(m− |T ′|)w(O) |T ′| .

Multiplying both sides of inequality 2 by w(T ′), we have

w(T ′) |O| ≤ 3w(T ′) |G|
which can be further loosened to get

w(T ′) |O| ≤ 3H(m− |T ′|)w(T ′) |G| . (4)

Also, combining Lemma 16 and Lemma 17, we get

w(G) ≤ H(m− |T ′|)w(O)

so we have

w(G) |T ′| ≤ 3H(m− |T ′|)w(O) |T ′| . (5)

Combining inequalities 4 and 5 completes the proof.
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