
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Absum: Simple Regularization Method for Reducing
Structural Sensitivity of Convolutional Neural Networks

Sekitoshi Kanai,1,2 Yasutoshi Ida,1,3 Yasuhiro Fujiwara,4 Masanori Yamada,5 Shuichi Adachi2

1NTT Software Innovation Center, 2Keio University, 3Kyoto University
4NTT Communication Science Laboratories, 5NTT Secure Platform Laboratories

sekitoshi.kanai.fu@hco.ntt.co.jp, yasutoshi.ida@ieee.org,
{yasuhiro.fujiwara.kh, masanori.yamada.cm}@hco.ntt.co.jp, adachi@appi.keio.ac.jp

Abstract

We propose Absum, which is a regularization method for im-
proving adversarial robustness of convolutional neural net-
works (CNNs). Although CNNs can accurately recognize im-
ages, recent studies have shown that the convolution oper-
ations in CNNs commonly have structural sensitivity to spe-
cific noise composed of Fourier basis functions. By exploiting
this sensitivity, they proposed a simple black-box adversarial
attack: Single Fourier attack. To reduce structural sensitiv-
ity, we can use regularization of convolution filter weights
since the sensitivity of linear transform can be assessed by
the norm of the weights. However, standard regularization
methods can prevent minimization of the loss function be-
cause they impose a tight constraint for obtaining high ro-
bustness. To solve this problem, Absum imposes a loose con-
straint; it penalizes the absolute values of the summation of
the parameters in the convolution layers. Absum can improve
robustness against single Fourier attack while being as simple
and efficient as standard regularization methods (e.g., weight
decay and L1 regularization). Our experiments demonstrate
that Absum improves robustness against single Fourier attack
more than standard regularization methods. Furthermore, we
reveal that robust CNNs with Absum are more robust against
transferred attacks due to decreasing the common sensitivity
and against high-frequency noise than standard regularization
methods. We also reveal that Absum can improve robustness
against gradient-based attacks (projected gradient descent)
when used with adversarial training.

Introduction

Deep neural networks have achieved great success in many
applications, e.g., image recognition (He et al. 2016) and
machine translation (Vaswani et al. 2017). Specifically,
CNNs and rectified linear units (ReLUs) have resulted in
breakthroughs in image recognition (LeCun et al. 1989;
Nair and Hinton 2010) and are de facto standards for im-
age recognition and other applications (He et al. 2016;
Radford, Metz, and Chintala 2016). Though CNNs can clas-
sify image data as accurately as humans, they are sensitive
to small perturbations of inputs, i.e., injecting imperceptible
perturbations can make deep models misclassify image data.
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Such attacks are called adversarial attacks and the perturbed
inputs are called adversarial examples (Szegedy et al. 2013).

We can roughly divide adversarial attacks into two types;
white-box attacks, which use the information of target mod-
els (Goodfellow, Shlens, and Szegedy 2014; Madry et al.
2018; Moosavi-Dezfooli, Fawzi, and Frossard 2016), and
black-box attacks, which do not require the information of
target models (Papernot, McDaniel, and Goodfellow 2016;
Chen et al. 2017; Papernot et al. 2017). Black-box attacks,
rather than white-box attacks, can threaten online deep-
learning services since it is difficult to access the target
models in online deep-learning applications (Papernot et al.
2017; Yuan et al. 2019).

Most black-box attacks are transferred attacks, which are
generated as white-box attacks for substitute models instead
of the target model (Papernot, McDaniel, and Goodfellow
2016). This implies that deep models have common sensitiv-
ity against specific perturbations. In fact, Tsuzuku and Sato
(2019) have recently shown that CNNs have the structural
sensitivity from the perspective that convolution can be re-
garded as the product of the circulant matrix and proposed
single Fourier attack (SFA).1 Fourier basis functions create
singular vectors of circulant matrices, and SFA uses these
singular vectors since the dominant singular vector can be
the worst noise for a matrix-vector product. Although SFA is
a very simple attack composed of a single-frequency compo-
nent, it is universal adversarial perturbations for CNNs, i.e.,
it can decrease the classification accuracy of various CNN-
based models without using the information about the model
parameters and without depending on input images. To the
best of our knowledge, a defense method against SFA has
not been proposed. Therefore, such a method is necessary.

To defend CNNs against SFA, we first reveal that the
spectral norm constraint (Sedghi, Gupta, and Long 2019)
(hereinafter, we call it SNC) can reduce the structural sen-
sitivity. While SNC was proposed to improve generalization
performance, it can improve robustness in the Fourier do-
main since singular values of convolution layers correspond
to the magnitude of the frequency response. However, SNC
is not so practical since it requires high computational cost
to compute the spectral norm (the largest singular value).

1Yin et al. (2019) concurrently proposed the same attack.
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We then develop Absum; an efficient regularization method
for reducing the structural sensitivity of CNNs. Instead of
the spectral norm, we use the induced ∞-norm (L∞ oper-
ator norm) since it is the upper bound of the spectral norm
for convolution. However, a constraint of the induced ∞-
norm, which is equivalent to L1 regularization, requires a
tight constraint for robustness, which prevents minimization
of the loss function. This is because the induced ∞-norm
is a conservative measure; it handles the effects of negative
inputs even though inputs always have positive values after
ReLU activations. To improve robustness without prevent-
ing the loss minimization, Absum relaxes the induced ∞-
norm by penalizing the absolute values of the summations
of weights instead of elements on the basis that input vec-
tors always have positive elements. Absum is as simple as
standard regularization methods such as weight decay, but
it can reduce sensitivity to SFA. We provide the proximal
operator to minimize loss functions with Absum.

Image recognition experiments on MNIST, Fashion-
MNIST (FMNIST), CIFAR10, CIFAR100, SVHN, and Im-
ageNet demonstrate that Absum and SNC outperform L1

and L2 regularization methods in terms of improving ro-
bustness against SFA, and the computation time of Absum
is about one-tenth that of SNC. In the additional empiri-
cal evaluation, we reveal that robust CNNs against SFA can
be robust against transferred attacks by using white-box at-
tacks (projected gradient descent: PGD (Kurakin, Goodfel-
low, and Bengio 2016; Madry et al. 2018)). This implies that
sensitivity to SFA is one of the causes of the transferability
of adversarial attacks. As a further investigation, we reveal
that adversarial perturbations for CNNs trained with Absum
and SNC have little high-frequency components, i.e., these
CNNs are robust against high-frequency noise. Furthermore,
our experiments show that Absum is effective against PGD
when using adversarial training.

The following are main contributions of this paper:

• We show that SNC improves robustness against SFA.
SNC was proposed to improve generalization perfor-
mance, but effectiveness in robustness against SFA had
not been evaluated.

• We propose Absum and its proximal operator. Absum im-
proves robustness against SFA as well as SNC while its
computational cost is lower than that of SNC.

• In the futher empirical evaluation, Absum and SNC can
also improve robustness against other black-box attacks
(transferred attacks and High-Frequency attacks (Wang
et al. 2019)). In addition, Absum can improve robustness
against PGD when used with adversarial training.

Preliminaries

CNNs, ReLUs and Circulant Matrix

In this section, we outline CNNs, ReLUs, and a circulant
matrix for convolution operation. Let X∈Rn×n be an input
map, Y ∈ Rn×n be an output map, and K ∈ Rn×n be a
filter matrix such that K = [k1,k2, . . . ,kn]

T , where ki =
[ki,1, ki,2 . . . , ki,n]

T ∈ Rn. The output of the convolution

operation Y =K ∗X becomes
Yl,m =

∑n
p=1

∑n
q=1 kp,qXl+p−1,m+q−1. (1)

Note that when the filter size is h×h and h < n, we can em-
bed it in the n×n matrix K by padding with zeros (Sedghi,
Gupta, and Long 2019). After the convolution, we usually
use ReLU activations as the following function:

ReLU(x) = max(x, 0). (2)
Typical model architectures use a combination of convolu-
tion and ReLU. For example, a standard block of ResNet
(He et al. 2016) is composed as
h(X)=ReLU(X+BN(K(2)∗ReLU(BN(K(1)∗X)))), (3)

where BN is batch normalization (Ioffe and Szegedy 2015).
Since SFA and Absum are based on a circulant matrix for

convolution operation, we show that the convolution can be
expressed as a product of a vector and doubly block circu-
lant matrix. Let x = vec(X) and y = vec(Y ) be vectors
obtained by stacking the columns of X and Y , respectively.
Convolution K ∗X can be written as

y = Ax, (4)

where A ∈ Rn2×n2

is the following matrix:

A=

⎡
⎢⎢⎢⎣

c(k1) c(k2) . . . c(kn)
c(kn) c(k1) . . . c(kn−1)

...
. . .

...
c(k2) c(k3) . . . c(k1)

⎤
⎥⎥⎥⎦, c(ki)=

⎡
⎢⎢⎢⎣

ki,1, ki,2, . . . , ki,n
ki,n, ki,1, . . . , ki,n−1

...
. . .

...
ki,2, ki,3, . . . , ki,1

⎤
⎥⎥⎥⎦.

(5)

The coefficients ki,j are cyclically shifted in c(ki)∈Rn×n,
and block matrices c(ki) are cyclically shifted in A. There-
fore, A is called a doubly block circulant matrix.

Single Fourier Attack

As mentioned above, convolution can be written by a doubly
block circulant matrix. Such matrices always have eigenvec-
tors Q = 1

nF ⊗F , where elements of F are composed of
the Fourier basis Fl,m = exp(−j 2π

n lm), where j =
√
−1

(Jain 1989; Sedghi, Gupta, and Long 2019; Tsuzuku and
Sato 2019), and singular vectors are also composed of F⊗F
even if we stack convolution layers (Tsuzuku and Sato 2019;
Karner, Schneid, and Ueberhuber 2003). From these charac-
teristics, Tsuzuku and Sato (2019) proposed SFA. The per-
turbed input image X̂ by SFA is
X̂=X+ε((1+j)(F )l⊗(F )m+(1−j)(F )n−l⊗(F )n−m), (6)

where (F )l ∈ Rn is the l-th column vector of F , X is
an input image, and ε is magnitude of the attack. SFA
is composed of (F )l ⊗ (F )m and its complex conjugate
(F )n−l⊗ (F )n−m to create a perturbation that has real val-
ues since inputs of CNNs are assumed to be real values. The
l and m are hyperparameters such that l = 0, 1, . . . , n −
1,m=0, 1, . . . , n−1. Figure 1 shows examples of CIFAR10
perturbed by SFA. We can see that (l,m) determines a
space-frequency of the noise. Note that stacked convolution
layers without activation functions (e.g., A(2)A(1)x) also
have singular vectors composed of Fourier basis functions.
Even though we use nonlinear activation functions, many
model architectures (e.g., WideResNet, DenseNet-BC, and
GoogLeNet) are sensitive to SFA (Tsuzuku and Sato 2019).
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Figure 1: Examples perturbed by SFA.

Vulnerability of CNNs in Frequency Domain

Sensitivity to SFA can be regarded as sensitivity to a single-
frequency noise (Yin et al. 2019). To understand the vul-
nerability of CNNs, several studies focused on sensitiv-
ity of CNNs in the frequency domain (Yin et al. 2019;
Wang et al. 2019; Das et al. 2018; Liu et al. 2019). These
studies point out that sensitivity to high-frequency com-
ponents in images is one of the causes of adversarial at-
tacks since human visual systems are not sensitive to high-
frequency components unlike CNNs. In fact, several studies
show that CNNs are sensitive to high-frequency noise (Jo
and Bengio 2017; Wang et al. 2019; Yin et al. 2019; Das et
al. 2018). Jo and Bengio (2017) and Wang et al. (2019) show
that CNNs misclassify images processed by low-pass filters
and Wang et al. (2019) call this a High-Frequency attack,
which is a simple black-box adversarial attack. There is a
hypothesis that robust CNNs against high-frequency noise
are also robust against adversarial attacks (Wang et al. 2019;
Yin et al. 2019). Note that Wang et al. (2019) claimed that
sensitivity in the high-frequency domain contributes to high
performance on clean data; thus, there is a trade-off.

Related Work

Adversarial attacks can be transferred to other models and
transferred white-box attacks become adversarial black-box
attacks (Papernot et al. 2017). These attacks can be defended
against by adversarial training, which is a promising defense
method (Papernot et al. 2017; Madry et al. 2018). However,
the computational cost of adversarial training is larger than
naive training. Note that Absum can be used with adver-
sarial training. Several studies proposed black-box attacks
using queries to ask the target model about predicted la-
bels of given data, but these attacks might still be imprac-
tical since they require many queries (Chen et al. 2017;
Brendel, Rauber, and Bethge 2018; Ilyas et al. 2018). On
the other hand, SFA only uses the information that the target
model is composed of CNNs and is more practical.

Our method simply penalizes parameters in a similar
manner compared to standard regularization methods. As
standard regularization methods, L2 regularization (weight
decay) is commonly used for improving generalization per-
formance due to its simplicity. L1 regularization is also used
since it induces sparsity (Goodfellow, Bengio, and Courville
2016). In addition, spectral norm (induced 2-norm) reg-
ularization can also improve generalization performance
(Yoshida and Miyato 2017; Sedghi, Gupta, and Long 2019).

Defense Methods against SFA

In this section, we first show that SNC can improve robust-
ness against SFA. Since SNC has a large time complexity,
we next discuss whether standard regularizations can be al-
ternatives. Finally, we discuss Absum and its proximal oper-
ator, which is an efficient defense method against SFA.

Spectral Norm Constraint

SFA is based on the following properties of linear transform:

σ(A)=max||x||2=1 ||Ax||2, v=argmax||x||2=1 ||Ax||2, (7)

where σ is the largest singular value (spectral norm or in-
duced 2-norm), and v is the right singular vector correspond-
ing to σ. Equation (7) shows that the singular vector can
be the worst noise for linear transform, and SFA uses the
singular vectors for convolutional layers. Since the spectral
norm determines the impact of SFA, we can reduce sensi-
tivity to SFA by constraining the spectral norm. The con-
straint of the spectral norm for CNNs (i.e., SNC) (Sedghi,
Gupta, and Long 2019; Gouk et al. 2018) was proposed in
the context of improving generalization performance. SNC
clips σ if it exceeds a preset threshold; thus, it can directly
control sensitivity to a single-frequency perturbation. How-
ever, the constraints of the exact spectral norm2 of A incurs
large computation cost; the O(n2c2(c + log(n))) time for
each convolution when input size is n×n, and the numbers
of input and output channels are c even if we use the efficient
spectral norm constraints (Sedghi, Gupta, and Long 2019).
SNC can be infeasible when the size of inputs increases.

Standard Regularizations fail to Defend

Instead of using the spectral norm, we can assess the effect
of the perturbation for linear transform by using

max||x||∞=1 ||Ax||∞. (8)

Equation (8) is the induced ∞-norm ||A||∞, and we have
||A||2 ≤ ||A||∞ for convolution (it is proved in appendix).
This norm is calculated as:

||A||∞ = maxl
∑

m |Al,m|. (9)

Substituting eq. (5) for eq. (9), we have

maxl
∑

m |Al,m| =
∑

m

∑
l |kl,m|. (10)

Thus, the penalty of the induced∞-norm can be L1 regular-
ization (Gouk et al. 2018). Therefore, L1 regularization can
improve robustness. However, the induced∞-norm is a con-
servative measure of robustness (Szegedy et al. 2013); the
highly weighted L1 regularization for robustness can pre-
vent minimization of the loss function. Figure 2 shows the
test accuracy of models, which is trained with L1 regular-
ization, on data perturbed by SFA against the regularization
weight λ. In this figure, the robust accuracy against SFA in-
creases along with the regularization weight, i.e., the robust-
ness increases according to the regularization weight. How-
ever, the accuracy significantly decreases when the weight

2Spectral norm regularization of (Yoshida and Miyato 2017) is
more efficient but uses heuristics and its spectral norm is often quite
different from that of A (Sedghi, Gupta, and Long 2019; Gouk et
al. 2018).
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Figure 2: Accuracy of models trained with L1 regularization
on test dataset perturbed by SFA vs regularization weight.
l,m of SFA are tuned to minimize accuracy for each λ.

Figure 3: Comparison of search spaces of Absum: |k1 + k2|
(blue) and L1 regularization: |k1|+ |k2| (red) where f(θ) is
loss function. We have {k|

∑
i |ki| ≤ c} ⊆ {k| |

∑
i ki| ≤

c} for any constant c ≥ 0 from triangle inequality.

exceeds a certain point. This is because training with high
weighted L1 regularization does not have sufficient search
space to minimize the loss function. Note that weight decay
can also penalize the spectral norm (in appendix) and im-
poses tight regularization, as discussed in the experiments
section. Therefore, we need a weak regularization method
such that models become both highly robust and accurate.

Absum: Simple and Weak Regularization

To develop a weak regularization method, we reconsider
the optimization problem of eq. (8). The maximum point
(eq. (9)) is achieved by xm = sign(Al′,m), where l′ =
argmaxl

∑
m|Al,m|, i.e., xm=1 if Al′,m>0 and xm=−1

if Al′,m<0. However, we should consider the sign of input
in practice because we usually use ReLUs as activation func-
tions. As described in eq. (3), ReLUs are used before con-
volution as K ∗ReLU(·). Thus, x cannot have negative el-
ements, i.e., xm cannot be sign(Al′,m) when sign(Al′,m)=
−1. Therefore, the induced∞-norm can overestimate sensi-
tivity to the perturbation. From this insight, we consider the
norm of Ax when x=1 instead of eq. (8)
||A1||∞ = maxl |

∑
m Al,m| = |

∑
m

∑
l kl,m|. (11)

For robustness, we use this value as the regularization term.3
We call our method Absum since this value is the absolute
value of the summation of the filter coefficients.

The objective function of training with Absum is
minθ

1
N

∑N
p=1 f(θ,Xp,Yp)+λ

∑L
i=1 g(K

(i)), (12)

g(K(i))= |
∑n

m=1

∑n
l=1 k

(i)
l,m|,

3Absum is not an upper bound of the induced norms but empir-
ically achieves good performance as shown in Experiments.

where f(·) is a loss function, Xp and Yp are the p-th training
image and label, respectively, θ is the parameter vector in-
cluding K(i) in the model, and λ is a regularization weight.
The K(i) is the filter matrix of the i-th convolution, and L
is the number of convolution filters.4 Figure 3 shows search
spaces of Absum (blue) and L1 regularization (red) when we
have two parameters. The constraint of Absum is looser than
L1 regularization because a large element k(i)l,m 
 0 is al-

lowed if a small element k(i)l′,m′�0 satisfies |k(i)l,m|= |k
(i)
l′,m′ |.

Even if |
∑

l

∑
mkl,m|= 0, the search space of Absum is a

n2−1 dimensional space {K|K ∈ Rn×n,
∑

l

∑
mkl,m =

0} while that of L1 regularization is a point K = O if∑
l

∑
m|kl,m|=0. Note that the search space of weight de-

cay is also the point K = O when ||K||F = 0. Therefore,
the loss function with Absum can be lower than that with L1

regularization and weight decay if we use a large λ.
Note that when the filter size is h×h and h<n, we only

need to compute |
∑h

m=1

∑h
l=1kl,m| since zeros padded in

K do not affect eq. (12) (hereafter, we use h instead of n).

Proximal Operator for Absum

Since g(K) is not differentiable at
∑

l

∑
mkl,m=0, the gra-

dient method might not be effective for minimizing eq. (12).
To minimize eq. (12), we use a proximal gradient method,
which can minimize a differentiable loss function with a
non-differentiable regularization term (Parikh, Boyd, and
others 2014). We now introduce proximal operator for Ab-
sum. For clarity, let k̄ be k̄=vec(K)= [kT

0 , . . . ,k
T
h−1]

T ∈
Rh2

. The proximal operator for λg(k̄) is

proxλg(k̄)=

⎧⎪⎨
⎪⎩
k̄+λ1 if

∑
l

∑
m kl,m<−h2λ,

k̄−
∑

l

∑
mkl,m

h2 1 if − h2λ≤
∑

l

∑
m kl,m≤h2λ,

k̄−λ1 if
∑

l

∑
m kl,m>h2λ.

(13)

The following lemmas show that eq. (13) is the proximal
operator for Absum:
Lemma 1. If k̄ = [k̄1, . . . , k̄n̄]

T ∈ Rn̄, g(k̄) = |
∑

i k̄i| is
a convex function.
Lemma 2. If k̄ = [k̄1, . . . , k̄n̄]

T ∈ Rn̄, u ∈ Rn̄ and
g(k̄) = |

∑
i k̄i|, we have

proxλg(k̄)=argminu
1
2 ||u− k̄||22 + λ|

∑
i ui| (14)

=

⎧⎪⎨
⎪⎩
k̄ + λ1 if

∑
i k̄i < −n̄λ,

k̄ −
∑

i k̄i

n̄ 1 if − n̄λ ≤
∑

i k̄i ≤ n̄λ,

k̄ − λ1 if
∑

i k̄i > n̄λ.

(15)

The proofs of lemmas are provided in appendix. Lemma 1
shows that we can use the proximal gradient method, and
Lemma 2 shows that the proximal operator of Absum can be
obtained as the closed-form of eq. (15). By using the prox-
imal operator after stochastic gradient descent (SGD), we
update the i-th convolution filter:

k̄(i)←proxηλg(k̄
(i)−η∇k̄(i)

1
B

∑B
b=1 f(θ,Xb,Yb)) (16)

4We penalize the filter matrix for each channel. If one convolu-
tion layer has c1 output channels and c2 input channels, the regu-
larization term becomes λ

∑c1
l=1

∑c2
m=1 g(K

(l+(m−1)c1)).
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where η is a learning rate, and B is a minibatch size. We
can compute the proximal operator in O(h2) time for each
convolution when the filter size is h × h because we only
need to compute the summation of parameters and elemen-
twise operations. We can also compute weight decay and
L1 regularization in O(h2) since the number of parameters
in each convolution is h2. Therefore, the order of computa-
tional complexity of Absum is the same as those of weight
decay and L1 regularization. When we have c input chan-
nels and c output channels, the computational costs of Ab-
sum, weight decay, and L1 regularization are O(c2h2) and
less than that of SNC O(c2n2(c+ log(n))) where n ≥ h.

Note that the loss function f for training deep neural net-
works is usually non-convex while g(K) is convex. Several
studies investigate the proximal gradient method when f is
non-convex (Li and Lin 2015), and Wen et al. (2016) use
the proximal gradient method for inducing sparse structures
in deep learning. We observed that the algorithm of Absum
can find a good parameter point during the experiments. In
appendix, we compared Absum using the proximal gradient
method with Absum using the automatic differentiation.

Experiments

We discuss the evaluation of the effectiveness of SNC and
Absum in improving robustness against SFA. Next, we show
that Absum is more efficient than SNC especially when the
size of input images and models are large. Finally, as the
further investigation, we discuss the evaluation of the per-
formance of Absum and SNC in terms of robustness against
transferred attacks, vulnerability in frequency domain, and
robustness against PGD when used with adversarial train-
ing. To evaluate effectiveness, we conducted experiments of
image recognition on MNIST (LeCun et al. 1998), FMNIST
(Xiao, Rasul, and Vollgraf 2017), CIFAR10, CIFAR100
(Krizhevsky and Hinton 2009), SVHN (Netzer et al. 2011),
and ImageNet (ILSVRC2012) (Krizhevsky, Sutskever, and
Hinton 2012). We compared Absum and SNC with standard
regularizations (weight decay (WD) and L1 regularization).

Experimental Conditions

We provide details of the experimental conditions in ap-
pendix. In all experiments, we selected the best regular-
ization weight from among [101, 100, . . . , 10−7] for Absum
and standard regularization methods, and the best spectral
norm σ from among [0.01, 0.1, 0.5, 1.0, 10] for SNC. In
SNC, we clipped σ once in 100 iterations due to the large
computational cost. For MNIST and FMNIST, we stacked
two convolutional layers and two fully connected layers
and used ReLUs as activation functions. For CIFAR10,
CIFAR100, SVHN, and ImageNet, the model architecture
was ResNet-18 (He et al. 2016). Additionally, we evalu-
ated GoogLeNet (Szegedy et al. 2015) and DenseNet121
(Huang et al. 2017) on CIFAR10. We used SFA with l,m∈
{0, 1, . . . , 27} and ε = 80/255 on MNIST and FMNIST,
and l,m∈{0, 1, . . . , 31} and ε=10/255 on CIFAR10, CI-
FAR100, SVHN, and ImageNet.

In addition, we used PGD to evaluate robustness against
transferred attacks and white-box attacks since PGD is

a sophisticated white-box attack. We evaluated robustness
against PGD when we used adversarial training (Kurakin,
Goodfellow, and Bengio 2016; Madry et al. 2018) with each
method since Absum can be used with it. Model architec-
tures were the same as in the experiments involving SFA.
The hyperparameter settings for PGD were based on (Madry
et al. 2018). The L∞ norm of the perturbation ε was set to
ε = 0.3 for MNIST and FMNIST and ε = 8/255 for CI-
FAR10, CIFAR100, and SVHN at training time. For PGD,
we updated the perturbation for 40 iterations with a step size
of 0.01 on MNIST and FMNIST at training and evaluation
times, and on CIFAR10, CIFAR100, and SVHN, for 7 it-
erations with a step size of 2/255 at training time and 100
iterations with the same step size at evaluation time.

Effectiveness and Efficiency

Robustness against SFA Table 1 lists the accuracies of
each method on test data perturbed by SFA and selected λ
and σ. In this table, Avg. denote robust accuracies against
SFA averaged over (l,m), and Min. denotes minimum accu-
racies among hyperparameters (l,m), i.e., robust accuracies
against optimized SFA. CLN denotes accuracies on clean
data. The λ and σ are selected so that Avg. would become the
highest. In Tab. 1, Absum and SNC are more robust against
SFA compared with WD and L1. Although SNC is more ro-
bust than Absum on CIFAR10 and CIFAR100, clean accu-
racies of SNC are less than those of Absum and the compu-
tation time of SNC is larger than that of Absum as discussed
below. Due to the computation cost, we could not evaluate
SNC on ImageNet.

Figure 4 shows the test accuracies of the methods on
MNIST and CIFAR10 perturbed by SFA against regulariza-
tion weights. In this figure, min and max denote the min-
imum and maximum test accuracies among (l,m), respec-
tively, and avg. denotes test accuracies averaged over (l,m).
All methods tend to increase their minimum accuracy (re-
sults of SFA with optimized (l,m)) according to the reg-
ularization weight. However, L1 and WD significantly de-
crease in accuracy when the regularization weight is higher
than 10−1. On the other hand, Absum with the high reg-
ularization weight does not decrease in accuracy. Figure 5
shows the lowest training loss 1

N

∑
f in training on CI-

FAR10 against λ. WD and L1 with a large λ prevent mini-
mization of the training loss. On the other hand, Absum with
a large λ can decrease the training loss because the search
space of K(i)∈Rh×h has h2−1 dimensional space even if
g(K(i))=0. In conclusion, standard regularization methods
might not be effective in improving robustness against SFA
because the high regularization weight imposes too tight of
constraints to minimize the loss function. On the other hand,
Absum imposes looser constraints; thus, we can improve ro-
bustness while maintaining classification performance. The
results of other datasets are almost the same as Fig. 4.

Computational Cost To confirm the efficiency of Absum,
we evaluated the runtime for one epoch. We also evalu-
ated the runtime of the forward and backward processes
of ResNet-18 for one image when input size increases by
using random synthetic three channels images whose sizes
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Table 1: Accuracies on datasets perturbed by SFA.
Avg. Min. CLN λ and σ

Absum WD L1 SNC Absum WD L1 SNC Absum WD L1 SNC Absum WD L1 SNC

MNIST 98.64 98.59 98.48 98.55 94.76 86.84 78.01 91.79 99.14 99.10 99.18 99.10 10−2 10−3 10−4 10
FMNIST 83.11 83.09 82.49 82.60 60.12 47.57 58.38 55.36 88.46 86.99 87.05 87.50 10−3 10−2 10−3 10
CIFAR10 (ResNet18) 79.05 69.09 66.44 85.57 53.90 11.44 15.64 73.99 89.69 94.73 93.41 88.37 10−1 10−4 10−6 0.5
CIFAR10 (GoogLeNet) 75.77 73.47 73.53 86.42 47.27 35.64 38.12 78.26 92.26 92.83 93.34 89.54 10−3 10−3 10−4 0.1
CIFAR10 (DenseNet121) 70.48 64.07 65.30 83.71 15.09 18.53 16.80 70.26 92.72 94.31 94.00 85.26 10−3 10−5 10−7 0.1
CIFAR100 48.69 42.97 38.99 60.42 16.32 5.23 9.84 45.05 68.72 67.05 71.68 62.76 10−3 10−6 10−7 1
SVHN 93.34 91.74 91.14 93.20 73.69 60.36 57.52 62.90 95.93 96.37 96.20 95.42 10−3 10−3 10−7 0.1
ImageNet (Top 1) 26.59 9.92 5.18 N/A 15.06 4.39 1.01 N/A 58.51 70.70 64.63 N/A 10−2 10−4 10−4 N/A
ImageNet (Top 5) 48.51 20.15 12.29 N/A 31.29 10.64 3.08 N/A 81.17 89.71 85.79 N/A 10−2 10−4 10−4 N/A
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Figure 4: Accuracy on test datasets perturbed by SFA vs λ
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were 32×32, 64×64, 128×128, 256×256, 512×512, and
1024×1024 with 10 random labels. The results are shown
in Fig. 6. As shown in Fig. 6 (a), Absum is about ten times
faster than SNC on 32 × 32 image datasets with ResNet18.
The runtime of SNC is comparable to those of other methods
on MNIST and FMNIST because we use only two convolu-
tion layers, and image sizes of these datasets are smaller than
other datasets. In Fig. 6 (b), the runtime of Absum does not
increase significantly compared with SNC and the increase
in the runtime of Absum is similar to those of standard reg-
ularization methods. This is because the computational cost
of Absum does not depend on the size of input images. Since
SNC incurs large computational cost and depends on the in-
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Figure 6: Computation time

Table 2: Robust accuracy against transferred PGD attacks.
w/o Reg. denotes results of training without regularization.

Absum WD L1 SNC w/o Reg.

MNIST (ε=0.2) 76.34 48.94 66.48 71.30 65.87
FMNIST (ε=0.2) 30.08 3.46 18.35 21.31 19.74

CIFAR10 (ε=4/255) 26.29 18.48 15.66 48.85 15.85
CIFAR100 (ε=4/255) 18.57 17.40 16.68 36.57 16.68

SVHN (ε=4/255) 49.11 40.49 52.79 46.36 54.39

put size, we could not evaluate the runtime when the image
width is larger than 256.

Extensive Empirical Investigation

Robustness against Transferred Attacks Sensitivity to
SFA is caused by convolution operation and is universal for
CNNs. This sensitivity might be a cause of transferability
of adversarial attacks, and robust CNNs against SFA can be
robust against transferred attacks. To confirm this hypothe-
sis, we investigate sensitivity to transferred PGD. We gen-
erate adversarial examples by using the substitute models
that were trained under the same setting as that presented
in the previous section but with different random initial-
izations. We used these substitute models rather than com-
pletely different models because they can be regarded as one
of the worst-case instances for transferred attacks (Madry et
al. 2018). The accuracies on these adversarial examples are
listed in Tab. 2. Absum and SNC improve robustness com-
pared to WD and L1. Tables 1 and 2 imply that the method of
improving robustness against SFA can also improve robust-
ness against the transferred attacks. This is the first study
that shows the relation between robustness against SFA and
against transferred white-box attacks.
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Figure 7: Power spectra of PGD perturbations on CIFAR10.
Magnitudes in low-frequency and high-frequency domains
are located near center and edge of each figure, respectively.
They are normalized as in (0, 1) after logarithmic transform.

Table 3: Robust accuracy against High-Frequency attacks.
Absum WD L1 SNC w/o Reg.

MNIST 99.00 98.98 99.10 98.97 99.01
FMNIST 84.15 83.91 82.56 84.30 84.03
CIFAR10 64.51 52.82 47.01 82.11 47.46

CIFAR100 41.44 36.15 31.53 61.22 31.80
SVHN 52.95 28.11 17.03 18.75 11.13

Sensitivity in Frequency Domain Several studies show
that CNNs are sensitive to high-frequency noise unlike hu-
man visual systems since CNNs are biased towards high-
frequency information (Wang et al. 2019; Yin et al. 2019).
From the robustness against SFA, which is regarded as
single-frequency noise, Absum and SNC can be expected
not to bias CNNs towards high-frequency information. To
confirm this hypothesis, we first investigate the power spec-
tra of adversarial perturbations of models trained using
each method. Next, we investigate robustness against High-
Frequency attacks, which remove high-frequency compo-
nents of image data. High-Frequency attacks have a hyper-
parameter of radius that determines the cutoff frequency, and
we set it as half the image width. In these experiments, λ and
σ are the same as those in Tab. 1.

Figure 7 shows the power spectra of PGD perturbations
on CIFAR10 and Tab. 3 lists the accuracies on the test data
processed by High-Frequency attacks. In Fig. 7, we shift
low frequency components to the center of the spectrum and
power spectra are averaged over test data and RGB chan-
nels. This figure shows that vulnerabilities of WD and L1

are biased in the high-frequency domain, while vulnerability
of SNC is highly biased in the low-frequency domain. The
power spectrum of Absum is not biased towards a specific
frequency domain. Due to these characteristics, SNC and
Absum are more robust against High-Frequency attacks than
WD and L1 (Tab. 3). Since human visual systems can per-
ceive low-frequency noise better than high-frequency noise,
attacks for Absum and SNC might be more perceptible than
attacks for WD and L1. Note that we observed that Absum is
more robust against high-pass filtering than SNC. This result
supports that Absum does not bias CNNs towards a specific
frequency domain while SNC biases CNNs towards the low-
frequency domain.

Robustness against PGD with Adversarial Training Ta-
ble 4 lists the accuracies of models trained by adversarial
training on data perturbed by PGD. When using adversarial

Table 4: Accuracies (%) on test datasets perturbed by PGD.
MNIST Adversarial training

ε 0.05 0.10 0.15 0.20 0.25 0.30

Absum λ = 10−3 96.01 94.92 93.75 92.73 91.59 90.78

WD λ = 10−4 92.97 91.34 89.69 88.02 87.05 85.96
L1 λ = 10−4 93.12 91.86 90.60 89.28 88.25 87.06
SNC σ = 10 91.92 89.43 86.77 83.89 80.24 76.92
w/o Reg. 91.57 89.85 88.43 86.87 85.76 84.86

FMNIST Adversarial training

Absum λ = 10−3 66.94 65.92 65.77 65.52 65.24 64.95

WD λ = 10−5 65.38 63.64 62.91 62.60 62.11 61.96
L1 λ = 10−6 66.13 64.16 62.95 62.23 61.64 61.66
SNC σ = 10 51.58 49.33 47.31 45.85 44.86 44.04
w/o Reg. 63.36 61.66 61.15 60.97 60.46 60.26

CIFAR10 Adversarial training

ε 4/255 8/255 12/255 16/255 20/255

Absum λ = 10−5 69.42 49.39 30.22 15.03 6.54

WD λ = 10−5 69.48 49.38 29.37 14.45 6.06
L1 λ = 10−5 68.99 49.45 29.51 14.68 6.31
SNC σ = 10 68.47 48.74 29.07 14.32 6.04
w/o Reg. 68.46 48.77 29.20 14.50 6.08

CIFAR100 Adversarial training

Absum λ = 10−4 42.19 27.25 15.89 8.47 4.14
WD λ = 10−7 41.14 27.05 15.90 8.26 4.28

L1 λ = 10−4 40.75 26.14 14.45 7.61 3.67
SNC σ = 10 40.90 26.61 15.53 8.32 4.13
w/o Reg. 40.70 26.24 14.85 7.94 3.86

SVHN Adversarial training

Absum λ = 10−5 77.78 52.74 27.39 11.97 5.50
WD λ = 10−7 76.66 50.40 25.05 10.86 5.04
L1 λ = 10−6 76.50 51.49 27.10 12.12 5.63
SNC σ = 1.0 77.23 50.80 25.24 11.04 5.03
w/o Reg. N/A N/A N/A N/A N/A

training, Absum improves robustness against PGD, the high-
est among regularization methods, on almost all datasets.
This implies that sensitivity to SFA is one of the causes
of vulnerabilities of CNNs. The λ of Absum tends to be
higher than the λ of WD and L1; thus, Absum can also im-
prove robustness against PGD without preventing minimiza-
tion due to its looseness. Note that Absum does not improve
robustness against PGD whithout adversarial training since
the structural sensitivity of CNNs does not necessarily cause
all vulnerabilities of CNN-based models. Even so, Absum is
more effective than other standard regularizations since it
can efficiently improve robustness against black-box attacks
(SFA, transferred attacks, and High-Frequency attacks) and
enhance adversarial training, as discussed above.

Conclusion

We proposed Absum; an efficient defense method against
SFA that can reduce the structural sensitivity of CNNs with
ReLUs while its computational cost remains comparable to
standard regularizations. By reducing the structural sensitiv-
ity, Absum can improve robustness against not only SFA,
but also transferred PGD, and High-Frequency attacks. Due
to its simplicity, Absum can be used with other methods, and
Absum can enhance adversarial training of PGD.
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Appendix

Proofs of Lemmas

In this section, we provide the proofs of the lemmas in the
paper.

Lemma 1. If k̄ = [k̄1, . . . , k̄n̄]
T ∈ Rn̄, g(k̄) = |

∑n̄
i k̄i| is

a convex function.

Proof. If g(·) is a convex function, we have g(tx + (1 −
t)y) ≤ tg(x) + (1 − t)g(y), where t ∈ [0, 1] and ∀x,y ∈
Rn̄. Thus, we investigate J = tg(x)+(1− t)g(y)−g(tx+
(1− t)y), and if J ≥ 0, we prove the lemma. We have

J =t|
∑

i xi|+ (1− t)|
∑

i yi| − |
∑

i(txi + (1− t)yi)|,
=|t

∑
i xi|+ |(1− t)

∑
i yi| − |t

∑
i xi + (1− t)

∑
i yi|, (17)

since t ≥ 0 and 1 − t ≥ 0. Let α = t
∑

i xi and β =
(1− t)

∑
i yi; thus, we have J = |α|+ |β| − |α+ β|. From

the triangle inequality, we have J ≥ 0; thus, this completes
the proof.

Lemma 2. If k̄ = [k̄1, . . . , k̄n̄]
T ∈ Rn̄, u ∈ Rn̄ and

g(k̄) = |
∑n̄

i k̄i|, we have

proxλg(k̄) =argminu
1
2 ||u− k̄||22 + λ|

∑n̄
i ui|

=

⎧⎪⎨
⎪⎩
k̄ + λ1 if

∑n̄
i k̄i < −n̄λ,

k̄ −
∑n̄

i ki

n̄ 1 if − n̄λ ≤
∑n̄

i k̄i ≤ n̄λ,

k̄ − λ1 if
∑n̄

i k̄i > n̄λ.

Proof. For clarity, let J = 1
2 ||u−k̄||22+λ|

∑n̄
i ui|. We have

three cases; (a)
∑n̄

i ui>0, (b)
∑n̄

i ui<0, and (c)
∑n̄

i ui=

0. In (a), we have |
∑n̄

i ui|=
∑n̄

i ui, and ∂J
∂ui

=ui−k̄i+λ=0

at the optimal point. Therefore, ui= k̄i−λ, and the solution
becomes u= k̄−λ1. The condition is

∑n̄
i ui=

∑n̄
i k̄i−n̄λ>

0, i.e.,
∑n̄

i k̄i > n̄λ. In (b), we have |
∑n̄

i ui| = −
∑n̄

i ui,
and we can optimize J = 1

2 ||u−k̄||22−λ
∑n̄

i ui in the same
manner as (a). As a result, u= k̄+λ1 if

∑n̄
i k̄i<−n̄λ. In (c),

|
∑n̄

i ui| is non-differentiable, but we can use subgradient v
such as |

∑n̄
i zi|≥|

∑n̄
i ui|+vT (z−u). Let B be B={u±

rei|i = 1, . . . , n} where small r>0 and ek be the standard
basis; thus, we have M=maxz∈B |

∑
i zi|= |

∑
i ui± r| =

r when |
∑

i ui| = 0. As a result, v is bounded as ||v||∞ ≤
M−|∑i ui|

r =1. We then have ∂J
∂ui

=ui − k̄i+λvi = 0; thus,
u= k̄ − λv. Since ||v||∞≤1, we have −n̄λ≤λ

∑
vi≤ n̄λ.

Thus, the condition becomes −n̄λ ≤
∑

i k̄i ≤ n̄λ since∑
i ui =

∑
i k̄i + λ

∑
i vi =0. By substituting u= k̄ − λv

into J , we have J = 1
2 ||λv||22 subject to

∑
i vi =

∑
i ki

λ and
||v||∞ ≤ 1. Thus, the minimum point is v1 = v2 = . . . =

vn̄=
∑

i ki

n̄λ , i.e., v=
∑

i ki

n̄λ 1. Therefore, u= k̄−
∑

i ki

n̄ 1 is the
minimum point when −n̄λ ≤

∑
i k̄i ≤ n̄λ. This completes

the proof.

Inequality of Induced Norms for Convolution

The u+n(v−1)-th singular value of a doubly circulant ma-
trix A can be written as σu,v = |

∑
l,m kl,mexp(j 2π

n (ul +

vm))| (not arranged in descending order), and we have

||A||2 = maxu,v σu,v ≤
∑

l,m |kl,m| ≤ ||A||∞. Therefore,
the spectral norm of A is bounded above by the induced∞-
norm as ||A||2≤||A||∞.

Next, we explain that L2 regularization (weight decay:
WD) can constrain the induced norm of a convolutional
layer. The L2 regularization term of the convolution fil-
ter K ∈ Rn×n is

∑n
l

∑n
mk2l,m. On the other hand, the

square of the Frobenius norm of A becomes ||A||2F =∑n2

l

∑n2

m A2
l,m = n2

∑n
l

∑n
m k2l,m. Thus, if we use the L2

regularization, we constrain the Frobenius norm of A. In
addition, let M be m × m matrices. We have ||M ||2 ≤
||M ||F , ||M ||∞√

m
≤ ||M ||2 ≤

√
m||M ||∞ where ||·||2 is the

induced 2-norm, which is the largest singular value. From
the above inequalities, we have ||A||∞

n ≤ ||A||2 ≤ ||A||F ,
and thus, if we decrease the Frobenius norm of A, the in-
duced 2-norm and∞-norms are also decreased.

Experimental Conditions

We had roughly two experimental conditions according to
the dataset. Our experiments ran once for each hyperparam-
eter. We assumed that all images were divided by 255 and
pixels had the values between 0 and 1. In addition, MNIST,
CIFAR10 and CIFAR100 were standardized as (mean, stan-
dard deviation)=(0,1) before the images were applied to the
models as preprocessing. In the evaluation of robustness, we
standardized input images by using the means and standard
deviations of clean data after adversarial perturbation. The
computation graph of the standardization was preserved in
gradient-based attacks; thus, perturbations of PGD were op-
timized while considering this preprocess.

MNIST and Fashion-MNIST For MNIST and Fashion-
MNIST (FMNIST), we stacked two convolutional layers
and two fully connected layers, the first convolutional layer
had the 10 output channels and the second convolutional
layer had 20 output channels. The kernel sizes of the con-
volutional layers were 5, their strides were 1, and we did
not use zero-padding in these layers. After each convolu-
tional layer, we applied max pooling (the stride was 2) and
ReLU activation. The output of the second convolutional
layer was applied to the first fully connected layer (the size
was 320 × 50), and we used the ReLU activation after the
first fully connected layer. The size of the second fully con-
nected layer was 50×10, and we used softmax as the output
function. After the second convolution layer and before the
second fully connected layer, we applied 50 % dropout. We
trained the model for 100 epochs by using Momentum SGD
(the learning rate of 0.01 and momentum of 0.5). We set the
minibatch size to 64. For fair comparison, all regularization
methods were applied to only convolution filter parameters.

CIFAR10, CIFAR100, SVHN, and ImageNet For
SVHN, we used cropped digits, which were cropped as
32 × 32. The model architecture was ResNet-18 for CI-
FAR10, CIFAR100, and SVHN (He et al. 2016).5 As the
preprocessing for training, given images were randomly

5Our training settings are based on the open source of
https://github.com/kuangliu/pytorch-cifar.
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cropped as 32× 32 after padding a sequence of four on each
border of the images. Horizontal flip was randomly applied
to images with a probability of 0.5. We trained the model
for 350 epochs with Momentum SGD (momentum 0.9). The
initial learning rate was set to 0.1, and after 150 and 250
epochs, we divided the learning rate by 10. We set the mini-
batch size to 128. For ImageNet, we used hyperparameters
in the example code of PyTorch except for regularization
weight, and we trained models for 240 epochs. For fair com-
parison, all regularization methods were applied to only con-
volution filter parameters.

Note that about 20 % of SVHN have the class label of
‘1’. Due to the class imbalance, models output class ‘1’ re-
gardless of input images in some hyperparameter settings.
In this case, the robust accuracies are always about 20%;
thus, these models sometimes outperform properly trained
models in terms of robust accuracy. However, these results
are not meaningful, and we do not list them in the tables.
For the other datasets, we also do not list the results of the
models that output one class regardless of input images.

High-Frequency Attack To evaluate robustness in the
frequency domain, we used High-Frequency attacks. High-
Frequency attacks can be regarded as low-pass fil-
teres, which remove high-frequency components. In High-
Frequency attacks (Wang et al. 2019), we first apply discrete
Fourier transform (DFT) F to data X as Z = F(X). Next,
we decompose the low- and high-frequency components as

Zl
i,j =

{
Zi,j if d((i, j), (ci, cj)) ≤ r

0 otherwise
, (18)

Zh
i,j =

{
0 if d((i, j), (ci, cj)) ≤ r

Zi,j otherwise
, (19)

where Zl
i,j and Zh

i,j are elements of low- and high-frequency
components in the frequency domain, respectively, (ci, cj) is
a centroid of the image, d(·, ·) is the Euclidean distance, and
r is a radius that determines the cutoff frequency. Finally, we
apply the inverse DFT to Zl as X l = F−1(Zl), and X l is
an input image attacked by High-Frequency attacks. While r
is gradually reduced and accuracies are iteratively evaluated
for each r in (Wang et al. 2019), we used fixed r as half of
the image width since we just focus on comparing Absum
with other methods.

Computational Cost We used one NVIDIA Tesla V100
GPU and 32 Intel(R) Xeon(R) Silver 4110 CPUs, and our
implementation used Python 3.6.8, pytorch 0.4.1, CUDA
9.0, and numpy 1.11.3. Note that we used numpy to compute
the FFT and singular value decomposition, which is difficult
to parallelize, in SNC. The model architectures and training
process were the same as those of the experiments involving
SFA. We used λ = 10−4 and σ = 1.0.

Robustness against PGD We evaluated Absum with ad-
versarial training (Goodfellow, Shlens, and Szegedy 2014)
because Absum and other regularization methods can be
used with adversarial training. In these experiments, we used
advertorch (Ding, Wang, and Jin 2019) to generate adversar-
ial examples of PGD.
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Figure 8: Convergence of the proximal gradient method.

Model architectures and training conditions were almost
the same as those discussed in MNIST and Fashion-MNIST
and CIFAR10, CIFAR100, SVHN, and ImageNet Sections.
The number of epochs for MNIST and FMNIST was set
to 100 in adversarial training since adversarial training re-
quired more epochs than naive training in this experiment.
On the other hand, we observed overfitting in the adversar-
ial training on CIFAR10, CIFAR100, and SVHN. Therefore,
we trained the model for 150 epochs with Momentum SGD
(momentum 0.9). The initial learning rate was set to 0.1, and
after 50 and 100 epochs, we divided the learning rate by 10.
We also applied weight decay of 10−4 to all parameters on
CIFAR10 and CIFAR100 in the adversarial training of PGD
since overfitting easily occurred in adversarial training on
these datasets.

In PGD, the L∞ norm of the perturbation ε was set to
ε=[0.05, 0.1, 0.15, 0.2, 0.25, 0.4] for MNIST and FMNIST,
and ε = [4/255, 8/255, 12/255, 16/255, 20/255] for CI-
FAR10 at evaluation time. For PGD, we updated the pertur-
bation for 40 iterations with a step size of 0.01 on MNIST
and FMNIST at training and evaluation times. On CIFAR10,
CIFAR100, and SVHN, we updated the perturbation for 7 it-
erations with a step size of 2/255 at training time and 100 it-
erations at evaluation time. The starting points of PGD were
randomly initialized from a uniform distribution of [-2/255,
2/255]. For adversarial training, we used training data per-
turbed by PGD with ε = 0.3 on MNIST and ε = 8/255
on CIFAR10, CIFAR100, and SVHN. In adversarial train-
ing, we only used adversarial examples of training data. The
above conditions are based on (Madry et al. 2018).

Effectiveness of proximal operator

To evaluate the proximal operator for Absum, we compared
the convergence of the proximal gradient method with that
of automatic differentiation based optimization; i.e. we cal-
culate the gradient of 1

N

∑
f+λ

∑
g by automatic differen-

tiation of PyTorch and minimize it by SGD. Note that in the
automatic differentiation, the derivative at |

∑
l

∑
m kl,m|=

0 is 0. Figure 8 shows 1
N

∑
f + λ

∑
g and 1

N

∑
f on CI-

FAR10 against epochs when λ = 0.01. Prox. is the result
of the proximal gradient method and AutoGrad. is the result
of the automatic differentiation based optimization. In this
figure, AutoGrad does not effectively minimize the regular-
ization term λg while it can minimize the loss function f .
On the other hand, the proximal gradient method minimizes
the loss function and regularization term.
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