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Abstract

We present a novel framework of knowledge distillation that
is capable of learning powerful and efficient student models
from ensemble teacher networks. Our approach addresses the
inherent model capacity issue between teacher and student
and aims to maximize benefit from teacher models during dis-
tillation by reducing their capacity gap. Specifically, we em-
ploy a neural architecture search technique to augment useful
structures and operations, where the searched network is ap-
propriate for knowledge distillation towards student models
and free from sacrificing its performance by fixing the net-
work capacity. We also introduce an oracle knowledge dis-
tillation loss to facilitate model search and distillation us-
ing an ensemble-based teacher model, where a student net-
work is learned to imitate oracle performance of the teacher.
We perform extensive experiments on the image classifica-
tion datasets—CIFAR-100 and TinyImageNet—using vari-
ous networks. We also show that searching for a new student
model is effective in both accuracy and memory size and that
the searched models often outperform their teacher models
thanks to neural architecture search with oracle knowledge
distillation.

Introduction

Knowledge Distillation (KD) aims to transfer representa-
tions from one model to another, where the source plays a
role as a teacher while the target becomes a student mim-
icking the representations of the teacher. KD is widely used
to learn a compact student model with the help of a powerful
teacher model, e.g., a very deep neural network or an ensem-
ble of multiple neural networks. Existing algorithms related
to KD (Heo et al. 2019; Hinton, Vinyals, and Dean 2015;
Park et al. 2019; Romero et al. 2015; Zagoruyko and Ko-
modakis 2017; Zhang et al. 2018) are typically interested in
how to improve accuracy by designing an effective training
procedure.

Model ensemble (Breiman 1996; Freund, Schapire, and
Abe 1999; Guzman-Rivera, Batra, and Kohli 2012; Lee et
al. 2017; 2016; 2015; Mun et al. 2018) is a useful tech-
nique to boost performance using multiple models trained
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independently (or sometimes jointly). When we consider In-
dependent Ensemble (IE) in deep neural networks, multiple
neural networks of an identical architecture are trained with
different random seeds and the final output is determined
by model averaging or majority voting. Although ensemble
modeling is effective to achieve high accuracy with moder-
ate amount of effort, its inferences based on simple model
averaging or majority voting still have substantial gaps with
oracle predictions achieved by the best model selection in
the ensemble, and its applicability to resource-hungry sys-
tem is limited due to the large model size and heavy power
consumption.

Although KD with ensemble learning addresses the afore-
mentioned issues partly by transferring the information in an
ensemble model to a single network, it is still challenging
to train the competitive student compared to the ensemble
teacher with a large number of networks. Table 1 presents
our observation about the performance of KD with respect to
the number of models for ensemble. The accuracy of teacher
and student improves gradually in general as the number of
models increases while students mostly fail to reach accu-
racy of teachers and its differences are getting larger. This is
partly because a large gap in model capacity between student
and teacher hinders learning process of KD as discussed in
(Mirzadeh et al. 2019), and the simple objective function to
fit the representations of the teacher given by model averag-
ing is not effective to take full advantage of teacher models.
In other words, the limited capacity in the student network
becomes a bottleneck of KD, which implies that increasing
capacity of student models would be beneficial to reduce the
performance gap between teacher and student.

We propose an advanced framework for knowledge distil-
lation from ensemble models, which aims to maximize ac-
curacy and efficiency of student networks at the same time.
Contrary to the existing methods assuming that a student
model is fixed, we adapt its structure and size, and make
it more appropriate for knowledge distillation by alleviating
the model capacity gap issue. We also address how to effec-
tively extract information from a teacher especially when the
teacher is an ensemble of multiple models. To this end, stu-
dents are made to learn the most accurate information from
teacher, which is realized by transferring knowledge from
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Table 1: The performance comparison while varying the number of networks in an ensemble-based teacher model on the
CIFAR-100 dataset using ResNet-32 and DenseNet-40-12 networks. When the number of ensemble is 1, student and teacher
networks are identical.

number of ensemble ResNet-32 DenseNet-40-12
Teacher Student T-S Teacher Student T-S

1 69.11 - - 74.30 - -
2 73.77 73.84 -0.07 77.47 77.82 -0.35
3 75.57 74.12 1.45 78.70 78.03 0.67
4 76.36 74.10 2.26 79.32 78.16 1.16
5 76.87 74.67 2.20 79.77 78.43 1.34

the optimal ensemble combination for each example. We
call this strategy Oracle knowledge Distillation (OD), which
encourages student models to achieve oracle accuracy of en-
semble teacher models. Since the inherent model capacity
gap incurs critical challenges in KD and OD makes the ca-
pacity gap larger, we incorporate neural architecture search
with oracle knowledge distillation; this strategy facilitates to
identify the optimal student model with sufficient capacity,
which is well-suited for distillation. In practice, our algo-
rithm searches for a slightly larger model than the backbone
student network for effective knowledge distillation, reduces
the model capacity gap between student and teacher, and
achieves competitive accuracy of the student model.

The main contributions of our work are summarized as
follows:

• We propose a novel framework for knowledge distillation
by incorporating neural architecture search. The proposed
algorithm addresses capacity issue in KD and aims to
identify the optimal structures and operations with adap-
tive model sizes.

• Our algorithm introduces a novel oracle knowledge dis-
tillation loss, which is particularly useful for an ensemble
teacher model. We claim that the student networks mim-
icking oracle predictions have a potential for achieving
higher accuracy than the teacher especially when com-
bined with neural architecture search.

• We demonstrate outstanding performance of the proposed
method in diverse settings. We also make a comprehen-
sive analysis about knowledge distillation from ensemble
teacher models, including various issues related to model
capacity gap, objective function for architecture search,
and loss function for knowledge distillation.

The rest of the paper is organized as follows. We first dis-
cuss several related works. Then, we describe the details of
the proposed framework. Finally, we present extensive ex-
perimental results and concludes our paper.

Related Works

KD is originally proposed to learn compact and fast mod-
els and has widely been applied to many practical applica-
tions including object detection (Chen et al. 2017; Li, Jin,
and Yan 2017), face recognition (Luo et al. 2016) and image
retrieval (Chen, Wang, and Zhang 2018). The main idea of
KD is to transfer information from one model to another, and

it is realized by learning a student network to mimic the out-
put distributions of a teacher network (Hinton, Vinyals, and
Dean 2015). Recently, several approaches (Heo et al. 2019;
Park et al. 2019; Romero et al. 2015; Zagoruyko and Ko-
modakis 2017) have been proposed to improve performance
of KD. They address how to extract information better from
teacher networks and deliver it to students using the ac-
tivations of intermediate layers (Romero et al. 2015), at-
tention maps (Zagoruyko and Komodakis 2017), encoded
transportable factors (Kim, Park, and Kwak 2018), decision
boundary information obtained by adversarial samples (Heo
et al. 2019) or relational information between training exam-
ples (Park et al. 2019). Also, instead of transferring informa-
tion from teacher to student in one direction, (Zhang et al.
2018) proposes a mutual learning strategy, where both mod-
els are trained jointly through a bidirectional interactions.

In addition to model compression by learning small and
efficient models, the concept of knowledge distillation is of-
ten used for other purposes (Chen, Goodfellow, and Shlens
2016; Li and Hoiem 2016; Mun et al. 2018; Noroozi et al.
2018). For example, (Chen, Goodfellow, and Shlens 2016)
proposes a framework incrementally learning larger net-
works from small networks using knowledge distillation
while (Li and Hoiem 2016) employs the idea to overcome a
catastrophic forgetting issue in continual learning scenarios.
MCL-KD (Mun et al. 2018) utilizes distillation to balance
between model specialization and generalization within a
multiple choice learning framework for visual question an-
swering. On the other hand, (Noroozi et al. 2018) proposes
a novel framework of self-supervised learning by distilling
learned representations rather than fine-tuning the learned
parameters via self supervision for the target tasks.

Our work is different in the following two aspects com-
pared to the existing approaches. First, we address model
capacity issue in a student model by searching for an aug-
mented architecture appropriate for KD while prior meth-
ods are interested in how to improve the KD given a student
model with a fixed capacity. Second, although model ensem-
ble is suitable for KD and effectively constructs a powerful
teacher model, existing methods rely on a naı̈ve knowledge
transfer from teachers to students via model averaging or
majority voting. On the contrary, we employ oracle knowl-
edge distillation, which is based on an intuitive and effective
loss function for sophisticated knowledge transfer. Note that
the proposed loss function gives a chance to outperform the
teachers with simple model averaging for students.
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Figure 1: Comparison between standard KD and our proposed OD for the ensemble-based teacher model. In our approach, we
train a student network from only the correct models (red arrows) to imitate the oracle predictions of ensemble teacher.

Neural Architecture Search (NAS) is an AutoML tech-
nique to identify deep neural network models automatically,
which is useful to reduce human effort on manual architec-
ture design. For the purpose, Zoph and Le (Zoph and Le
2017) employ a RNN controller that searches for the optimal
models and is trained to maximize the expected reward—
accuracy in validation set—using REINFORCE (Williams
1992). While NAS often suffers from huge time complex-
ity for model search, ENAS (Pham et al. 2018) accelerates
searching process by sharing the weights in the building
blocks of all candidate networks. In addition to the accuracy
of target models, MnasNet (Tan et al. 2019) considers in-
ference latency in searching for the optimal model and per-
forms a joint optimization of accuracy and execution time
on mobile devices via reinforcement learning. DARTS (Liu,
Simonyan, and Yang 2018) and NAO (Luo et al. 2018) are
gradient-based algorithms realized by a continuous relax-
ation of architecture representation. PNAS (Liu et al. 2018)
incorporates a progressive search strategy to reduce search
cost using sequential model-based opimization. Recently,
the effectiveness of NAS on image classification tasks leads
to a variety of applications to semantic segmentation (Chen
et al. 2018; Liu et al. 2019) and object detection (Chen et al.
2019).

From the NAS perspective, our algorithm is unique be-
cause it deals with model capacity problems in the context
of knowledge distillation. Note that, instead of searching for
a student network architecture from scratch, we start model
search from the student network and increase the size of the
network to identify the optimal architecture.

Neural Architecture Search with

Oracle Knowledge Distillation

We propose a novel knowledge distillation framework us-
ing neural architecture search with an oracle knowledge dis-
tillation loss, which is designed for transfer learning from
ensemble-based teacher models. This is motivated by the
fact that knowledge distillation is less effective when the ca-
pacity gap (e.g., the number of parameters) between teacher
and student is large as discussed in (Mirzadeh et al. 2019).
Incorporating oracle knowledge distillation loss aggravates
the situation by forcing the student to face more challeng-
ing task (i.e., oracle performance of ensemble model). Note
that since our goal is to address this capacity issue, we are

interested in increasing model size from the student network
contrary to the more common direction of model compres-
sion (Ashok et al. 2018). We empirically show that the com-
bination of neural architecture search and oracle knowledge
distillation in searching and training networks is particularly
helpful to improve both accuracy and efficiency in various
scenarios.

Knowledge Distillation

KD (Hinton, Vinyals, and Dean 2015) aims to transfer
knowledge of a teacher network to a student. This objective
is typically achieved by minimizing the distance between the
output distributions of student and teacher. In other words,
given a ground-truth label y(i) and a representation (logit)
of a teacher network l

(i)
t for an example x(i), a student net-

work learns a representation l
(i)
s that minimizes distillation

loss LKD, which is given by

LKD(l
(i)
s , l

(i)
t , y(i)) = (1)

λLCE(l
(i)
s , y(i)) + (1− λ)LKL(l

(i)
s , l

(i)
t ),

where LCE(l
(i)
s , y(i)) means Cross-Entropy (CE) loss and

LKL(l
(i)
s , l

(i)
t ) denotes a loss term related to Kullback-

Leibler (KL) divergence. Each term is further defined as

LCE(l
(i)
s , y(i)) = H(σ(l(i)s ), y(i)), (2)

LKL(l
(i)
s , l

(i)
t ) = T 2DKL(σ(l

(i)
t /T )||σ(l(i)s /T )), (3)

where H(·, ·) and DKL(·, ·) are the cross-entropy and the
KL-divergence functions, respectively while σ(·) denotes a
softmax function and T is a temperature parameter. The stu-
dent network is trained to predict the correct labels by LCE
and imitates the output distribution of the teacher network
by LKL, where the two losses are balanced by a hyperpa-
rameter λ. The softmax distributions of student and teacher
networks are softened because the logits are scaled with the
temperature T ≥ 1 in LKL.

Conceptually, any network outperforming student net-
works can be used as a teacher model. In this work, we
consider the ensemble of student networks as the teacher
model due to the following two reasons; 1) model ensem-
ble is a straightforward method to improve accuracy of any
state-of-the-art network; 2) oracle prediction is available in
the ensemble model, which allows students to learn better
representation and achieve higher accuracy.
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Figure 2: Overview of our algorithm. Given a teacher model based on an ensemble of independently learned multiple student
networks, we search for a slightly larger network from a backbone network (i.e., student). LSTM controller provides candidate
networks by sampling add-on operations at the end of individual stages in the student. We train the controller by maximizing
the expected reward—accuracy of candidates on the validation set—while the candidates are learned with oracle knowledge
distillation loss (LOD). We maintain multiple candidate models throughout the optimization process and the best model below
the memory constraint is selected as a new student model and it is re-trained from scratch with LOD.

Oracle Knowledge Distillation

Ensemble learning is a powerful technique to improve accu-
racy by diversifying predictions of multiple models. In gen-
eral, on the model distillation, a student network is trained to
resemble the average predictions of an ensemble model as il-
lustrated in Figure 1(a) due to the absence of model selection
capability; for an ensemble teacher model with N networks,
the teacher logit l(i)t in Eq. (2) is obtained by averaging the
logits of the networks, i.e., l(i)t = 1

N

∑N
j=1 l

(i)
t,j . However,

only a subset of the models may predict correct labels, and,
consequently, the average predictions may be incorrect; the
ensemble model fails to achieve its oracle accuracy, which
can be realized by a proper model selection.

Inspired by this fact, we propose an oracle knowledge
distillation loss to improve the performance of distillation
from an ensemble teacher. Let u(i)

j be a binary variable about
whether the jth model in the ensemble teacher makes a cor-
rect prediction for an example x(i). Then, the student net-
work is trained to minimize the following loss given by the
ensemble of N networks:

LOD =

{
LKD(l

(i)
s , l̄

(i)
t , y(i)) if

∑N
j=1 u

(i)
j > 0

LCE(l
(i)
s , y(i)) otherwise

, (4)

where

l̄
(i)
t =

∑N
j=1 u

(i)
j l

(i)
t,j∑N

j=1 u
(i)
j

.

LOD encourages the student network to achieve the oracle
predictions of the ensemble model by mimicking the aver-
age predictions of correct models only as depicted in Fig-
ure 1(b). In the case that there are no correct models, we
make the student network fit to ground-truth labels. Since the
accuracy given by oracle predictions is always better than
average predictions, the trained student network has a po-
tential to outperform its teacher model that employs model
averaging and/or majority voting.

Optimal Model Search for Knowledge Distillation

The capacity issue in a student makes the student network
fail to take full advantage of ensemble model. To over-
come this challenge, we propose a novel Knowledge Dis-
tillation framework with Architecture Search (KDAS) using
the proposed oracle knowledge distillation loss designed for
ensemble-based teacher models. In the proposed framework,
our goal is to find a slightly larger network with sufficient ca-
pacity for distillation than the original student models. For
the purpose, we perform the operation search from the ar-
chitecture of a student and select the final model under the
memory constraint as illustrated in Figure 2.

Architecture search from backbone models Most archi-
tecture search algorithms (Liu et al. 2018; Liu, Simonyan,
and Yang 2018; Luo et al. 2018; Zoph and Le 2017) search
for an optimal architecture from scratch. However, we per-
form a backbone-based architecture search, where the archi-
tecture of the student network is used as the starting point
(i.e., backbone) and we augment a set of operations to the
backbone model during the search procedure. This strategy
can reduce search space significantly and facilitate to stabi-
lize the training process.

For the efficient and effective neural architecture search
to build a larger network from a backbone model, we put
add-on operations after the individual stages of the standard
convolutional neural networks; modern convolutional neu-
ral networks typically consist of a series of identical com-
ponents, each of which is called by stage, e.g., stacked con-
volutions in VGGNet (Simonyan and Zisserman 2015) and
stacked building blocks in ResNet (He et al. 2016). When
human manually designs higher capacity of the network,
each stage is often made deeper by adding more opera-
tions (He et al. 2016; Huang et al. 2017). Inspired by this
convention, we perform operation search at the end of indi-
vidual stages in the backbone network and identify compet-
itive model with minimal efforts. Assuming that the student
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backbone network S has k stages for feature extraction, i.e.,
S = {s1, s2, ..., sk}, the searched network Ŝ is represented
by Ŝ = {s1, ô1, s2, ô2, ..., sk, ôk}, where ô = {ô1, ..., ôk}
denotes a set of add-on operations. We do not perform op-
eration search in a classifier consisting of the global pooling
and fully-connected layers.

Search space We search for a network facilitating distil-
lation based on 7 operations with skip connections: an iden-
tity operation, convolutions with filter sizes 3×3 and 5×5,
depthwise-separable convolutions with filter sizes 3×3 and
5×5, and max pooling and average pooling of kernel size
3×3. Note that the output channel dimension of each new
convolutional layer is set to the input channel dimension of
the layer. Overall, there are 2

L(L−1)
2 ×7L candidate networks

in the whole search space when we add L layers in total to
the backbone model.

Optimization We train an LSTM controller to sample an
architecture for the oracle knowledge distillation from the
predefined search space; learning the LSTM controller is
achieved via REINFORCE (Williams 1992) by alternating
the following two steps: 1) sampling an architecture using
the LSTM controller and training it for the predefined num-
ber of iterations with the proposed oracle distillation loss
(LOD) and 2) updating the LSTM controller based on the
reward of the trained model.

Specifically, let us denote the learnable parameters of the
LSTM controller by θ. Then, the controller is trained to max-
imize the expected reward J(θ) as follows:

J(θ) ≡ Em∼π(m;θ)[R(m)], (5)

where π(m; θ) is a policy of the controller and R(m) de-
notes the reward (i.e., validation accuracy) from a sampled
architecture m. Using Monte-Carlo methods, the expected
gradient on the sampled architectures is given by

∇θJ(θ) = Em∼π(m;θ)[R(m)∇θ log π(m; θ)]

≈ 1

N

N∑
j=1

[R(mj)∇θ log π(mj ; θ)], (6)

where N is the number of sampled architectures. To reduce
the variance, the reward R(mj) is replaced by R(mj) − b,
where b is a baseline function given by a moving aver-
age of the past rewards. Following ENAS (Pham et al.
2018), we perform an efficient learning scheme; certain lay-
ers with their parameters in multiple candidate networks can
be shared and the reward is computed only on a batch rather
than a whole validation set.

Network selection with memory constraint After con-
vergence of the controller, we select the most accurate and
efficient model as follows:

m∗ = argmax
m

R(m), s.t. |m| ≤ M, (7)

where |m| denotes the amount of memory spent to store the
parameters in a sampled network m and M is the mem-
ory constraint for model selection. The selected model is
re-trained from scratch with the proposed oracle knowledge
distillation loss LOD.

Experiments

This section presents performance of the proposed algorithm
in comparison to existing methods. We also discuss charac-
teristics of our approach obtained from in-depth analysis.

Experimental Setup

Datasets We evaluate our algorithm on the image classifi-
cation task using CIFAR-100 and TinyImageNet datasets.
CIFAR-100 dataset (Krizhevsky 2009) is composed of
50,000 training and 10,000 testing images in 100 classes,
where the size of image is 32×32. TinyImageNet dataset
contains 100,000 and 10,000 images from 200 object classes
with their size 64×64 for training and validation, respec-
tively. For architecture search, 10% of training images are
held out as training-validation set to compute reward. For
both datasets, we perform the preprocessing of subtract-
ing means and dividing by standard deviations in individual
RGB channels, and employ the standard data augmentation
techniques such as random cropping with zero padding and
horizontal flipping.

Implementation details We employ publicly available
ENAS (Pham et al. 2018) code1 for neural architecture
search implementation in TensorFlow (Abadi et al. 2016).
Given a searched network or networks designed by human,
we optimize the networks for 300 epochs using SGD with
Nesterov momentum (Sutskever et al. 2013) of 0.9, a weight
decay of 0.0001 and a batch size of 128. Following (lan, Zhu,
and Gong 2018), the initial learning rate is set to 0.1, and is
divided by 10 at 150th and 225th epoch, respectively. We
also perform warm-up strategy (He et al. 2016) with learn-
ing rate of 0.01 with ResNet-110 until 400th and 900th it-
erations for CIFAR-100 and TinyImagenet datasets, respec-
tively. For KD and OD, a temperature T is fixed 3 and a bal-
ancing factor λ is set to 0. We train all models 3 times and
report their average and standard deviation for score reports.

Experimental Results

Main results We perform extensive experiments on the
two datasets to investigate the effectiveness of architecture
search and oracle knowledge distillation loss. In this exper-
iment, we consider the following types of models, (i) M1: a
teacher model of ResNet-32×5, (ii) M2-4: a student model
of ResNet-32, (iii) M5-10: two baseline models designed
by human, which are ResNet-62 and ResNet-110 having 2x
and 4x model size of student, (iv) M11-19: three variants of
KDAS models searched by different losses, where we con-
straint model size up to 2x of student We train all models
except teacher using one out of three loss functions, LCE,
LKD and LOD, as presented in Table 2.

Table 2 presents the results and we can obtain following
observations. First, as we claimed earlier, the student net-
works trained by distillation losses (M3-4) suffer from ca-
pacity and complexity issues and fail to achieve compet-
itive accuracy. Second, manually designed networks with
higher capacity (i.e., ResNet-62 and ResNet-110) partly ad-
dress the capacity issue, where their accuracy is proportional

1https://github.com/melodyguan/enas
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Table 2: Ablation studies varying combinations of loss in searching (LS) and training (LT) networks on CIFAR-100 and Tiny-
ImageNet datasets. We employ a ResNet-32 network as the student model and ensemble of five student networks (i.e., ResNet-
32×5) as the teacher model whose oracle accuracies (%) are 87.79 and 75.30 in CIFAR-100 and TinyImageNet. The bold-faced
and italic numbers mean the best algorithm in accuracy for each model and each dataset, respectively.

Model LS LT
CIFAR-100 TinyImageNet Network

identified byAccuracy Memory Accuracy Memory
M1 Teacher - LCE 76.87 2.35M 62.59 2.38M

-M2
Student -

LCE 69.11 ± 0.24
0.47M

54.14 ± 0.65
0.48MM3 LKD 74.67 ± 0.10 58.68 ± 0.09

M4 LOD 74.77 ± 0.02 58.66 ± 0.25
M5

ResNet-62 -
LCE 72.06 ± 0.31

0.96M
58.62 ± 0.16

0.97M

Man-Made

M6 LKD 76.09 ± 0.20 61.05 ± 0.31
M7 LOD 75.89 ± 0.19 61.25 ± 0.14
M8

ResNet-110 -
LCE 73.77 ± 0.19

1.73M
60.24 ± 0.45

1.74MM9 LKD 76.77 ± 0.52 62.03 ± 0.03
M10 LOD 76.68 ± 0.17 62.66 ± 0.53

M11
NAS LCE

LCE 74.55 ± 0.51
0.97M

62.01 ± 0.60
0.90M

AutoML

M12 LKD 76.85 ± 0.33 62.10 ± 0.17
M13 LOD 77.05 ± 0.23 62.57 ± 0.11
M14

KDAS (ours) LKD

LCE 74.56 ± 0.35
0.93M

62.92 ± 0.10
0.95MM15 LKD 76.97 ± 0.08 62.34 ± 0.10

M16 LOD 77.04 ± 0.33 62.73 ± 0.09
M17

KDAS (ours) LOD

LCE 75.14 ± 0.26
0.89M

62.60 ± 0.11
0.87MM18 LKD 76.92 ± 0.33 62.17 ± 0.12

M19 LOD 77.27 ± 0.11 63.04 ± 0.17

to the memory size of network. This result implies that in-
creasing capacity of student networks is helpful for reduc-
ing performance gap between student and teacher. It is also
noticeable that ResNet-110 in TinyImageNet can achieve
marginally higher accuracy than teacher by applying LOD.
Third, the networks identified by KDAS with distillation
(M15-16, M18-19) are consistently better than Man-Made
Networks (MMNs), ResNet-62 and ResNet-110, even with
smaller memory size. Fourth, training networks with LOD
shows the best accuracy in most cases of KDAS. One excep-
tion is when the model is searched with LKD but trained with
LCE. In this case, the network outperforms the teacher even
without distillation, which implies that the teacher would
have a negative impact on the student with LKD. However,
LOD still encourages a student to learn better representation
and the student outperforms the teacher model (see M14-
16 on TinyImageNet). Finally, the full KDAS model (M19)
with LOD in both architecture search and training achieves
the best accuracy even including teacher model. This result
shows that the combination of architecture search with LOD
is particularly well-suited for improving accuracy of a stu-
dent network.

Comparison with traditional NAS To validate the ne-
cessity of NAS along with knowledge distillation, we con-
duct NAS without a distillation loss in searching for net-
works and then train the searched networks with KD and OD
losses. As presented in Table 2, the NAS baseline networks
(M12-13) perform worse than the architectures identified by
KDAS with OD (M18-19). Also, note that even with LCE,
the network identified by KDAS (M17) provides better per-
formance than the counterpart (M11).

0.55M

0.80M

0.89M
1.17M 1.40M

1.68M

2.35M1.73M

0.96M

0.47M

1.91M

Figure 3: Accuracies varying memory size of networks
given by KDAS on the CIFAR-100 dataset with the back-
bone student network ResNet-32.

Analysis on varying memory size We analyze perfor-
mance of student models with different sizes obtained by
KDAS on CIFAR-100 dataset. Note that teacher is based on
five ResNet-32 models. We search for the student network
architectures by varying memory constraint from 1.5× to
4× of the base student model (0.47M). For comparison, we
also train MMNs using the standard knowledge distillation
loss (LKD), which are selected to be 2× larger than the base
student model. Figure 3 shows that KDAS models outper-
form MMNs in terms of both accuracy and efficiency; these
results support the benefit of architecture search for KD.
Note that KDAS models larger than 0.89M (2× larger than
the base model) achieve better accuracies than the teacher
model thanks to the oracle knowledge distillation loss.
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Table 3: Results with various networks on the CIFAR-100 dataset. We use ResNet-218, WideResNet-76-1, WideResNet-28-2,
WideResNet-28-4 networks as MMN of student ResNet-110, WideResNet-40-1, WideResNet-16-2 networks, and WideResNet-
16-4 networks, respectively. Numbers in bold and italic denote the best and second-best models including the teacher model.

Method LS LT
ResNet-110 WideResNet-40-1 WideResNet-16-2 WideResNet-16-4

Accuracy Memory Accuracy Memory Accuracy Memory Accuracy Memory
Teacher - LCE 79.24 8.67M 77.53 2.85M 77.77 3.52M 79.49 13.86M
Student - LCE 73.77 ± 0.19 1.73M 69.96 ± 0.15 0.57M 71.16 ± 0.30 0.70M 75.17 ± 0.24 2.77M
Student - LKD 76.77 ± 0.52 1.73M 74.72 ± 0.23 0.57M 75.42 ± 0.04 0.70M 78.59 ± 0.34 2.77M
MMN - LKD 77.39 ± 0.21 3.48M 76.48 ± 0.15 1.15M 76.97 ± 0.05 1.48M 79.28 ± 0.16 5.87M
KDAS LOD LOD 79.01 ± 0.28 2.73M 76.70 ± 0.25 1.14M 77.83 ± 0.23 1.30M 79.79 ± 0.24 5.47M

Table 4: Performance comparison with other KD algorithms on the CIFAR-100 dataset. We use a single ResNet-110 network
as a teacher model. The bold number means the highest accuracy.

Student CE KD DML BSS TAKD KDAS (0.91M)
ResNet-62 (0.96M) 71.73 ± 0.03 74.57 ± 0.18 72.98 ± 1.07 73.06 ± 0.53 75.18 ± 0.13

75.82 ± 0.32ResNet-68 (1.05M) 71.77 ± 0.06 74.82 ± 0.09 73.39 ± 0.70 73.43 ± 0.21 75.45 ± 0.12

Evaluation with other networks To validate the model-
agnostic property of our algorithm, various student models
have been evaluated on CIFAR-100 dataset. Table 3 summa-
rizes the results from the tested backbone architectures in-
cluding ResNet-110, WideResNet-40-1, WideResNet-16-2,
and WideResNet-16-4 (Zagoruyko and Komodakis 2016),
where networks identified by KDAS with OD consistently
outperform corresponding MMNs with comparable memory
sizes while showing competitive or outperforming perfor-
mance compared to teacher models.

Comparison with other KD methods Although our work
focuses on distillation from ensemble teacher models, we
also compare KDAS with other KD approaches including
KD (Hinton, Vinyals, and Dean 2015), DML (Zhang et al.
2018), BSS (Heo et al. 2019) and TAKD (Mirzadeh et al.
2019). For the fair comparisons with other KD methods,
we follow BSS (Heo et al. 2019) implementation environ-
ments2 using PyTorch (Paszke et al. 2017). Contrary to the
main experiments, we use a single model teacher given by
ResNet-110 and train two student networks of ResNet-62
and ResNet-68 for other KD methods while we search for
a student network with comparable size to ResNet-62 from
a base model of ResNet-32 and train the searched network
with KD. For TAKD, we employ ResNet-86 as a teacher as-
sistant (TA) network. Table 4 shows that the model identified
by KDAS outperforms other methods in both accuracy and
memory size even without the proposed oracle knowledge
distillation loss, which is not available in this experiment.
This result implies that searching for student architectures is
a promising direction for knowledge distillation.

Practical benefit of OD over KD The advantage of OD
over KD comes from their different characteristics on train-
ing examples. OD may be useless if all the constituent mod-
els in an ensemble teacher network predict correct answers
for most of training examples. However, in reality, the aver-
age training accuracy of all 5 models in the teacher is clearly
lower than 100% as seen in Table 5. We also present the dis-

2https://github.com/bhheo/BSS distillation

Table 5: Training accuracy of single ResNet-32 network on
CIFAR-100 and TinyImageNet datasets. We also present the
percentage of training examples in terms of the number of
models that predict correctly.

Dataset # of models that predict correctly Training
Acc.1 2 3 4 5

CIFAR-100 0.5 1.0 2.6 8.9 86.9 94.04
TinyImageNet 6.3 6.8 8.7 14.3 49.6 70.28

tribution of the training examples in terms of the number of
models predicting correct answers, and the statistics demon-
strates that many training examples in each dataset can take
advantage of OD. In particular, the objectives of OD and
KD are different for more than half of the training examples
(i.e., 50.4%) in TinyImageNet, and it implies that the accu-
racy gains in OD can be significant compared to KD. Indeed,
Table 2 illustrates that the benefit of OD is more salient in
TinyImageNet, which is natural because the dataset is more
challenging and the trained models are less competitive.

Conclusion

We propose a novel framework of oracle knowledge dis-
tillation with neural architecture search especially designed
for ensemble teacher models. The proposed framework ad-
dresses the capacity and complexity issues, and aims to
find a desirable architecture with additional memory, which
mimics oracle predictions of ensemble model more accu-
rately. We empirically show that the combination of archi-
tecture search and oracle knowledge distillation successfully
provides high-performance student models in both accuracy
and memory size, and most of the searched networks achieve
competitive performances to teacher models. We believe that
our framework searching for an optimal student network is
a promising research direction of knowledge distillation.

Acknowledgments We truly thank Tackgeun You for
helpful discussion. This work was partly supported by Sam-

4410



sung Advanced Institute of Technology (SAIT) and Insti-
tute for Information & Communications Technology Promo-
tion (IITP) grant funded by the Korea government (MSIT)
[2017-0-01778, 2017-0-01780].

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.;
Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. 2016. Ten-
sorflow: A System for Large-Scale Machine Learning. In 12th
{USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), 265–283.
Ashok, A.; Rhinehart, N.; Beainy, F.; and Kitani, K. M. 2018. N2N
Learning: Network to Network Compression via Policy Gradient
Reinforcement Learning. In ICLR.
Breiman, L. 1996. Bagging Predictors. Machine learning
24(2):123–140.
Chen, G.; Choi, W.; Chen, X.; Han, T. X.; and Chandraker, M. K.
2017. Learning Efficient Object Detection Models with Knowledge
Distillation. In NIPS.
Chen, L.-C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.;
Schroff, F.; Adam, H.; and Shlens, J. 2018. Searching for Ef-
ficient Multi-Scale Architectures for Dense Image Prediction. In
NeurIPS.
Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Pan, C.; and Sun, J. 2019.
DetNAS: Neural Architecture Search on Object Detection. arXiv
preprint arXiv:1903.10979.
Chen, T.; Goodfellow, I. J.; and Shlens, J. 2016. Net2Net: Accel-
erating Learning via Knowledge Transfer. In ICLR.
Chen, Y.; Wang, N.; and Zhang, Z. 2018. DarkRank: Accelerating
Deep Metric Learning via Cross Sample Similarities Transfer. In
AAAI.
Freund, Y.; Schapire, R.; and Abe, N. 1999. A Short Introduction
to Boosting. Journal-Japanese Society For Artificial Intelligence
14(771-780):1612.
Guzman-Rivera, A.; Batra, D.; and Kohli, P. 2012. Multiple Choice
Learning: Learning to Produce Multiple Structured Outputs. In
NIPS.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In CVPR.
Heo, B.; Lee, M.; Yun, S.; and Choi, J. Y. 2019. Knowledge Dis-
tillation with Adversarial Samples Supporting Decision Boundary.
In AAAI.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the Knowl-
edge in a Neural Network. In NIPS Deep Learning and Represen-
tation Learning Workshop.
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q.
2017. Densely Connected Convolutional Networks. In CVPR.
Kim, J.; Park, S.; and Kwak, N. 2018. Paraphrasing Complex
Network: Network Compression via Factor Transfer. In NeurIPS.
Krizhevsky, A. 2009. Learning Multiple Layers of Features from
Tiny Images. Technical report, Citeseer.
lan, x.; Zhu, X.; and Gong, S. 2018. Knowledge Distillation by
On-the-Fly Native Ensemble. In NeurIPS.
Lee, S.; Purushwalkam, S.; Cogswell, M.; Crandall, D.; and Batra,
D. 2015. Why M Heads Are Better Than One: Training A Diverse
Ensemble of Deep Networks. arXiv preprint arXiv:1511.06314.
Lee, S.; Prakash, S. P. S.; Cogswell, M.; Ranjan, V.; Crandall, D.;
and Batra, D. 2016. Stochastic Multiple Choice Learning for Train-
ing Diverse Deep Ensembles. In NIPS.

Lee, K.; Hwang, C.; Park, K.; and Shin, J. 2017. Confident Multi-
ple Choice Learning. In ICML.
Li, Z., and Hoiem, D. 2016. Learning Without Forgetting. In
ECCV.
Li, Q.; Jin, S.; and Yan, J. 2017. Mimicking Very Efficient Network
for Object Detection. In CVPR.
Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-
Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018. Progressive
Neural Architecture Search. In ECCV.
Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.;
and Fei-Fei, L. 2019. Auto-Deeplab: Hierarchical Neural Archi-
tecture Search for Semantic Image Segmentation. In CVPR.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. DARTS: Differentiable
Architecture Search. In ICLR.
Luo, P.; Zhu, Z.; Liu, Z.; Wang, X.; and Tang, X. 2016. Face Model
Compression by Distilling Knowledge from Neurons. In AAAI.
Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018. Neural
Architecture Optimization. In NeurIPS.
Mirzadeh, S.-I.; Farajtabar, M.; Li, A.; and Ghasemzadeh, H.
2019. Improved Knowledge Distillation via Teacher Assistant:
Bridging the Gap Between Student and Teacher. arXiv preprint
arXiv:1902.03393.
Mun, J.; Lee, K.; Shin, J.; and Han, B. 2018. Learning to Specialize
with Knowledge Distillation for Visual Question Answering. In
NeurIPS.
Noroozi, M.; Vinjimoor, A.; Favaro, P.; and Pirsiavash, H. 2018.
Boosting Self-Supervised Learning via Knowledge Transfer. In
CVPR.
Park, W.; Kim, D.; Lu, Y.; and Cho, M. 2019. Relational Knowl-
edge Distillation. In CVPR.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic Differentiation in PyTorch.
Pham, H.; Guan, M.; Zoph, B.; Le, Q. V.; and Dean, J. 2018. Effi-
cient Neural Architecture Search via Parameters Sharing. In ICML.
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta, C.; and
Bengio, Y. 2015. FitNets: Hints for Thin Deep Nets. In ICLR.
Simonyan, K., and Zisserman, A. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013. On the
Importance of Initialization and Momentum in Deep Learning. In
ICML.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard,
A.; and Le, Q. V. 2019. MnasNet: Platform-Aware Neural Archi-
tecture Search for Mobile. In CVPR.
Williams, R. J. 1992. Simple Statistical Gradient-Following Algo-
rithms for Connectionist Reinforcement Learning. Machine learn-
ing 8(3-4):229–256.
Zagoruyko, S., and Komodakis, N. 2016. Wide residual networks.
In BMVC.
Zagoruyko, S., and Komodakis, N. 2017. Paying More Attention
to Attention: Improving the Performance of Convolutional Neural
Networks via Attention Transfer. In ICLR.
Zhang, Y.; Xiang, T.; Hospedales, T. M.; and Lu, H. 2018. Deep
Mutual Learning. In CVPR.
Zoph, B., and Le, Q. 2017. Neural Architecture Search with Rein-
forcement Learning. In ICLR.

4411


