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Abstract

Function approximation from input and output data pairs con-
stitutes a fundamental problem in supervised learning. Deep
neural networks are currently the most popular method for
learning to mimic the input-output relationship of a general
nonlinear system, as they have proven to be very effective
in approximating complex highly nonlinear functions. In this
work, we show that identifying a general nonlinear function
y = f(x1, . . . , xN ) from input-output examples can be for-
mulated as a tensor completion problem and under certain
conditions provably correct nonlinear system identification
is possible. Specifically, we model the interactions between
the N input variables and the scalar output of a system by a
single N -way tensor, and setup a weighted low-rank tensor
completion problem with smoothness regularization which
we tackle using a block coordinate descent algorithm. We ex-
tend our method to the multi-output setting and the case of
partially observed data, which cannot be readily handled by
neural networks. Finally, we demonstrate the effectiveness of
the approach using several regression tasks including some
standard benchmarks and a challenging student grade predic-
tion task.

The problem of identifying a nonlinear function
y = f(x1, . . . , xN ) from input-output examples is of
paramount importance in machine learning, dynamical
system identification and control, communications, and
many other disciplines. In machine learning in particular,
most of the supervised learning tasks are nonlinear system
identification problems. For example, binary/multiclass
classification, where the goal is to predict a discrete variable
denoting the class label of each realization, and regres-
sion/prediction, where the goal is to predict real or complex
valued variables. Algorithmic advancements, availability of
vast amounts of data and increasing computational power
have led to the development of state-of-the-art prediction
models with unprecedented success in various domains
such as image classification, speech recognition, and lan-
guage processing. Kernel methods, random forests, neural
networks and deep learning are powerful classes of machine
learning models that can learn highly nonlinear functions
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and have been successfully applied in many supervised
machine learning tasks (Hastie, Tibshirani, and Friedman
2009). Each of the aforementioned methods can be well
suited for a particular problem, but may perform badly for
another. In general it is seldom known in advance which
method will perform best for any given problem.

This paper presents a simple and elegant alternative for
nonlinear system identification based on low-rank tensor
decomposition. Tensor decomposition is a powerful tool
for analyzing multi-way data and has had major successes
in applications spanning machine learning, statistics, sig-
nal processing and data mining (Sidiropoulos et al. 2017).
The Canonical Polyadic Decomposition (CPD) model is one
of the most popular tensor models mainly due to its sim-
plicity and its uniqueness properties. The CPD model has
been applied in various machine learning applications, in-
cluding recommender systems to model time-evolving re-
lational data (Xiong et al. 2010), community detection and
clustering to model user interactions across different net-
works (Papalexakis, Akoglu, and Ience 2013), knowledge
base completion and link prediction for discovering un-
observed subject-object interactions (Lacroix, Usunier, and
Obozinski 2018) and in latent variable models for param-
eter identification (Anandkumar et al. 2014). These works
deal with relatively low-order tensors; however, high-order
tensors also arise in practical scenarios – e.g., a joint proba-
bility mass function of N categorical random variables can
be naturally regarded as an N -th order tensor and modeled
using a CPD model (Kargas, Sidiropoulos, and Fu 2018).

In this work, we show that the CPD model offers an ap-
pealing solution for modeling and learning a general non-
linear system using a single high-order tensor. Tensors have
been used to model low-order multivariate polynomial sys-
tems: a multivariate polynomial of order d is represented
by a tensor of order d – e.g., a second-order polynomial is
represented by a quadratic form involving a single matrix
(Rendle 2010). However, such an approach requires prior
knowledge of polynomial order, and assuming that one deals
with a polynomial of a given degree can be highly restric-
tive in practice. Instead, what we advocate here is a sim-
ple and general approach: a nonlinear system having N
discrete inputs and a single output can be naturally repre-
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Figure 1: Nonlinear system identification as tensor comple-
tion.

sented as an N -way tensor where the tuple of input variables
[xm(1), . . . ,xm(N)] can be viewed as a cell multi-index
and the cell content is the response of the system ym. Given a
new data point, the corresponding tensor cell is queried and
the output is used as the predictor. Note that only a small
fraction of the tensor entries are observed during training,
and we are ultimately interested in answering queries for
unobserved data points (Figure 1). This motivates the use of
low-rank tensor models as a tool for capturing interactions
between the predictors and imputing the missing data.

Both experimental (Tomasi and Bro 2005) and theoretical
studies (Krishnamurthy and Singh 2013; Jain and Oh 2014;
Sorensen and De Lathauwer 2019) have shown that exact
tensor completion from limited samples is possible under
certain conditions. The implication of our simple but pro-
found modeling idea is very compelling, since:

• The CPD can model any nonlinearity (even of ∞ or-
der) for high-enough rank – because every tensor admits
a CPD of bounded rank; see (Sidiropoulos et al. 2017)
and references therein. Even for low ranks, it can model
highly nonlinear operators such as products or sums of the
signs of the input variables.

• Provably correct nonlinear system identification is possi-
ble from limited samples. If the associated tensor describ-
ing the nonlinear operator is low rank, then it can be fully
identified.

• In practice, tensors corresponding to real-world systems
may not be low-rank; nevertheless even if a system is not
exactly low rank, our approach will identify the princi-
pal components of the unknown nonlinear mapping, in a
sense that will be clarified in the sequel.

Even though tensor recovery can be guaranteed under a
low-rank assumption, tensor decomposition can often bene-
fit from additional knowledge regarding the application by
incorporating constraints such as non-negativity, sparsity or
smoothness (Sidiropoulos et al. 2017). In our present con-
text, smoothness is a desirable property for applications
where we expect that small perturbations in the input will
most probably cause small changes in the output of the
system. Therefore, we propose augmenting the CPD tensor
completion problem with smoothness regularization on the
ordinal latent factors.

Contributions: We model a general nonlinear system
using a single high-order tensor admitting a CPD model.
Specifically, we formulate the problem as a smooth ten-
sor decomposition problem with missing data. Although our

method is naturally suited to handle discrete features, it can
also be used for continuous valued features (Kargas and
Sidiropoulos 2019) and be enhanced using ensemble tech-
niques. Additionally, leveraging the structure of the CPD
model, we propose a simple yet effective approach to han-
dle randomly missing input variables. Finally, we discuss
how the approach can be extended to vector valued function
prediction. The proposed approach requires little parameter
tuning, and can model complex nonlinear functions. We pro-
pose an easy to implement Block Coordinate Descent (BCD)
algorithm and demonstrate the performance in UCI machine
learning datasets against competitive baselines as well as a
challenging grade prediction task, using real student grade
data.

Notation and Background

We use the symbols x, x, X, X for scalars, vectors, matrices,
and tensors respectively. We use the notation x(n), X(:, n),
X (:, :, n) to refer to a particular element of a vector, a col-
umn of a matrix and a slab of a tensor. Symbols ◦, ⊗, �,
� denote the outer, Kronecker, Hadamard and Khatri-Rao
(column-wise Kronecker) product respectively.

An N -way tensor X ∈ R
I1×I2×···×IN is a multi-

dimensional array whose entries are indexed by N coordi-
nates. A polyadic decomposition expresses X as a sum of
rank-1 components X =

∑F
f=1 a

1
f ◦ a2f ◦ · · · ◦ aNf , where

anf ∈ R
In . If the number of rank-1 components is minimal

then the decomposition is called the CPD of X and F is
called the rank of X (Sidiropoulos et al. 2017). By defining
factor matrices An = [an1 · · ·anF ] ∈ R

In×F , the elements of
the tensor X can be expressed as

X (i1, . . . , iN ) =

F∑
f=1

N∏
n=1

An(in, f). (1)

We adopt the common notation X = [[A1, . . . ,AN ]]F to
denote the tensor synthesized from the CPD model us-
ing these factors. The mode-n fibers of a tensor are the
vectors obtained by fixing all the indices except for the
n-th index. We can represent tensor X using a matrix
X (n) ∈ R

I1···In−1In+1···IN×In called mode-n matricization
obtained by arranging the mode-n fibers of the tensor as
columns of the resulting matrix

X (n) =
(�k �=nAk

)
AT

n , (2)

where �
k �=n

Ak = AN � · · · �An+1 �An−1 � · · · �A1.

The n-mode product of a tensor X ∈ R
I1×I2···×IN with a

matrix U ∈ R
J×In is denoted by X ×n U and an entry of

the resulting tensor is given by

(X ×n U)(i1, . . . , in−1, j, in+1, . . . , iN )

=
∑
in

X (i1, . . . , iN )U(j, in). (3)

Furthermore, assuming that a tensor X admits a CPD with
rank F , the n-mode product can be expressed as

[[A1, . . . ,AN ]]F ×n U

= [[A1, . . . ,An−1,UAn,An+1 . . . ,AN ]]F .
(4)
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Figure 2: Traditional approaches.

CPD is a powerful tool for data analysis mainly due to
its uniqueness properties. For a tensor X of rank F , we
say that a decomposition X = [[A1, . . . ,AN ]]F is unique
if the factors are unique up to a common permutation and
scaling / counter-scaling of columns. Specifically, if there
exists another decomposition X = [[Â1, . . . , ÂN ]]F , then,
there exists a permutation matrix Π and diagonal scaling
matrices Λ1, . . . ,ΛN such that Ân = AnΠΛn, ∀n ∈ [N ]
and Λ1 · · ·ΛN = I. Tensor decomposition is unique un-
der mild rank conditions; see (Sidiropoulos et al. 2017) and
references therein. In our context, uniqueness is a desirable
property since it is necessary for model interpretability.

Related Work

Tensors have been mostly used to model low-order multi-
variate polynomial systems. A multivariate polynomial of
degree (order) d can be represented by a tensor of or-
der d. For example, a second-order polynomial is repre-
sented by a quadratic form involving a single matrix i.e.,
f(x) = xTWx while a third order polynomial is repre-
sented using a 3-way tensor i.e., f(x) = W ×1 x×2 x× x3

(Figure 2). The number of parameters grows exponentially
with the order of the approximation making this approach
computationally demanding. One way to reduce the number
of parameters is to assume that the coefficient tensor is low-
rank.

Polynomial Networks (PN) and Factorization Machines
(FM) utilize mainly third-order CPD models in order to
parameterize the polynomial coefficients with applications
in recommender systems and link prediction (Rendle 2010;
Blondel et al. 2016a; 2016b). Such approaches require prior
knowledge of polynomial order, and assuming that one deals
with a polynomial of a given degree can be restrictive. Ad-
ditionally, even when dealing with the simplest possible ap-
proximation model which is rank-1, the number of parame-
ters grows linearly with d meaning that this approach can-
not model high-degree polynomial functions. Similarly, an-
other tensor model, known as the Tucker model, has also
been used for parametrization of polynomial functions in a
chemogenomics data prediction task (Perros et al. 2017). Fi-
nally, a tensor train model (Oseledets 2011) has also been
used in multivariate polynomial regression (Novikov, Trofi-
mov, and Oseledets 2016). Unlike CPD, the model parame-
ters of Tucker and tensor train models are not identifiable.

Output-only (‘blind’) identification of linear systems has
also been considered from a tensor point of view. Specif-
ically, identification of Finite Impulse Response (FIR) sys-
tems using only output examples has been shown in (Boussé,

Debals, and De Lathauwer 2017; Van Eeghem et al. 2018).
Our work is radically different from existing approaches.

We model a general nonlinear system using a single tensor
of order equal to the number of inputs and propose using a
high-order tensor completion approach for system identifi-
cation. One of the earliest applications of tensor decompo-
sition with smooth latent factors has been fluorescence data
analysis (Bro 1998; Fu et al. 2015). Recently, it is has been
mostly proposed in the area of image processing. Specifi-
cally, CPD and Tucker models with smoothness constraints
or regularization have been used for the recovery of incom-
plete 3- and 4-dimensional image data (Yokota, Zhao, and
Cichocki 2016; Imaizumi and Hayashi 2017). To the best of
our knowledge, tensor completion (with or without smooth
latent factors) has not been considered yet as a tool for gen-
eral nonlinear system identification.

Proposed Approach

Canonical System Identification (CSID)

We are given a training dataset of M input-output pairs D =
{(x1, y1), (x2, y2), . . . , (xM , yM )}. Let us assume that all
predictors are discrete and take values from a common al-
phabet I = {1, . . . , I}. The scalar output ym is a nonlin-
ear function of the input xm distorted by some unknown
noise ym = f (xm(1), . . . ,xm(N)) + εm. The nonlinear
function f : {1, . . . , I}N → R can be modeled as an N -
way tensor X where each input vector [xm(1), . . . ,xm(N)]
can be viewed as a cell multi-index and the cell content
is the estimated response of the system ŷm. We are inter-
ested in building a model that minimizes the Mean Square
Error (MSE) between the model predictions and the actual
response. However, it is evident that it is impossible to infer
the response of unobserved data without any assumptions on
X . To alleviate this problem we aim for the principal com-
ponents of the nonlinear operator by minimizing the tensor
rank. Assuming a low-rank CPD model, the problem of find-
ing the rank-F approximation which best fits our data can be
formulated as

min
X ,{An}N

n=1

1

M

M∑
m=1

(ym −X (xm(1), . . . ,xm(N)))
2

+
N∑

n=1

ρ‖An‖2F

s.t. X =

F∑
f=1

A1(:, f)� · · · �AN (:, f),

(5)

where ρ is a regularization parameter. It is convenient to ex-
press the problem in the following equivalent form

min
X ,{An}N

n=1

1

M

∥∥∥√W � (Y − X )
∥∥∥2
F
+

N∑
n=1

ρ‖An‖2F

subject to X =

F∑
f=1

A1(:, f)� · · · �AN (:, f),

(6)

where W is a tensor containing the number of times a par-
ticular data point x = [i1, . . . , in]

T appears in the dataset
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and Y is a tensor containing the mean response of the
corresponding data points. The equivalence between Prob-
lems (5), (6) is straightforward

min

M∑
m=1

(
ym −X (xm(1), . . . , xm(N))

)2
⇔

min
∑

i1,...,iN

∑
m′∈Si1,...,iN

(
ym −X (i1, . . . , iN )

)2 ⇔

min
∑

i1,...,iN

∑
m′∈Si1,...,iN

(
ym − Y(i1, . . . , iN )

+ Y(i1, . . . , iN )−X (i1, . . . , iN )
)2 ⇔

min
∑

i1,...,iN

W(i1, . . . , iN )
(Y(i1, . . . , iN )−X (i1, . . . , iN )

)2
.

The set Si1,...,iN contains the indices the data point
[i1, . . . , iN ]T appears in the dataset. Oftentimes, datasets
contain both categorical and ordinal predictors, the later, be-
ing either discrete or continuous. In the presence of ordinal
predictors a desirable property of a regression model is hav-
ing smooth prediction surfaces i.e., small variations in the
input will cause small changes in the output. As an exam-
ple consider the task of estimating students’ grades in fu-
ture courses based on their grades in past courses, an impor-
tant topic in educational data mining as it can facilitate the
creation of personalized degree paths which will potentially
lead to timely graduation (Polyzou and Karypis 2016). The
predictors correspond to the grades in N past courses that
a student has received and the the predicted response is the
student’s grade in a future course. We are interested in build-
ing a model that maps an N -dimensional discrete feature
vector to the output response. Adding a smoothness con-
straint or regularization will guarantee that the model will
produce similar outputs for two students that differ slightly
in their past grades as they are likely to perform similarly
in the future. Therefore, we propose augmenting the CPD
tensor completion problem with smoothness regularization:

min
X ,{An}N

n=1

1

M

∥∥∥√W � (Y − X )
∥∥∥2
F
+

N∑
n=1

ρ‖An‖2F

+

N∑
n=1

μn‖TnAn‖2F

s.t. X =

F∑
f=1

A1(:, f)� · · · �AN (:, f),

(7)

where the matrix Tn is a smoothness promoting matrix typ-
ically defined as Tn ∈ R

(In−1)×In with Tn(i, i) = 1 and
Tn(i, i+1) = −1 or Tn ∈ R

(In−2)×In with Tn(i, i) = −1,
Tn(i, i + 1) = 2 and Tn(i, i + 2) = −1. We set μn = 0
for categorical predictors and μn > 0 otherwise. Penalizing
the difference of consecutive row elements of a factor An

guarantees that varying the n-th dimension and keeping the
remaining fixed will have a small impact on the predicted re-
sponse. Another appealing feature of the proposed smooth-
ness regularization is that it can potentially measure feature

importance. Note that the effect a variable will have in the
prediction is minimized if each column of the correspond-
ing factor is a constant number. Irrelevant features are more
likely to have factors that vary slightly. On the contrary, fac-
tors associated with predictive features will have more vari-
ations and induce a larger penalty cost.

Remark: CPD can model any nonlinear operator for
high-enough rank, but even for low ranks, it can model
highly nonlinear operators such as

f1(x1, . . . , xN ) =

N∏
n=1

sign(xn),

f2(x1, . . . , xN ) =

N∑
n=1

sign(xn).

Comparing these equations with Equation (1) we can verify
that the former corresponds to a rank-1 CPD model, while
the later to rank N .

Tensor Completion: Identifiability

In this section we briefly review existing probabilistic and
deterministic theoretical results on tensor recovery from a
few samples. This is important because, using our approach
of casting system identification as tensor completion, the re-
sults below directly yield new results on nonlinear multivari-
ate system identification - even for systems of unbounded
nonlinearity degree. Recovering a tensor from samples de-
pends mainly on how the samples (X1, . . . , XN ) are gen-
erated – randomly or systematically, and if randomly from
what distribution – as well as the operational An. Practical
experience suggests that the generic sample complexity for
randomly drawn point samples is proportional to the degrees
of freedom O(FNI) in the model. This has been proven for
randomly drawn linear (generalized, aggregated) samples,
but not yet for point samples (Bousse et al. 2018).

An adaptive sampling method with an estimation algo-
rithm has been proposed by (Krishnamurthy and Singh
2013) that provably recovers an N -th order rank-F tensor
using O(IFN−0,5μN−1N logF ) samples where μ is a co-
herence bound on the factor matrices. Later, (Jain and Oh
2014) proposed a method that can recover an N -th order
rank-F tensor with orthogonal factor matrices and random
sampling using O(IN/2μ6F 5 log4 I) samples. A necessary
condition for these methods is that the rank needs to be
less than the maximum outer dimension although a CPD
model can be unique even if rank exceeds this bound. Prob-
abilistic results on tensor completion have also been proven
for incomplete tensors that have low mode-n ranks under
certain incoherence conditions, relying on minimization of
the sum of nuclear norms of the tensor unfoldings (Gandy,
Recht, and Yamada 2011). For F < I , the result in (Yuan
and Zhang 2016) can be used to show that for uniform ran-
dom point samples, the sample complexity for our low-rank
model is O(

√
FIN/2 log I).

Deterministic conditions based on a specific sampling
strategy, namely fiber sampling, have been given by
(Sorensen and De Lathauwer 2019). Necessary and suffi-
cient conditions are provided which are dependent on the
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sampling pattern, assuming that the rank is low enough. The
authors propose an eigenvalue decomposition algorithm and
demonstrate exact recovery of low-rank incomplete tensors
even when, less than one percent of the tensor entries are
available. The authors have also extended the results in the
case of not fully observed fibers. Finally, several regular
sampling strategies are investigated and generic identifiabil-
ity conditions are provided by (Kanatsoulis et al. 2019).

Algorithm

The work-horse of tensor decomposition is the so-called Al-
ternating Least Squares (ALS) algorithm. ALS is a special
type of BCD which offers two distinct advantages: mono-
tonic decrease of the cost function, and no need for param-
eter tuning. In this section, we propose an ALS approach to
tackle Problem 7.

Tensors W,Y despite being high-dimensional, are in gen-
eral very sparse and optimized sparse tensor formats can
offer huge memory and computational savings (Smith and
Karypis 2015). The idea of ALS is that we cyclically update
variables {An}Nn=1 while fixing the remaining variables at
their last updated values. Assume that we fix estimates An,
∀n ∈ [N ] \ {k} we need to solve the following optimization
problem

min
Ak

∥∥Ŵ(k) � Y(k) − Ŵ(k) � (QkA
T
k )

∥∥2
F

+ ρ‖Ak‖2F + μk‖TkAk‖2F ,
(8)

where Qk = (�n �=kAn), Ŵ =
√W with the square root

computed element-wise. Equivalently, we have

min
Ak

Ik∑
ik=1

∥∥∥diag(ŵk
ik
)
(
yk
ik
−Qka

k
i

)∥∥∥2
2

+ ρ‖An‖2F + μk‖TkAn‖2F ,
(9)

where ŵk
ik

= Ŵ(k)(:, ik), yk
ik

= Y(k)(:, ik) and aki =

Ak(ik, :)
T . Note that we do not need to instantiate Qk be-

cause only the non-zero elements of the sparse vector ŵk
ik

contribute to the cost function. The non-zero elements of
ŵk

ik
correspond to the observed data points for which the

k-th variable takes the value ik and therefore we need to
compute the corresponding rows of the Khatri-Rao product.
Problem 9 can be optimally solved by finding the solution
to a set of linear equations obtained after setting the gradi-
ent to zero e.g., using the conjugate Gradient descent algo-
rithm (Bertsekas 1997). Simpler updates can be obtained by
fixing all variables except for a single row of the factor Ak.
Let us fix every parameter except for the ik-th row of Ak

min
ak
i

1

M

∥∥diag(ŵk
ik
)(yk

i −Qka
k
i

∥∥2
2
+ ρ‖aki ‖22

+ μk

∥∥aki−1 − aki
∥∥2
2
+ μk

∥∥aki+1 − aki
∥∥2
2
,

(10)

The solution for aki is given by

aki = (QT
k diag(wi)

2Qk + (ρ+ 2μk)I)
−1

(QT
k diag(wi)

2yk
i − μk(a

k
i−1 + aki+1))

(11)

which results in very lightweight row-wise updates. BCD
algorithms usually offer faster convergence in terms of the
cost function compared to stochastic algorithms for small
or moderate size problems. For large-scale problems on the
other hand, Stochastic Gradient Descent (SGD) can attain
moderate solution accuracy faster than BCD. The merits
of both alternating optimization and stochastic optimiza-
tion can be combined by considering block-stochastic up-
dates (Xu and Yin 2015). In this work, we propose an easy
to implement ALS algorithm as our main goal is to present
a fresh perspective on the nonlinear identification problem
through low-rank tensor completion. Further algorithmic de-
velopments are underway, but beyond the scope of this first
submission. Next, we show how the proposed approach can
be extended to handle partially observed and multi-output
regression tasks.

Missing Data

It is quite common in general to have observations with
missing values for one or more predictors. For example, in
the grade prediction task described in the introduction, the
predictions for a student rely on the student’s performance
achieved in previously taken courses. Consider a student-
grade matrix D ∈ R

M×N where our goal is to predict the
N -th course. The matrix will be in general sparse since each
student enrolls in only few of the available courses, and the
selected courses vary from student to student.

Common approaches for handling missing data include
(1) removal of observations with any missing values, (2)
imputing the missing values before training e.g., by replac-
ing them with the mean, median, or the mode, and (3) di-
rectly handling the imputation by the algorithm. Let O =
{o1, . . . , oT } and M = {m1, . . . ,mL} denote the indices
of the observed and missing entries of a single observation
respectively. Instead of ignoring observations with missing
entries we aim at computing the expectation of the nonlinear
function conditioned on the observed variables i.e., we set

f(xO) = ExM|xO [f(xO,xM)]

=
∑
xM

Pr(xM|xO)f(xO,xM). (12)

Estimating the conditional probability Pr(xM|xO) is not
possible since the number of parameters grows exponen-
tially with the number of missing entries. Given the low-rank
structure of the nonlinear function we propose modeling the
Probability Mass Function (PMF) using a nonnegative CPD
model which is a universal model for PMF estimation (Kar-
gas, Sidiropoulos, and Fu 2018). For the sake of simplicity,
we adopt a simple rank-one joint PMF model estimated via
the empirical first-order marginals (Huang and Sidiropou-
los 2017). Without loss of generality assume that the first T
predictors are known and the remaining missing, then, the
expectation can be computed very efficiently
f(xO) = ExM|xO [f(xO,xM)]

= X (i1, . . . , iT , :, . . . , :)×T+1 pT+1 · · · ×T+L pN

=

F∑
f=1

T∏
n=1

An(in, f)

N∏
n=T+1

pT
nAn(:, f).

(13)
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Table 1: Comparison of RMSE performance of different models on UCI datasets without missing data.
Dataset RR SVR (RBF) SVR (polynomial) DT MLP (5 Layer) CSID

Energy Eff. (1) 2.91±0.17 2.68±0.17 4.09±0.49 0.56±0.03 0.48±0.06 [50] 0.39±0.05
Energy Eff. (2) 3.09±0.19 3.03±0.21 4.14±0.44 1.86±0.19 0.97±0.14 [50] 0.57±0.09

C. Comp. Strength 10.47±0.42 9.72±0.38 11.30±0.36 6.57±0.82 4.92±0.63 [50] 4.67±0.50
SkillCraft Master Table 1.68±1.61 0.99±0.03 1.22±0.05 1.03±0.04 1.00±0.03 [10] 0.91±0.02

Abalone 2.25±0.10 2.19±0.08 3.90±3.43 2.35±0.08 2.09±0.09 [10] 2.23±0.09
Wine Quality 0.76±0.02 0.69±0.02 1.01±0.39 0.75±0.03 0.72±0.02 [10] 0.70±0.02

Parkinsons Tel. (1) 7.51±0.11 6.66±0.14 7.89±0.88 2.40±0.26 3.60±0.18 [100] 1.33±0.10
Parkinsons Tel. (2) 9.75±0.15 9.14±0.17 10.04±0.43 2.60±0.38 5.01±0.19 [100] 1.79±0.17

C. Cycle Power Plant 5.51±0.09 4.13±0.09 8.00±0.19 3.98±0.13 4.06±0.11 [50] 3.76±0.15
Bike Sharing (1) 36.45±0.46 32.67±0.81 34.93±0.97 18.89±0.36 14.81±0.44 [100] 15.17±0.44
Bike Sharing (2) 122.65±2.87 113.18±1.73 117.25±2.01 42.06±2.06 38.69±1.24 [100] 36.93±1.19

Phys. Prop. 5.19±0.03 4.91±1.26 6.49±1.15 4.40±0.04 4.20±0.05 [100] 4.21±0.04

Table 2: Comparison of RMSE performance of different models on UCI datasets with 30% missing data.
Dataset RR SVR (RBF) SVR (polynomial) DT MLP (5 Layer) CSID

Energy Eff. (1) 3.01±0.15 3.38±0.27 6.88±0.63 2.57±0.49 2.49±0.48 [10] 2.17±0.25
Energy Eff. (2) 3.26±0.16 3.57±0.30 6.65±0.48 2.64±0.28 3.02±0.36 [10] 2.48±0.22

C. Comp. Strength 10.33±0.61 11.39±0.48 13.16±1.17 9.90±1.05 10.01±0.54 [10] 9.69±0.79
SkillCraft Master Table 1.79±1.63 1.05±0.03 1.61±0.33 1.08±0.03 1.10±0.04 [10] 1.05±0.01

Abalone 2.27±0.07 2.31±0.08 3.12±0.79 2.42±0.07 2.28±0.07 [10] 2.40±0.13
Wine Quality 0.76±0.02 0.73±0.02 0.93±0.21 0.78±0.02 0.76±0.03 [10] 0.78±0.02

Parkinsons Tel. (1) 7.52±0.11 6.91±0.13 8.12±0.11 3.10±0.22 5.90±0.28 [10] 4.98±0.12
Parkinsons Tel. (2) 9.76±0.18 9.38±0.21 10.68±0.23 3.59±0.81 7.67±0.18 [10] 6.58±0.18

C. Cycle Power Plant 5.51±0.09 6.16±0.15 10.45±0.31 5.29±0.36 5.33±0.07 [50] 5.04±0.12
Bike Sharing (1) 37.40±0.52 35.50±0.31 36.85±0.38 25.41±1.5 21.51±0.83± [50] 23.89±0.19
Bike Sharing (2) 123.81±1.26 127.06±1.55 130.20±1.13 71.93±1.18 64.03±1.66 [50] 75.65±1.51

Phys. Prop. 5.18±0.02 7.53±0.67 7.87±0.83 5.08±0.03 4.99±0.09 [100] 4.70±0.03

Table 3: Comparison of RMSE performance of different models on multi-output regression.
Dataset RR MLP (1 Layer) MLP (3 Layer) MLP (5 Layer) DT CSID

En. Eff. (2) 2.70±0.19 2.82±0.08 [50] 2.73±0.11[100] 2.67±0.11[10] 2.19±0.19 2.01±0.14
Park. Tel. (2) 12.19±0.09 7.59±0.21[250] 6.54±0.06[250] 6.18±0.42[250] 3.37±0.39 2.85±0.22
B. Shar. (2) 127.75±3.32 64.12±6.49[250] 43.60±1.95[100] 42.25±1.22[100] 46.21±1.20 45.29±1.47

In this case, we minimize the squared error between the tar-
get value and the conditional expectation of the function.
The modification can be easily incorporated in the ALS al-
gorithm. Rich dependencies between the variables can also
be captured using a higher-order PMF model, but we defer
this discussion to follow-up work due to space limitations.

Multi-Output Regression

The proposed framework is quite flexible and
can easily be extended to vector-valued functions
f : {1, . . . , I}N → R

K . When there is no correlation
between the output variables of a system, one can build K
independent models, one for each output, and then use those
models to independently predict each one of the K outputs.
However, it is likely that the output values related to the
same input are themselves correlated and often a better way
is to build a single model capable of predicting simulta-
neously all K outputs. We can treat each different model
as an N -way tensor and stack them together to build an
(N +1)-way tensor. The new tensor model can be described
by N + 1 factors associated with the N predictors and an
additional mode of dimension K, X = [[A1, . . . ,AN ,V]]F .
The vector-valued prediction for [i1, . . . , iN ]T is given
by X (i1, . . . , iN , j) =

∑F
f=1 V(j, f)

∏N
n=1 An(in, f). In

matrix form we have
X (i1, . . . , iN , :) = (A1(i1, :)� · · ·�AN (iN , :))VT

No modification is needed for the ALS updates. Depend-
ing on the application one may or may not need to apply
smoothness regularization on V.

Experiments

We evaluate the proposed approach in single output regres-
sion tasks using several datasets obtained from the UCI ma-
chine learning repository (Lichman 2013). Our proposed ap-
proach is implemented in MATLAB using the Tensor Tool-
box (Bader and Kolda 2007) for tensor operations. We then
assess the ability of our model to handle missing predictors
by hiding 30% of the data as well as its ability to predict
vector valued responses. For each experiment we split the
dataset into two sets, 80% used for training and 20% for test-
ing, and run 10 Monte-Carlo simulations. Finally, we eval-
uate the performance of our approach in a challenging stu-
dent grade prediction task using a real student grade dataset.
For each method we tune the hyper-parameters using 5-fold
cross-validation. We compare the performance of the dif-
ferent algorithms in terms of the Root Mean Square Error
(RMSE).

UCI Datasets

We used four different machine learning algorithms as
baselines, Ridge Regresion (RR), Support Vector Regres-
sion (SVR), Decision Tree (DT) and Multilayer Perceptrons
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Table 4: Comparison of RMSE performance on student grade data.
Dataset GPA BMF CSID
CSCI-1 0.52±0.02 0.48±0.03 0.48±0.03
CSCI-2 0.56±0.02 0.55±0.02 0.55±0.03
CSCI-3 0.48±0.04 0.48±0.04 0.48±0.05
CSCI-4 0.53±0.03 0.52±0.04 0.51±0.03
CSCI-5 0.43±0.02 0.43±0.02 0.42±0.02
CSCI-6 0.63±0.03 0.58±0.03 0.57±0.03
CSCI-7 0.57±0.02 0.58±0.01 0.56±0.02
CSCI-8 0.52±0.02 0.49±0.03 0.47±0.02
CSCI-9 0.61±0.03 0.60±0.05 0.57±0.03

CSCI-10 0.58±0.04 0.56±0.04 0.56±0.04

Dataset GPA BMF CSID
CSCI-11 0.68±0.06 0.66±0.04 0.67±0.03
CSCI-12 0.58±0.04 0.51±0.04 0.48±0.01
CSCI-13 0.67±0.03 0.55±0.05 0.54±0.03
CSCI-14 0.70±0.06 0.62±0.03 0.65±0.07
CSCI-15 0.56±0.03 0.56±0.06 0.57±0.03
CSCI-16 0.52±0.03 0.51±0.03 0.50±0.02
CSCI-17 0.60±0.02 0.58±0.05 0.59±0.05
CSCI-18 0.57±0.03 0.56±0.05 0.55±0.04
CSCI-19 0.68±0.04 0.70±0.04 0.61±0.04
CSCI-20 0.61±0.06 0.58±0.02 0.63±0.04

�
Figure 3: Low-rank matrix completion (left) canonical sys-
tem identification (right).

(MLPs) using the implementation of scikit-learn (Pedregosa
et al. 2011). For RR, SVR and MLP we standardize each
ordinal feature such that it has zero mean and unit vari-
ance. Categorical features are transformed using one-hot en-
coding. For DT no preprocessing step is required. For our
method, we fix the alphabet size to be I = 25 and use Lloyd-
Max scalar quantizer for discretization of continuous predic-
tors. For the MLPs, we set the number of hidden layers to 1,3
or 5 and varied the number of nodes per layer 10, 50, 100 and
250. We observed that in most cases the MLP with 5 hidden
layers performed better than the 1 or 3 layer MLP and that
further increasing the number of layers did not improve the
performance.

Table 1 shows the RMSE performance of the differ-
ent methods when there are no missing predictors on the
datasets. The number inside the square brackets denotes the
number of nodes for each layer of MLP. We highlight the
two best performing methods for each dataset. Our approach
performs similarly or better than best baseline in most of the
datasets. Note that both decision trees and our approach rely
on discretization of continuous predictors however, adding
the smooth regularization plays a significant role in boost-
ing the RMSE performance for our method.

Next, we evaluate our approach on partially observed
datasets. We randomly hide 30% of the full dataset and re-
peat 10 Monte-Carlo simulations. Before fitting the data to
the baseline algorithms we replace each missing entry of an
ordinal predictor with the mean and for each categorical pre-
dictor we use the most frequent value (mode). For our algo-
rithm we use a rank-1 approximation of the joint PMF tensor
estimated from the training data. Table 2 shows the perfor-
mance of the different algorithms in this setting. Again, our
approach similarly or better than best baseline.

Finally, we test our approach in predicting multi-output
responses against RR, DT tree and MLPs. Table 3 contains
the results for three datasets. Similarly to the single output
setting our approach performs the same or slightly better
compared to the baseline methods.

Grade Prediction Datasets

Finally we evaluate our method in a student grade prediction
task on a real dataset obtained from the CS department of a
university. The predictors corespond to the course grades the
students have received. Specifically, we used the 20 most
frequent courses to build 20 independent single output re-
gression tasks each one of them having 34 predictors. Grades
take 11 discrete values (A-F ) and due to the natural order-
ing between the different values smoothness regularization
was applied on all factors. We used the Grade Point Av-
erage (GPA) and Biased Matrix Factorization as our base-
lines. Low-rank matrix completion is considered a state-of-
art method in student grade prediction (Polyzou and Karypis
2016; Almutairi, Sidiropoulos, and Karypis 2017). Note that
in the matrix case each course is represented by a column
while in the proposed tensor approach, each course is repre-
sented by a tensor mode (Figure 3). Table 4 shows the results
for the different algorithms. Our approach outperforms BMF
in 11 tasks, performs the same in 4 and worse in 5.

Conclusion and Future work

In this paper, we considered the problem of nonlinear sys-
tem identification. We formulated the problem as a smooth
tensor completion problem with missing data and developed
a lightweight BCD algorithm to tackle it. We have proposed
a simple approach to handle randomly missing data and ex-
tended our model to vector valued function approximation.
Experiments on several real data regression tasks showcased
the effectiveness of the proposed approach.
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