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Abstract

While maximizing expected return is the goal in most rein-
forcement learning approaches, risk-sensitive objectives such
as conditional value at risk (CVaR) are more suitable for
many high-stakes applications. However, relatively little is
known about how to explore to quickly learn policies with
good CVaR. In this paper, we present the first algorithm
for sample-efficient learning of CVaR-optimal policies in
Markov decision processes based on the optimism in the face
of uncertainty principle. This method relies on a novel op-
timistic version of the distributional Bellman operator that
moves probability mass from the lower to the upper tail of
the return distribution. We prove asymptotic convergence and
optimism of this operator for the tabular policy evaluation
case. We further demonstrate that our algorithm finds CVaR-
optimal policies substantially faster than existing baselines in
several simulated environments with discrete and continuous
state spaces.

Introduction

A key goal in reinforcement learning (RL) is to quickly learn
to make good decisions by interacting with an environment.
In most cases the quality of the decision policy is evaluated
with respect to its expected (discounted) sum of rewards.
However, in many interesting cases, it is important to con-
sider the full distributions over the potential sum of rewards,
and the desired objective may be a risk-sensitive measure of
this distribution. For example, a patient undergoing a surgery
for a knee replacement will (hopefully) only experience that
procedure once or twice, and may well be interested in the
distribution of potential results for a single procedure, rather
than what may happen on average if he or she were to un-
dertake that procedure hundreds of time. Finance and (ma-
chine) control are other cases where interest in risk-sensitive
outcomes are common.

A popular risk-sensitive measure of a distribution of out-
comes is the Conditional Value at Risk (CVaR) (Artzner
et al. 1999). Intuitively, CVaR is the expected reward in
the worst α-fraction of outcomes, and has seen extensive
use in financial portfolio optimization (Zhu and Fukushima
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2009), often under the name “expected shortfall”. While
there has been recent interest in the RL community in learn-
ing to converge or identify good CVaR decision policies in
Markov decision processes (Chow and Ghavamzadeh 2014;
Chow et al. 2015; Tamar, Glassner, and Mannor 2015;
Dabney et al. 2018a), interestingly we are unaware of prior
work focused on how to quickly learn such CVaR MDP
policies, even though sample efficient RL for maximiz-
ing expected outcomes is a deep and well studied theoret-
ical (Jaksch, Ortner, and Auer 2010; Dann et al. 2018) and
empirical (Bellemare et al. 2016) topic. Sample efficient ex-
ploration seems of equal or even more importance in the case
when the goal is risk-averse outcomes.

In this paper we work towards sample efficient reinforce-
ment learning algorithms that can quickly identify a pol-
icy with an optimal CVaR. Our focus is in minimizing the
amount of experience needed to find such a policy, sim-
ilar in spirit to probably approximately correct RL meth-
ods for expected reward. Note that this is different than an-
other important topic in risk-sensitive RL, which focuses
on safe exploration: algorithms that focus on avoiding any
potentially very poor outcomes during learning. These typi-
cally rely on local smoothness assumptions and do not typ-
ically focus on sample efficiency (Berkenkamp et al. 2017;
Koller et al. 2018); an interesting question for future work
is whether one can do both safe and efficient learning of
a CVaR policy. Our work is suitable for the many settings
where some outcomes are undesirable but not catastrophic.

Our approach is inspired by the popular and effective prin-
ciple of optimism in the face of uncertainty (OFU) in sample
efficient RL for maximizing expected outcomes (Strehl and
Littman 2008; Brafman and Tennenholtz 2002). Such work
typically works by considering uncertainty over the MDP
model parameters or state-action value function, and con-
structing an optimistic value function given that uncertainty
that is then used to guide decision making. To take a similar
idea for rapidly learning the optimal CVaR policy, we seek
to consider the uncertainty in the distribution of outcomes
possible and the resulting CVaR value. To do so, we use
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality—while
to our knowledge this has not been previously used in rein-
forcement learning settings, it is a very useful concentration
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inequality for our purposes as it provides bounds on the true
cumulative distribution function (CDF) given a set of sam-
pled outcomes. We leverage these bounds in order to com-
pute optimistic estimates of the optimal CVaR.

Our interest is in creating empirically efficient and scal-
able algorithms that have a theoretically sound grounding.
To that end, we introduce a new algorithm for quickly learn-
ing a CVaR policy in MDPs and show that at least in the
evaluation case in tabular MDPs, this algorithm indeed pro-
duces optimistic estimates of the CVaR. We also show that
it does converge eventually. We accompany the theoretical
evidence with an empirical evaluation. We provide encour-
aging empirical results on a machine replacement task (De-
lage and Mannor 2010), a classic MDP where risk sensitive
policies are critical, as well as a well validated simulator for
type 1 diabetes (Man et al. 2014) and a simulated treatment
optimization task for HIV (Ernst et al. 2006). In all cases we
find a substantial benefit over simpler exploration strategies.
To our knowledge this is the first algorithm that performs
strategic exploration to learn good CVaR MDP policies.1

Background and Notation

Let X be a bounded random variable with cumulative distri-
bution function F (x) = P[X ≤ x]. The conditional value
at risk (CVaR) at level α ∈ (0, 1) of a random variable X is
then defined as (Rockafellar, Uryasev, and others 2000):

CVaRα(X) := sup
ν

{
ν − 1

α
E[(ν −X)+]

}
(1)

We define the inverse CDF as F−1(u) = inf{x : F (x) ≥
u}. It is well known that when X has a continuous distri-
bution, CVaRα(X) = EX∼F [X|X ≤ F−1(α)] (Acerbi
and Tasche 2002). For ease of notation we sometimes write
CVaR as a function of the CDF F , CVaRα(F ).

We are interested in the CVaR of the discounted cumu-
lative reward in a Markov Decision Process (MDP). An
MDP is defined by a tuple (S,A, R, P, γ), where S and
A are finite state and action space, r ∼ R(s, a) is the re-
ward distribution, s′ ∼ P (s, a) is the transition kernel and
γ ∈ [0, 1) is the discount factor. A stationary policy π maps
each state s ∈ S to a probability distribution over action
space A.

Let Z denote the space of distributions over returns (dis-
counted cumulative rewards) from such an MDP, and as-
sume that these returns are in [Vmin, Vmax] almost surely,
where Vmin ≥ 0. We define Zπ(s, a) ∈ Z to be the dis-
tribution of the return of policy π with CDF FZπ(s,a) and
initial state action pair (s, a) ∈ S × A as Zπ(s, a) :=
Lawπ (

∑∞
t=0 γ

tRt|S0 = s,A0 = a). RL algorithms most
commonly optimize policies for expected return and explic-
itly learn Q-values, Qπ(s, a) = E[Zπ(s, a)] by applying ap-
proximate versions of Bellman backups. Instead, we are in-
terested in other properties of the return distribution and we
will build on several recently proposed algorithms that aim
to learn a parametric model of the entire return distribution

1For more detailed manuscript with proofs and additional ex-
periments refer to: https://arxiv.org/abs/1911.01546

instead of only its expectation. Such approaches are known
as distributional RL methods.
Distributional Reinforcement Learning Distributional RL
methods apply a sample-based approximation to distribu-
tional versions of the usual Bellman operators. For example,
one can define a distributional Bellman operator (Bellemare,
Dabney, and Munos 2017) as T π : Z → Z as

T πZπ(s, a)
D
:= R(s, a) + γPπZ(s, a) (2)

where D
= denotes equality in distribution, and the transition

operator is defined as PπZ(s, a)
D
:= Z(s′, a′) with s′ ∼

P (·|s, a), a′ ∼ π(s). The optimality version T is similarly
any T Z = T πZ where π is an optimal policy w.r.t. expected
return. Note that this is not necessarily unique when there are
multiple optimal policies. (Rowland et al. 2018) showed that
T π is a

√
γ-contraction in the Cramér-metric, �̄2

�̄2(Z1, Z2) = sup
s,a

�2(Z1(s, a), Z2(s, a)) (3)

= sup
s,a

(∫
(FZ1(s,a)(u)− FZ2(s,a)(u))

2du

)1/2

One of the canonical algorithms in distributional RL is
CDRL or C51 (Bellemare, Dabney, and Munos 2017) which
represent the return distribution Zπ as a discrete distribution
with fixed support on N atoms {zi = Vmin + iΔz : 0 ≤ i <
N},Δz := Vmax−Vmin

N−1 the discrete distribution is parame-
terized as θ : S ×A → R

N :

Zθ(s, a) = zi w.p. pi(s, a) =
eθi(s,a)∑
j e

θj(s,a)
.

Essentially, C51 uses a sample transition (s, a, r, s′) to
perform an approximate Bellman backup Z ← ΠC T̂ Z,
where T̂ is a sample-based Bellman operator and ΠC is
a projection back onto the support of discrete distribution
{z0, . . . , zN−1}.

Optimistic Distributional Operator

In contrast to the typical RL setup where an agent tries to
maximize its expected return, we seek to learn a stationary
policy that maximizes the CVaRα of the return at risk level
α.2 To find such policies quickly, we follow the optimism-in-
the-face-of-uncertainty (OFU) principle and introduce op-
timism in our CVaR estimates to guide exploration. While
adding a bonus to rewards is a popular approach for opti-
mism in the standard expected return case (Ostrovski et al.
2017), we here follow a different approach and introduce
optimism into our return estimates by shifting the empirical
CDFs. Formally, consider a return distribution Z(s, a) ∈ Z

2Note that the CVaR-optimal policy at any state can be non-
stationary (Shapiro, Dentcheva, and Ruszczyński 2009), as it de-
pends on the sum of rewards achieved up to that state. For simplic-
ity, as (Dabney et al. 2018b) we instead seek a stationary policy,
which will generally can be suboptimal but typically still achieve
high CVaR, as observed in our experiments.
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Figure 1: Top-left: Empirical CDF Top-right: The lower
DKW confidence band (a shifted-down version of the empir-
ical CDF). Bottom-left: Empirical PDF. Bottom-right: Opti-
mistic PDF.

with CDF FZ(s,a)(x). We define the optimism operator Oc :
Z → Z as

FOcZ(s,a)(x) =

(
FZ(s,a)(x)− c

1{x ∈ [Vmin, Vmax)}√
n(s, a)

)+

(4)

where c is a constant and (·)+ is short for max{·, 0}. In
the definition above, n(s, a) is the number of times the pair
(s, a) has been observed so far or an approximation such
as pseudo-counts (Bellemare et al. 2016). By shifting the
cumulative distribution function down, this operator essen-
tially puts probability mass from the lower tail to the highest
possible value Vmax. An illustration is provided in Figure 1.
This approach to optimism is motivated by an application
of the DKW-inequality to the empirical CDF. As shown re-
cently by (Thomas and Learned-Miller 2019), this can yield
tighter upper confidence bounds on the CVaR.

Theoretical Analysis

The optimistic operator introduced above operates on the en-
tire return distribution and our algorithm introduced in the
next section combines this optimistic operator to estimated
return-to-go distributions. As such, it belongs to the family
of distributional RL methods (Dabney et al. 2018b). These
methods are a recent development and come with strong
asymptotic convergence guarantees when used for policy
evaluation in tabular MDPs (Rowland et al. 2018). Yet, fi-
nite sample guarantees such as regret or PAC bounds still
remain elusive for distributional RL policy optimization al-
gorithms.

A key technical challenge in proving performing bounds
for distributionally robust policy optimization during RL is
that convergence of the distributional Bellman optimality
operator can generally not be guaranteed. Prior results have
only showed that if the optimization process itself is to com-
pute a policy which maximizes expected returns, such as Q-
learning, then convergence of the distirbutional Bellman op-

timality operator is guaranteed to converge. (Rowland et al.
2018, Theorem 2). Note however that if the goal is to lever-
age distributional information to compute a policy to max-
imize something other than expected outcomes, such as a
risk sensitive policy like we consider here, no prior theoreti-
cal results are known in the reinforcement learning setting to
our knowledge. However, it is promising that there is some
empirical evidence that one can compute risk-sensitive poli-
cies using distributional Bellman operators (Dabney et al.
2018a) which suggests that more theoretical results may be
possible.

Here we take a first step towards this goal. Our primary
aim in this work is to provide tools to introduce optimism
into distributional return-to-go estimates to guide sample-
efficient exploration for CVaR. Therefore, our theoretical
analysis focuses on showing that this form of optimism does
not harm convergence and is indeed a principled way to ob-
tain optimistic CVaR estimates.

First, we prove that the optimism operator is a non-
expansion in the Cramér distance. This results shows that
this operator can be used with other contraction operators
without negatively impacting the convergence behaviour.
Specifically we can guarantee convergence with distribu-
tional Bellman backup.
Proposition 1 For any c, the Oc operator is a non-
expansion in the Cramér distance �̄2. This implies that op-
timistic distributional Bellman backups OcT π and the pro-
jected version ΠCOcT π are

√
γ-contractions in �̄2 and it-

erates of these operators converge in �̄2 to a unique fixed-
point.

After establishing that our optimism operator can be used
in Bellman backups without negatively impacting conver-
gence behavior, we provide theoretical evidence that it in-
deed produces optimistic CVaR estimates. Consider here
batch policy evaluation in MDPs M with finite state- and
action-spaces. Assume that we have collected a fixed num-
ber of samples n(s, a) (which can vary across states and ac-
tions) and build an empirical model M̂ of the MDP. For any
policy π, let T̂ π denote the distributional Bellman operator
in this empirical MDP. Then we indeed achieve optimistic
estimates by the following result:
Theorem 2 Let the shift parameter in the optimistic oper-
ator be c ≥

√
(1 + 4|S|) ln(4/δ). Then with probability at

least 1−δ, the iterates CVaRα((OcT̂ π)mZ0) converges for
any risk level α and initial Z0 ∈ Z to an optimistic esti-
mate of the policy’s conditional value at risk. That is, with
probability at least 1− δ,
CVaRα((OcT̂ π)∞Z0(s, a)) ≥ CVaRα(Zπ(s, a)) ∀s, a.

Notice that relatively little optimism c is sufficient to ab-
sorb any sampling error in the model and ensure optimistic
CVaR estimates. Most importantly, there is no dependency
in c on the risk level or the range of the return which indi-
cates that this parameter is likely easy to tune empirically.

Algorithm
In the policy evaluation case where we would like to com-
pute optimistic estimates of the CVaR of a given observed
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policy π, our algorithm essentially performs an approximate
version of the optimistic Bellman update OcT π where T π

is the distributional Bellman operator. For the control case
where we would like to learn a policy that maximizes CVaR,
we instead define a distributional Bellman optimality oper-
ator Tα. Analogous to prior work (Bellemare, Dabney, and
Munos 2017), Tα is any operator that satisfies TαZ = T πZ
for some policy π that is greedy w.r.t. CVaR at level α. Our
algorithm then performs an approximate version of the opti-
mistic Bellman backup OcTα, shown in Algorithm 1.

The main structure of our algorithm resembles categori-
cal distributional reinforcement learning (C51) (Bellemare,
Dabney, and Munos 2017). In a similar way, our algorithm
also maintains a return distribution estimate for each state-
action pair, represented as a set of N weights pi(s, a) for
i ∈ [N ]. These weights represent a discrete distribution with
outcomes at N equally spaced locations z0 < z1 < · · · <
zN−1, each Δz = Vmax−Vmin

N−1 apart. The current probabil-
ity assigned to outcome zi in (s, a) is denoted by pi(s, a),
where the atom probabilities p1:N (s, a) are given by a dif-
ferentiable model such as a neural network, similar to C51.
Note that other parameterized representations of the weights
(Bellemare, Dabney, and Munos 2017) are straightforward
to incorporate.

The main differences between Algorithm 1 and existing
distributional RL algorithms (e.g. C51) are as follows: We
first apply an optimism operator to our successor distribution
FZ(st+1,a) (Lines 4–6) to form an optimistic CDF F̃Z(st+1,a)

for all actions a ∈ A. This operator should encourage ex-
ploring actions that might lead to higher CVaR policies for
our input α. These optimistic CDFs are also used to de-
cide on the successor action in the control setting (Line 8).
Then, similar to C51 we apply the Bellman operator T̂ zi for
i ∈ [N ] and distribute the probability of p̃i to the immediate
neighbours of T̂ zi, where we calculate the probability mass
p̃i with the optimistic CDF F̃Z(st+1,a�) (Line 13).

Following (Bellemare, Dabney, and Munos 2017), we
train this model using the cross-entropy loss, which for a
particular state transition at time t is

L = −
N−1∑
j=0

mj log pj(st, at) (5)

where m0:N−1 are the weights of the target distribution
computed in Lines 11–18 in Algorithm 1. In the tabular set-
ting we can directly update the probability mass pj by

pj(st, at) = (1− β)pj(st, at) + βmj(st, at)

where β is the learning rate.
In tabular settings, the counts n(s, a) can be directly

stored and used; however, this is not the case in continuous
settings. For this reason, we adopt the pseudo-count estima-
tion method proposed by (Ostrovski et al. 2017) and replace
n(s, a) by a pseudo-count n̂t(s, a) in the optimistic distribu-
tional operator (Equation 4). Let ρ be a density model and
ρt(s, a) the probability assigned to the state action pair (s, a)
by the model after t training steps. The prediction gain PG
of ρ is defined

PGt(s, a) = log ρ′t(s, a)− log ρt(s, a)

Algorithm 1: CVaR-MDP
Input: Parameters: γ, risk level α ∈ (0, 1), c ≥ 0,

density model ρ,
1 for t=1, . . . do
2 Observe transition st, at, rt, st+1;
3 for a′ ∈ A do

/* emp. return CDF for (st+1, a
′)

*/
4 F̂ a′

(x) :=
∑N−1

j=0 pj(st+1, a
′)1{x ≥ zj};

/* Pseudo-counts */
5 n̂ = 1

exp(κt−1/2α(∇ log ρθ(st+1,a′))2)−1

/* Optimistic CDF */

6 F̃ a′
(x) :=

[
F̂ a′

(x)− c1{x∈[Vmin,Vmax)}√
n̂

]+
;

7 if Control then

8 a� ← argmaxa∈A CVaRα(F̃
a)

9 if Evaluation then
10 a� ∼ π(.|st+1)

11 mi = 0 for i ∈ {0, . . . , N − 1} ;
12 for j ∈ 0, . . . , N − 1 do

/* optimistic PDF */

13 p̃j ← F̃ a� (
zj +

Δz
2

)
− F̃ a� (

zj − Δz
2

)
;

/* Project on support of {zi} */

14 T̃ zj ← [rt + γzj ]
Vmax

Vmin
;

/* Distribute prob. of T̃ (zj) */

15 bj ← (T̃ zj − Vmin)/(Δz);
16 l← 
bj� ; u← �bj;
17 ml ← ml + p̃j(u− bj);
18 mu ← mu + p̃j(bj − l);
19 Update return weights p1:N by optimization step on

cross-entropy loss L = −
∑N−1

j=0 mj log pj(st, at)

;
/* Take next action */

20 at+1 ← a� ;
21 Update density model ρ with additional observation

of (st+1, at+1);

Where ρ′t(s, a) is the probability assigned to (s, a) if it were
trained on that same (s, a) one more time. Now we define
the pseudo count of (s, a) as

n̂t(s, a) = (exp(κt−
1
2 (PGt(s, a))+ − 1)−1 (6)

where κ is a constant hyper-parameter, and (PG(s, a))+
thresholds the value of the prediction gain at 0.

Our setting differs from (Ostrovski et al. 2017) in the
sense that we have to compute the count before taking the
action a. A naive way would be to try all actions and train
the model to compute the counts but this method is slow and
requires the environment to support an undo action. Instead,
we can estimate PG for all actions as follows. Consider the
density model parametrized by θ, ρ(s, a; θ). After observing
(s, a), the training step to maximize the log likelihood will
update the parameters by θ′ = θ+α∇θ log ρ(s, a; θ), where
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α is the learning rate. So we can approximate the new log
probability using a first-order Taylor expansion

log ρ′t(s, a) = log ρ(s, a; θ′)

≈ log ρ(s, a; θ) +∇θ log ρ(s, a; θ)(θ
′ − θ)

= log ρ(s, a; θ) + α(∇θ log ρ(s, a; θ))
2

This calculation suggests that the prediction gain can be
estimated just by computing the gradient of the log likeli-
hood given a state-action pair, i.e.,

PG(s, a) ≈ α(∇θ log ρ(s, a; θ))
2

As discussed in (Graves et al. 2017) this estimate of pre-
diction gain is biased, but empirically we have found this
method to perform well.

Experimental Evaluation

We validate our algorithm empirically in three simulated en-
vironments against baseline approaches.

Simulation Domains

Finance, health and operations are common areas where
risk-sensitive strategies are important, and we focus on two
health domains and one operations domain. Details, where
omitted, are provided in the supplemental material.

Machine Replacement Machine repair and replacement
is a classic example in the risk sensitive literature, though to
our knowledge no prior work has considered how to quickly
learn a good risk-sensitive policy for such domains. Here we
consider a minor variant of a prior setting (Delage and Man-
nor 2010). Specifically, as shown in Figure 2, the environ-
ment consists of a chain of n (25 in our experiments) states.
There are two actions: replace and don’t replace. Choos-
ing replace at any state terminates the episode, while choos-
ing don’t replace moves the agent to the next state in the
chain. At the end of the chain, choosing don’t replace ter-
minates the episode with a high variance cost, and choosing
replace terminates the episode with a higher cost but lower
variance. This environment is especially a challenging ex-
ploration task due to the chain structure of the MDP, as well
as the high variance of the reward distributions when taking
actions in the last state. Additionally in this MDP it is feasi-
ble to exactly compute the CVaR0.25-optimal policy, which
allows us to compare the learned policy to the true optimal
CVaR policy. Note here that the optimal policy for maximiz-
ing CVaR0.25 is to replace on the final state in the chain to
avoid the high variance alternative; in contrast, the optimal
policy for expected return always chooses don’t replace.

HIV Treatment In order to test our algorithm on a larger
continuous state space, we leverage an HIV Treatment sim-
ulator. The environment is based on the implementation by
(Geramifard et al. 2015) of the physical model described in
(Ernst et al. 2006). The patient state is represented as a 6-
dimensional continuous vector and the reward is a function
of number of free HIV viruses, immune response of the body

Figure 2: Machine Replacement: This environment consists
of a chain of n states, each affording two actions: replace
and don’t replace.

Figure 3: Machine Replacement: The thick grey dashed line
is the CVaR0.25-optimal policy. The thin dashed lines la-
beled as the suboptimal policy is the optimal expectation-
maximizing policy. The shaded area shows the 95% confi-
dence intervals.

to HIV, and side effects. There are four actions, each deter-
mining which drugs are administered for the next 20 day
period: Reverse Transcriptase Inhibitors (RTI), Protease In-
hibitors (PI), neither, or both. There are 50 time steps in total
per episode, for a total of 1000 days. We chose here a larger
number of days per time step compared to the typical setup
(200 steps of 5 days each) to facilitate faster experimen-
tation. This design choice also makes the exploration task
harder, since taking one wrong action can drastically desta-
bilize a patient’s trajectory. The original proposed model
was deterministic, which makes the CVaR policy identical
to the policy optimizing the expected value. Such simulators
are rarely a perfect proxy for real systems, and in our setting
we add Gaussian noise ∼ N (0, 0.01) to the efficacy of each
drug (RTI: ε1 and PI: ε2 in (Ernst et al. 2006)). This change
necessitates risk-sensitive policies in this environment.

Diabetes 1 Treatment Patients with type 1 diabetes regu-
late their blood glucose level with insulin in order to avoid
hypoglycemia or hyperglycemia (very low or very high
blood glucose level, respectively). Recently, a simulator has
been introduced (Man et al. 2014) that is an open source ver-
sion of a simulator that was approved by the FDA as a sub-
stitute for certain pre-clinical trials. The state is continuous-
valued vector of the current blood glucose level and the
amount of carbohydrate intake (through food). The action
space is discretized into 6 levels of a bolus insulin injec-
tion. The reward function is defined similar to the prior work

4440



Figure 4: Comparison of our approach against an ε-
greedy baseline. Both models were trained to optimize the
CVaR0.25 of the return on a stochastic version of the HIV
simulator (Ernst et al. 2006). Top: Objective CVaR0.25; Bot-
tom: Discounted expected return of the same policies as in
top plot.

(Bastani 2014) as following:

r(bg) =

{
− (bg′−6)2

5 if bg′ < 6

− (bg′−6)2

10 if bg′ ≥ 6

Where bg′ = bg/18.018018 which is the estimate of bg
(blood glucose) in mmol/L.

Additionally we inject two source of stochasticity into the
taken action: First, we add Gaussian noiseN (0, 1) to the ac-
tion. Second, we delay the time of the injection by at most
5 steps, where the probability of injection at time t is higher
than time t + i, i ≥ 1 following the power law. Each sim-
ulation lasts for 200 steps, during which a patient eats five
meals. The agent chooses an action after each meal, and af-
ter the 200 steps each patient resets to its initial state.

This domain also readily offers a suite of related tasks,
since the environment simulates 30 patients with slightly
different dynamics. Tuning hyper-parameters on the same
task can be misleading (Henderson et al. 2018), as is the
case in our two previous benchmarks. In this setting we tune
baselines and our method on one patient, and test the perfor-
mance on different patients.

Baselines and Experimental Setup

The majority of prior risk-sensitive RL work has not focused
on efficient exploration, and there has been very little deep
distributional RL work focused on risk sensitivity. Our key
contribution is to evaluate the impact of more strategic ex-
ploration on the efficiency with which a risk-sensitive policy
can be learned. Therefore we compare to two illustrative ap-
proaches:

1. ε-greedy CVaR: In this benchmark we use the same al-
gorithm, except we do not introduce an optimism oper-
ator, instead using an ε-greedy approach for exploration.
This benchmark can be viewed as analogous to the dis-
tributional RL methods of C51 (Bellemare, Dabney, and
Munos 2017) (if the computed policy had optimized for
CVaR instead of expected reward) or the risk-sensitive im-
plicit quantile regression (Dabney et al. 2018a) approach
(but using the alternate projection step, as done in C51).

2. CVaR-AC: An actor-critic method proposed by (Chow
and Ghavamzadeh 2014) that maximizes the expected
return while satisfying an inequality constraint on the
CVaR. This method relies on the stochasticity of the pol-
icy for exploration.

Note that a comparison to an expectation maximizing algo-
rithm is uninformative since such approaches are maximiz-
ing different (non-risk-sensitive) objectives.

All of these algorithms use hyperparameters, and it is well
recognized that ε-greedy algorithms can often perform quite
well if their hyperparameters are well-tuned. To provide a
fair comparison, we evaluated across a number of sched-
ules for reducing the ε parameter, and a small set of pa-
rameters (4-7) for the optimism value c for our method. We
used the specification described in Appendix C of (Chow
and Ghavamzadeh 2014) for CVaR-AC.

The system architectures used in continuous settings are
identical for Baseline 1 (ε-greedy) and our method. This
consists of 2 hidden layers of size 32 with ReLU activation
for Diabetes 1 Treatment, and 4 hidden layers of size 128
with ReLU activation for HIV Treatment, both followed by
a softmax layer for each action. The density model is a re-
alNVP (Dinh, Sohl-Dickstein, and Bengio 2016) with 3 hid-
den layers each of size 64.

All results are averaged over 10 runs and we report 95%
confidence intervals. We report the performance of ε-greedy
at evaluation time (setting ε = 0), which is the best perfor-
mance of ε-greedy.

For the Diabetes Treatment domain, hyperparameters are
optimized only on adult#001. We then report results of
the methods using those hyperparameters on adult#003 ,
adult#004 and adult#005.

Results and Discussion

Results on machine replacement environment (Figure 3),
HIV Treatment (Figure 4) and Diabetes 1 Treatment (Figure
5) all show our optimistic algorithm achieves better perfor-
mance much faster than the baselines.

In Machine Replacement (Figure 3) we see that our
method quickly converges to the optimal CVaR perfor-
mance. Unfortunately despite our best efforts, our imple-
mentation of CVaR-AC did not perform well even on the
simplest environment, so we did not show the performance
of this method on other environments. One challenge here
is that CVaR-AC has a significant number of hyperparame-
ters, including 3 different learning rates schedule for the op-
timization process, initial Lagrange multipliers and the ker-
nel functions.
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Figure 5: Type 1 diabetes simulator: CVaR0.25 for three different adults. Plots are averaged over 10 runs with 95% CI.

ε-greedy CVaR-MDP

Adult#003 11.2% ± 3.6% 4.2% ± 2.3%
Adult#004 2.3% ± 0.3% 1.4% ± 0.6%
Adult#005 3.3% ± 0.3% 1.7% ± 0.6%

Figure 6: Type 1 Diabetes simulator, percent of episodes
where patients experienced a severe medical condition (hy-
poglycemia or hyperglycemia), averaged across 10 runs

In the HIV Treatment we also see a clear and substantial
benefit to our optimistic approach over the baseline ε-greedy
approach (Figure 4).

Figure 5 is particularly encouraging, as it shows the re-
sults for the diabetes simulator across 3 patients, where the
hyperparameters were fixed after optimizing for a separate
patient. Since in real settings it would be commonly neces-
sary to fix the hyperparameters in advance, this result pro-
vides a nice demonstration that the optimistic approach can
consistently equal or significantly improve over an ε-greedy
policy in related settings, similar to the well known results in
Atari in which hyperparameters are optimized for one game
and then used for multiple others.

”Safer” Exploration. Our primary contribution is a new
algorithm to learn risk-sensitive policies quickly, with less
data. However, an interesting side benefit of such a method
might be that the number of extremely poor outcomes expe-
rienced over time may also be reduced, not due to explicitly
prioritizing a form of safe exploration, but because our al-
gorithm may enable a faster convergence to a safe policy.
To evaluate this, we consider a risk measure proposed by
(Clarke and Kovatchev 2009), which quantifies the risk of a
severe medical condition based on how close their glucose
level is to hypoglycemia (blood glucose, ≤3.9 mmol/l) and
hyperglycemia (blood glucose, ≥10 mmol/l). Table 6 shows
the fraction of episodes in which each patient experienced
a severely poor outcome for each algorithm while learning.
Optimism-based exploration approximately halves the num-
ber of episodes with severely poor outcomes, highlighting
a side benefit of our optimistic approach of more quickly
learning a good safe policy.

Related Work

Optimizing policies for risk sensitivity in MDPs has been
long studied, with policy gradient (Tamar et al. 2015), ac-

tor critic (Tamar and Mannor 2013) and TD methods (Sato,
Kimura, and Kobayashi 2001). While most of this work con-
siders mean-variance trade objectives, (Chow et al. 2015) es-
tablish a connection between a optimizing CVaR and robust-
ness to modeling errors, presenting a value iteration algo-
rithm. In contrast, we do not assume access to transition and
rewards models. (Chow and Ghavamzadeh 2014) present a
policy gradient and actor-critic algorithm for an expectation-
maximizing objective with a CVaR constraint. None of these
works considers systematic exploration but rely on heuris-
tics such as ε-greedy or on the stochasticity of the policy for
exploration. Instead, we focus on how to explore systemati-
cally to find a good CVaR-policy.

Our work builds upon recent advances on distributional
RL (Bellemare, Dabney, and Munos 2017; Rowland et al.
2018; Dabney et al. 2018b) which are still concerned with
optimizing expected return. Notably, (Dabney et al. 2018a)
aims to train risk-averse and risk-seeking agents, but does
not address the exploration problem or attempts to find opti-
mal policies quickly.

(Dilokthanakul and Shanahan 2018) uses risk-averse ob-
jectives to guide exploration for good performance w.r.t. ex-
pected return. (Moerland, Broekens, and Jonker 2018) lever-
ages the return distribution learned in distributional RL as a
means for optimism in deterministic environments. (Mavrin
et al. 2019) follow a similar pattern but can handle stochastic
environments by disentangling intrinsic and parametric un-
certainty. While they also evaluate the policy that picks the
VaR-greedy action in one experiment, their algorithm still
optimizes expected return during learning. In general, these
approaches are fundamentally different from ours which
learns CVaR policies in stochastic environments efficiently
by introducing optimism into the learned return distribution.
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on stochastic programming: modeling and theory. SIAM.
Strehl, A. L., and Littman, M. L. 2008. An analysis of model-
based interval estimation for markov decision processes. Journal
of Computer and System Sciences 74(8):1309–1331.
Tamar, A., and Mannor, S. 2013. Variance adjusted actor critic
algorithms. arXiv preprint arXiv:1310.3697.
Tamar, A.; Chow, Y.; Ghavamzadeh, M.; and Mannor, S. 2015.
Policy gradient for coherent risk measures. In Advances in Neural
Information Processing Systems, 1468–1476.
Tamar, A.; Glassner, Y.; and Mannor, S. 2015. Optimizing the
cvar via sampling. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.
Thomas, P., and Learned-Miller, E. 2019. Concentration inequal-
ities for conditional value at risk. In International Conference on
Machine Learning, 6225–6233.
Zhu, S., and Fukushima, M. 2009. Worst-case conditional value-at-
risk with application to robust portfolio management. Operations
research 57(5):1155–1168.

4443


