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Abstract

Recently, the teacher-student learning paradigm has drawn
much attention in compressing neural networks on low-end
edge devices, such as mobile phones and wearable watches.
Current algorithms mainly assume the complete dataset for
the teacher network is also available for the training of the stu-
dent network. However, for real-world scenarios, users may
only have access to part of training examples due to com-
mercial profits or data privacy, and severe over-fitting issues
would happen as a result. In this paper, we tackle the chal-
lenge of learning student networks with few data by investi-
gating the ground-truth data-generating distribution underly-
ing these few data. Taking Wasserstein distance as the mea-
surement, we assume this ideal data distribution lies in a
neighborhood of the discrete empirical distribution induced
by the training examples. Thus we propose to safely opti-
mize the worst-case cost within this neighborhood to boost
the generalization. Furthermore, with theoretical analysis, we
derive a novel and easy-to-implement loss for training the stu-
dent network in an end-to-end fashion. Experimental results
on benchmark datasets validate the effectiveness of our pro-
posed method.

Introduction

In recent years, computer vision research has rapidly ad-
vanced due to the success of deep neural networks. The
image classification performance on large-scale datasets
(e.g., ImageNet) has been constantly refreshed by various
convolutional neural networks (CNNs), such as AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), VGGNet (Si-
monyan and Zisserman 2014), Inception (Szegedy et al.
2015) and ResNet (He et al. 2016). Language models, such
as GPT (Radford et al. 2019), BERT(Devlin et al. 2018) and
(Wang, Li, and Smola 2019) has achieved superhuman per-
formance on large textual dataset.

However, to achieve the outstanding classification perfor-
mance, these networks usually have a large volume of pa-
rameters and significant resource consumption. For exam-
ple, to achieve a top-1 error rate of 22.16%, AlexNet re-
quires more than 232 million parameters and more than 700
million multiplications to implement the prediction. This
computational demand limits their application on low-end
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edge devices, such as mobile phones, tablets and wearable
watches.

To minimize the resource required by deep neural net-
works, several techniques to directly compress existing
trained networks are investigated, such as vector quantiza-
tion (Gong et al. 2014), hash encoding (Chen et al. 2015),
weight matrices decomposition (Denton et al. 2014) and us-
ing unlabeled data (Tang et al. 2019). Others attempt to de-
sign efficient architectures to accelerate the inference speed,
such as ResNeXt (Xie et al. 2017), Xception network (Chol-
let 2017) and MobileNets (Howard et al. 2017). Besides
these approaches, teacher-student learning paradigm serves
as a complementary scheme to obtain light and efficient neu-
ral networks. By treating the pre-trained huge networks as
teacher networks, the target small network is thus viewed as
the student network and can be guided by the teacher net-
work. Ba and Caruana took a straightforward approach by
directly minimizing the Euclidean distance between the fea-
ture maps generated from the teacher and student networks.
The widely-used knowledge distillation method. Hinton,
Vinyals, and Dean made a leap forward by introducing a loss
to encourage the student network to learn from the softened
outputs of the teacher network. Others also attempt to fur-
ther boost the performance by using multiple teachers (You
et al. 2017) or investigating feature layers, such as Fit-
Net (Romero et al. 2015) and activation boundary loss (Heo
et al. 2019).

Current teacher-student learning algorithms usually as-
sume that the complete dataset for training teacher network
is also available for the learning of the student network. In
real-world scenarios, however, users may only have a few
data at hand. For instance, due to the consideration of com-
mercial profits or data privacy, many applications do not
open their large training dataset completely but only supply
a fraction for verification purposes. The limited data usually
induce severe over-fitting issues during the learning of the
student network. Another example can be an off-line speech
recognition network. In this case, a generic speech recog-
nition network can be trained on a data center, which will
be used as a teacher. Then, the end-user can provide a few
samples of his or her own speech to train the student net-
work. The resulting student network would be small enough
to run on a mobile device while maintaining the high-quality
of the teacher network. The combination of benefits from
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the teacher-student learning paradigms and the generaliza-
tion ability enables some large deep learning networks to be
deployed to low battery and computing power devices, such
as mobile phones. Thus, it is important to fit the network to
scarce training examples while maintaining its generaliza-
tion ability.

To boost the generalization ability of the student network,
we propose to explore the ground-truth data-generating
distribution. Given the training examples, we assume the
ground-truth distribution lies in a neighborhood of the dis-
crete empirical distribution, i.e., uniform distribution over
i.i.d. training examples. By dint of Wasserstein distance, we
thus propose to safely optimize the worst-case or every pos-
sible ground-truth distribution’s cost within this neighbor-
hood to boost the generalization as a result. However, the
worst-case cost does not have a closed-form and is not ap-
propriate for training a student network in an end-to-end
fashion. In this way, we furthermore analyze its upper bound
in theory and develop a novel loss function accordingly,
called WaGe loss. As a result, via this very loss, the student
network can maintain its generalization ability while being
trained on a fraction of the training examples. Experimental
results on benchmark datasets show the effectiveness of our
proposed method, and when the training examples are very
limited, our method significantly outperforms other compar-
ison methods.

Problem Formulation

Now we formally introduce the teacher-student learning
scheme in compressing neural networks, especially the
widely-used knowledge distillation method. Then we make
a statement that, given a few data, how to boost the gen-
eralization ability of the student network. In this paper, we
consider the general multi-class classification problem.

Knowledge Distillation

In the teacher-student learning scheme, the teacher network
NT usually consists of a large amount of parameters and
has powerful classification ability accordingly. In contrast,
the student network NS is light and small, which has much
fewer parameters and is appropriate for the low-end com-
putational devices. The goal of the teacher-student learning
scheme is to learn the student network with the help of the
pre-trained teacher network, instead of solely from the train-
ing data.

To transfer the knowledge from the teacher network into
the student network, special training guidance or losses are
imposed during the learning of student network, e.g., knowl-
edge distillation (KD) loss (Hinton, Vinyals, and Dean
2015). Denote the training data as D = {(xi,yi)}Ni=1 where
xi ∈ X ⊂ Rd and yi ∈ Y ⊂ {0, 1}k. KD loss encourages
the student network to have similar softened outputs with
that of teacher network,

LKD(NS) =
1

N

N∑
i=1

[H(ŷi,yi) + CH(pi, qi)], (1)

where ŷi ∈ Rk is the prediction output of the student net-
work, C is a balancing constant and H(·, ·) is the cross-

entropy loss to measure the discrepancy between the pre-
diction output vector and the ground-truth label vector. pi

and qi are called the softened outputs of the teacher network
and student network, respectively, which are calculated us-
ing their raw output logits oT

i and oS
i by softmax function,

i.e.,

pi =
exp(oT

i /T )∥∥exp(oT
i /T )

∥∥
1

and qi =
exp(oS

i /T )∥∥exp(oS
i /T )

∥∥
1

, (2)

where T is a temperature parameter to control the softness
of the probabilistic prediction outputs. The softened outputs
contain more information than the one-hot-code ground-
truth label vectors and are supposed to better guide the train-
ing of the student network.

Rethinking the Generalization of the Student
Network

By dint of knowledge distillation loss, the teacher network’s
softened outputs act as additional (privileged) information
during the learning of student network, and is shown to en-
hance generalization ability of the student network by im-
proving the learning rate (Lopez-Paz et al. 2015). However,
when the number of training examples is limited, the gener-
alization error would be still fairly large, and severe over-
fitting issues would happen consequently. To handle this
problem, we suggest rethinking the generalization of the stu-
dent network.

Denote the ground-truth data-generating distribution of
instances x ∈ X as P, i.e., x ∼ P. Then the aim of the
learning student network is to minimize the following popu-
lation risk,

R(NS) = EP[[�(x;NS ,NT )]], (3)

where EP is the expectation over the distribution P.
�(x;NS ,NT ) is a loss encouraging the student network to
match with the teacher network. For example, for knowledge
distillation in Eq. (1) �(x;NS ,NT ) = H(pi, qi). Given the
dataset DX = {xi}Ni=1, the corresponding empirical risk
goes to

R̂(NS) =
1

N

N∑
i=1

�(xi;NS ,NT ). (4)

In fact, Eq. (4) can also be written into an expectation form.
Define a discrete distribution PN over X as

p(x) =

{
1/N, if x ∈ {xi}Ni=1

0, otherwise,
(5)

which is actually a uniform distribution over all N training
data and called discrete empirical distribution. Then Eq. (4)
equals to

R̂(NS) = EPN [[�(x;NS ,NT )]]. (6)

In this way, the gap between the empirical risk and the popu-
lation risk (i.e., the generalization error) results from the dif-
ference between the ground-truth data-generating distribu-
tion P and the discrete empirical distribution PN . To shrink
the gap, we estimate the P using PN , and assume P lies in
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a neighborhood of PN . Since P is continuous while PN is
discrete, to measure their distance and to cover every possi-
ble (continuous or discrete) distribution “between” them, we
adopt the Wasserstein distance (Arjovsky, Chintala, and Bot-
tou 2017) as the measurement. The neighborhood Bε(PN )
can be thus constructed as

Bε(PN ) := {Q ∈ M(X ) : dW (PN ,Q) ≤ ε}, (7)
where M(X ) is the set of all possible distributions Q
over X , and dW (·, ·) is the Wasserstein distance between
two probabilistic distributions. The rationale behind the
Wasserstein distance over other measurements, such as KL-
divergence or maximum mean discrepancy, is three-fold: 1)
it can lead to a tractable solution which will be presented in
the next Section, 2) it can measure the distance between dis-
crete and continuous distributions, and 3) measure concen-
tration results from (Fournier and Guillin 2015) guarantee
that Bε(PN ) could contain the unknown ground-truth data
distribution with a high confidence. Hence, Eq. (7) can be
viewed as a Wasserstein ball with radius of ε that surrounds
the distribution PN . Since the distribution P lies in this ball,
to boost the generalization of the student network, we sug-
gest to safely optimize the risk of all possible ground-truth
distributions within the Bε(PN ). This goal equals to improv-
ing the worst-case risk of all distributions in Bε(PN ), which
is equivalent to minimizing the supremum of the risks (Mo-
hajerin Esfahani and Kuhn 2018), i.e.,

sup
Q∈Bε(PN )

EQ[[�(x;NS ,NT )]]. (8)

In this way, training with the objective Eq. (8) would allevi-
ate the over-fitting problem caused by few training data, and
boost the generalization and the classification performance
of the student network accordingly.

Learning with Few Data
In this section, we introduce our detailed solution to boost
the generalization ability of the student network, which is
related to a novel loss, called Wasserstein generalization
(WaGe) loss, developed from theoretical analysis of formu-
lation Eq. (8). We also have discussed some practical tips
during training.

Theoretical Analysis of Eq. (8)
As illustrated above, the generalization ability of the student
network can be enhanced by optimizing Eq. (8). Neverthe-
less, Eq. (8) involves a supremum operation over the Wasser-
stein ball Bε(PN ), which is not computationally tractable for
the training networks in an end-to-end fashion. Inspired by
the Majorization Minimization method (Hunter and Lange
2004), we choose to analyze the upper bound of Eq. (8) as
a surrogate objective, then we can optimize the upper bound
instead.

(Mohajerin Esfahani and Kuhn 2018, Theorem 6.3)
presents an upper bound related to the empirical risk R̂.
Theorem 1. If � is proper, convex and lower semicontinous,
there exists an upper bound of Eq. (8) for any ε ≥ 0, i.e.,

sup
Q∈Bε(PN )

EQ[[�(x)]] ≤ ψε+
1

N

N∑
i=1

�(xi), (9)

where ψ := sup{‖θ‖∗ : �∗(θ) < ∞}, �∗ is the convex con-
jugate function of � and ‖·‖∗ is the dual norm of ‖·‖.

Here for ease of notation, throughout this section we sup-
press the dependence of the network NS and NT in loss
�(x;NS ,NT ), and denote it as �(x). And we adopt the �2
norm throughout this paper. Next, we focus on the estima-
tion of ψ’s value, which is dependent on the loss � itself. We
have the following result.
Theorem 2. If � is L - lipschitz continuous on X , i.e., for
any x and x′ ∈ X ,

‖�(x)− �(x′)‖ ≤ L ‖x− x′‖ (10)

holds, then the ψ in Eq. (9) is upper bounded by

ψ ≤ sup
x∈X

‖�x�(x)‖ . (11)

Proof. (Mohajerin Esfahani and Kuhn 2018, Proposi-
tion 6.5) shows that if � is L - lipschitz continuous, then

ψ ≤ L. (12)

Furthermore, the Lipschitz constant can be larger to the
supremum module of the (sub)gradient over X (Bertsekas
2009), which completes the proof.

By substituting Eq. (11) in Eq. (9), we can derive the fol-
lowing inequality

sup
Q∈Bε(PN )

EQ[[�(x)]] ≤ 1

N

N∑
i=1

�(xi) + ψε (13)

≤ 1

N

N∑
i=1

�(xi) + ε sup
x∈X

‖�x�(x)‖ .
(14)

However, calculating the supremum can be computationally
expensive, so we just approximate it by using the training
examples, i.e., maxi ‖�xi

�(xi)‖. Moreover, for the stability
of the training, we empirically find that a proxy of averaging
the gradients would suffice as (Wang et al. 2015; Hein and
Andriushchenko 2017), then the upper bound can be relaxed
into

1

N

N∑
i=1

�(xi) + ε
1

N

N∑
i=1

‖�xi
�(xi)‖ . (15)

Recall that the parameter ε controls the radius of the Wasser-
stein ball centered at the discrete empirical distribution PN .

Method: WaGe loss

To meet the requirements of the loss � in Theorems 1 and 2,
in this paper we adopt the following loss,

�(x;NS ,NT ) =
∥∥oS − oT

∥∥2
2
:= �(oS ,oT ), (16)

where oS ∈ Rk and oT ∈ Rk are the input x’s logits of
the student and teacher network, respectively. Note that the
loss � for Eq. (15) is not limited to Eq. (16). We use Eq. (16)
for it serves a straightforward and easy way to measure the
discrepancy between the output from student and the teacher
network, and works nicely in our experiment.
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Combining the adopted loss Eq. (16) and the upper bound
Eq. (15), we can obtain a loss promoting the generalization,
i.e.,

LW (NS) =
1

N

N∑
i=1

�(oS
i ,o

T
i ) + ε

1

N

N∑
i=1

∥∥�xi
�(oS

i ,o
T
i )

∥∥ .
(17)

We call this novel loss Wasserstein Generalization (WaGe)
loss, which is motivated by focusing on the generalization
within the Wasserstein ball of the discrete empirical dis-
tribution. Since WaGe loss does not include supervision
signal from the ground-truth labels, following the previous
works (Romero et al. 2015; Heo et al. 2019), our proposed
WaGe loss should be used in conjunction with the KD loss
as

Ltrain(NS) = LKD(NS) + αLW (NS), (18)

where α is a hyperparameter balancing the two losses. In this
way, the student network can be better guided by the teacher
network through distilling its knowledge as well as boosting
own generalization.

The gradient term included in Equation (17) can be in-
terpreted as a term that improves the generalization abil-
ity when being optimized. Intuitively, the gradient term
�xi

�(oS
i ,o

T
i ) can be viewed as the sensitivity of the net-

work with respect to the input (Simonyan, Vedaldi, and Zis-
serman 2013). For example, if one single image has a large
gradient during training, that means the image needs to be
paid attention to. By reducing this term, we are effectively
reducing the attention of the network to one single image
specifically. In other words, optimizing gradient term can
smoothen the decision boundaries trained on PN , and thus
reduce the gap between network output for input data in PN

and Q.
Most existing deep learning works that involve Wasser-

stein metric often include the Wasserstein metric as a part of
their optimization objectives. However, our proposed solu-
tion incorporates the Wasserstein metric as a measurement
as the constraint of the optimization.

Optimizing Gradient As Data Augmentation

Training deep neural networks requires large amount of data.
However, in case of limited data availability, a simple solu-
tion is to perform data augmentation. Image data augmen-
tation involves horizontal or vertical flipping of images and
adding noise to the images. We next proceed to show that the
inclusion of the gradient term in Eq. (15) can be explained
as training the network with this data augmentation mecha-
nism.

Theorem 3. Consider �(x;NS ,NT ) =
∥∥oS − oT

∥∥2
2

:=

�(oS ,oT ) as the loss function to train the student network.
Given a random perturbation γ ∼ (0, vI) on the input data
x, then the objective on the noisy input to train the student

network would be approximated as

E
p(x,γ)

[[�(x+ γ;NS ,NT )]]

= E
p(x)

[[�(x;NS ,NT )]] + v E
p(x)

[[‖�xNS(x)‖22]] +O(v2)

:= E
p(x)

[[�̃(x;NT ,NS)]] +O(v2).

(19)

Proof. Given a teacher network NT , student network NS

and their respective output oT and oS , assuming a random
perturbation γ ∼ (0, vI) is added to the training data, the
loss function � then becomes

E
p(x,γ)

[[�(x+ γ;NS ,NT )]]

= E
p(x,γ)

[[(NS(x+ γ)− oT )
2]] (20)

= E
p(x,γ)

[[N 2
S(x+ γ)− 2oTN 2

S(x+ γ) + o2
T ]],

where p(x,γ) denotes the probability distribution of x and
γ. Assuming that the noise γ is small, NS(x + γ) can be
approximated using Taylor series expansion of NS(x + γ)
around NS(x).

NS(x+ γ) =NS(x) + γ��xNS(x)

+
1

2
γ��2

xNS(x)γ +O(γ3)

Substituting the approximation in Eq. (20), �̃ can then be
approximated as the following

E
p(x,γ)

[[�(x+ γ;NS ,NT )]]

≈ E
p(x,γ)

[[(NS(x) + γ��xNS(x) +
1

2
γ��2

xNS(x)γ)
2]]

− 2 E
p(x,γ)

[[oTNS(x)oT γ
��xNS(x)

+
1

2
oT γ

��2
xNS(x)γ]]

= E
p(x)

[[(NS(x)− oT )
2]]− 2 E

p(x,γ)
[[
1

2
oT γ

��xNS(x)γ]]

+ E
p(x,γ)

[[NS(x)γ
��2

xNS(x)γ

+ (γ��xNS(x))
2 +O(γ3)]]

= �(x;NS ,NT ) + v E
p(x)

[[(NS(x)− oT )�2
xNS(x)]]

+ v E
p(x)

[[‖�xNS(x)‖22]].

If this loss function is minimized by taking the functional
gradient of NS(x) and setting the result to zero, then

NS(x) = E
p(oT ,x)

[[oT ]] +O(v)

which indicates that

E
p(x)

[[(NS(x)− oT )�2
xNS(x)]]
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reduces to O(v). Hence, Eq. (20) becomes

E
p(x,γ)

[[�(x+ γ;NS ,NT )]] = E
p(x)

[[�(x;NS ,NT )]] +O(v2)

+ v E
p(x)

[[‖�xNS(x)‖22]],

which we use �̃ to denote,

E
p(x,γ)

[[�(x+ γ;NS ,NT )]]

= E
p(x)

[[�(x;NS ,NT ) + v ‖�xNS(x)‖22]] +O(v2)

:= E
p(x)

[[�̃(x;NT ,NS)]] +O(v2).

This loss function is similar to Eq. (15) in many aspects.
Firstly, their first term is identical. Secondly, the second term
is the gradient with respect to the input. Optimizing Eq. (15)
also optimizes Eq. (19). Since the first terms of Eq. (19) and
�̃ are equal, the second terms can be seen as a regularization
term that penalizes the large gradient value of NS(x). The
two regularization terms can also be treated as �1 and �1 reg-
ularizations with respect to the gradient. Similar to the fea-
ture of L1 regularization, the regularization term of Eq. (15)
is robust to large gradients during training. Therefore, opti-
mizing Eq. (15) with PN resembles to training with PN with
random perturbation, which is a popular method to perform
data augmentation. The performance of the student network
trained with few data can then be guaranteed by emulating
the data augmentation.

Experiment

Now we empirically evaluate the proposed algorithm on
popular benchmark datasets, including CIFAR-10 dataset,
CIFAR-100 dataset and Fashion-MNIST dataset.

Datasets and Network Configuration

CIFAR-10 and CIFAR-100 dataset CIFAR-10 and
CIFAR-100 dataset (Krizhevsky 2009) consists of 60,000
tiny RGB images with shape 32 × 32, where 50,000 of the
images are training set and the remaining 10,000 images are
intended for testing. The tiny images in CIFAR-10 are split
into 10 mutually exclusive categories, which are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
For the two datasets, we use the same teacher and student
network structures, while CIFAR-100 is split into 100 mu-
tually exclusive categories. The architecture of the teacher
network for the two datasets consists of three convolutional
maxout (Goodfellow et al. 2013) layers followed by a fully
connected maxout layer in a 96-192-192-500 plus a softmax
layer configuration. The design of the teacher network gen-
erally follows the architecture used in FitNet (Romero et al.
2015) and maxout with some minor modifications (See Ta-
ble 1). The images are rescaled to range [0, 1] and are aug-
mented by random cropping with paddings and random hor-
izontal flipping, before feeding into the network. The mean
and standard deviation of the images are rescaled to zero and
one across three channels.

Fashion-MNIST dataset Fashion-MNIST dataset (Xiao,
Rasul, and Vollgraf 2017) consists of 28× 28 greyscale im-
ages from ten different categories of fashion items, including
T-shirt, trouser, pullover, dress, coat, sandal, shirt, sneaker,
bag, and ankle boot. The number of examples for training
and testing is 60,000 and 10,000, respectively. The archi-
tecture of the teacher network consists of two convolutional
layers with kernel size 8 × 8 followed by a fully connected
layer with 4096 units and a softmax layer that predicts the
probability distribution over the ten categories. Before im-
ages are fed into the network, the images are rescaled to
range [0, 1] and are augmented by random horizontal flip-
ping only. Fashion-MNIST is favored over MNIST for its
complexity and its more accurate presentation of modern
computer vision tasks.

Evaluation of Generalization Ability

To demonstrate the advantage of the proposed algorithm in
generalization, we investigate the classification performance
when the student network is trained with a different number
of examples. The teacher network is pre-trained with com-
plete training examples. As for the student network, we ran-
domly sample M examples for each of categories and use
them for training. Then different M values indicate the dif-
ferent size of the training set for the student network. During
sampling, balance with respect to the number of examples
across different categories is strictly maintained to avoid un-
necessary performance impact.

We compare the classification accuracy of the student net-
work when it is trained with different competing losses, in-
cluding the original knowledge distillation (KD) loss, FitNet
(FN) (Romero et al. 2015), Activation Boundary (AB) loss
(Heo et al. 2019) as well as our WaGe loss. As mentioned
in the previous section, following related works, the WaGe
loss is designed to be used on the top of KD loss. For the
fair comparison, all methods use the same teacher network,
and all student networks have an identical structures. In spe-
cific, the pretrained teacher networks have testing accuracy
of 89%, 47% and 92% on the CIFAR-10, CIFAR-100 and
Fashion-MNIST dataset, respectively. In our experiments,
ε is set to 1 and α is set to 0.001. Temperature T for KD
loss is set to 3. On both datasets, the student networks are
trained using back propagation and Stochastic Gradient De-
scent (SGD) with momentum for 500 epochs. During train-
ing, the learning rate and the momentum decay linearly. The
experiments are run on a single NVIDIA GeForce 1080 Ti
GPU.

Experimental Results

Table 2 describes the performance of each technique using
the CIFAR-10 dataset. The simplest model, Student #0, is
used for all experiments in this table. As can be shown in Ta-
ble 2, from the results obtained from the CIFAR-10 dataset,
due to the optimization with respect to generalization abil-
ity, models trained with WaGe loss outperform in compari-
son with other techniques. Specifically, when the models are
trained with the full training set, the testing accuracy of the
model trained with WaGe loss outperforms AB by around 2
percentage points and outperforms other training techniques
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Table 1: Details of the network structure used in our experiment. “conv” means the convolutional layers and “FC” stands for
the fully-connected layers.

CIFAR
Teacher

CIFAR-10
Student #0

CIFAR-10
Student #1

CIFAR-10
Student #2

CIFAR-100˜
Student

Fashion-MNIST
Teacher

Fashion-MNIST
Student

conv 8x8x96
maxpool 2x2
dropout

conv 3x3x16
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 3x3x16
conv 3x3x16
conv 3x3x16
maxpool 2x2

conv 3x3x32
conv 3x3x48
conv 3x3x64
conv 3x3x64
maxpool 2x2

conv 3x3x32
conv 3x3x48
conv 3x3x64
conv 3x3x64
maxpool 2x2
dropout

conv 8x8x32
maxpool 2x2

conv 3x3x32
conv 3x3x32
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 8x8x192
maxpool 2x2
dropout

conv 3x3x48
conv 3x3x64
conv 3x3x80
maxpool 2x2

conv 3x3x32
conv 3x3x32
conv 3x3x32
maxpool 2x2

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2
dropout

conv 8x8x64
maxpool 2x2

conv 3x3x64
conv 3x3x64
conv 3x3x64
conv 3x3x64
maxpool 2x2

conv 5x5x192
maxpool 2x2

conv 3x3x96
conv 3x3x96
conv 3x3x128
maxpool 2x2

conv 3x3x48
conv 3x3x48
conv 3x3x64
maxpool 8x8

conv 3x3x128
conv 3x3x128
conv 3x3x128
conv 3x3x128
maxpool 8x8

conv 3x3x80
conv 3x3x80
conv 3x3x80
conv 3x3x80
maxpool 2x2
dropout

FC 4096 FC 500

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax

maxout 500
FC+softmax FC+softmax FC+softmax

Table 2: Classification accuracy with respect to various
methods and different number of training examples on
CIFAR-10 dataset.

M Ours AB FN KD
Full 84.66% 82.65% 77.84% 79.72%
1000 82.01% 76.19% 63.84% 77.63%
500 73.08% 66.69% 54.51% 50.63%
100 47.24% 44.7% 29.68% 31.83%
50 41.16% 38.23% 31.65% 28.32%

Table 3: Classification accuracy with respect to various
methods and different number of training examples on
Fashion-MNIST dataset.

M Ours AB FN KD
Full 94.72% 92.1% 92.23% 92.1%
1000 91.95% 91.67% 91.53% 90.44%
500 90.46% 90.25% 82.6% 89.45%
100 85.18% 84.09% 81.92% 83.77%
50 81.73% 80.82% 81.40% 78.5%

by a larger margin. When the number of training samples
reduces, WaGe loss can still maintain its ability to general-
ize by outperforming all other baseline techniques. For ex-
ample, WaGe outperforms the second-best baseline method
by 4.25 points on KD, 6.39, 2.54 and 2.93 on AB when M
equals to 1000, 500, 100 and 50, respectively.

Similar observations can be found from Table 3, which
shows the testing accuracy of the models using the Fashion-
MNIST dataset. When being trained on the full training

Table 4: Classification accuracy with respect to various
methods and different number of training examples on
CIFAR-100 dataset.

M Ours AB FN KD
Full 49.64% 48.22% 48.94% 48.74%
250 34.98% 34.28% 35.38% 34.7%
100 21.81% 20.68% 20.37% 21.76%
50 20.32% 19.22% 18.64% 19.27%

set, the performance of all tested models is superior to the
teacher networks, while WaGe loss achieves the highest test
set accuracy of 94.72%. As M decreases, the accuracy of
WaGe loss drops from 94.72% to 81.73%, while AB loss
drops from 92.1% to 80.82%, FitNet drops from 92.23% to
81.4% and vanilla KD drops from 92.1% to 78.5%. The test
set accuracy of the model trained with WaGe loss is higher
than AB loss, FitNet and KD loss at all tested values of M .

Structural Complexity Analysis of Student
Networks

To examine the generalization ability benefit of the WaGe
loss from the perspective of network structure, we conducted
experiments with the same setting as described in Section ,
but with different network complexities. In this experiment,
we investigate the change of performance affected by alter-
ing the network complexity. Concretely, we trained Student
#1 and #2 using the techniques mentioned in the previous
section, and compare the difference in terms of testing ac-
curacy. The number of parameters in Student #1 is smaller
than that of Student #0 while the number of parameters in
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Table 5: Classification accuracy of student networks on CIFAR-10 trained by various methods using different number of sam-
ples.

Student #1 Student #2
M Ours AB FN KD Ours AB FN KD

1000 78.37% 73.46% 64.83% 62.88% 84.23% 78.64% 62.84% 62.46%
500 67.56% 62.88% 52.71% 48.12% 75.45% 68.82% 49.12% 53.75%
100 43.96% 41.54% 30.2% 28.52% 49.69% 42.95% 42.30% 36.55%

50 41.41% 35.49% 29.0% 35.52% 37.67% 36.45% 29.89% 30.73%

Table 6: Structural complexity statistics of the teacher network and various student networks on CIFAR-10 dataset. The com-
pression and acceleration rate is with respect to the teacher network.

#Params #FLOPs Compression Ratio Acceleration Ratio
Teacher 11M 59.62M 100% 100%

Student #0 1M 5.27M 8.87% 8.83%
Student #1 0.3M 1.73M 2.92% 2.90%
Student #2 2M 9.95M 16.72% 16.69%

Table 7: Classification accuracy of the student networks on
CIFAR-10 trained by WaGe with respect to different hyper-
parameters α and ε in log scale.

log10α
log10ε -1 -2 -3 -4 -5

0 63.16% 80.33% 80.65% 77.67% 77.63%
-1 63.55% 80.03% 79.81% 78.14% 78.49%
-2 62.62% 80.50% 79.27% 78.95% 77.77%
-3 62.54% 80.12% 79.48% 78.81% 78.21%
-4 62.64% 80.07% 78.78% 78.58% 74.90%
-5 63.05% 79.92% 78.81% 78.52% 78.10%

Student #2 is larger. Table 6 shows the general information
of the architectures and Table 1 contains the detail configu-
ration.

Table 5 shows the testing accuracy achieved by various
training techniques on Student #1 and Student #2. As can be
seen from Table 5, the performance of WaGe loss remains
on the top of other techniques on all listed M values, de-
spite the complexity of the network structure is increased or
decreased. On M = 1000, Student #2 trained by WaGe loss
obtained 84.23%, despite the number of parameters being
16.72% of the teacher network. Meanwhile, the testing ac-
curacy obtained by other techniques on Student #2 is lower
than their corresponding results under the same M in Table
5 by a relatively large margin, which demonstrates the supe-
riority of the proposed WaGe loss in terms of generalization.

Hyperparameter Analysis

In this subsection, we perform a hyperparameter analysis of
our proposed WaGe loss. To this end, the CIFAR-10 model
is trained using M = 1000. Other parameters, such as the
temperature of the distillation, are heavily discussed in pre-
vious work (Hinton, Vinyals, and Dean 2015). Hence, we
focus on two important hyperparameters that are included
in the proposed WaGe loss, which are the weight of WaGe
loss α and ε. Table 7 shows the result of the experiments
for all combinations of α from 1 to 10−5 with increment

0.1, and ε from 1 to 10−7 with the same increment using
1000 examples. In theory, the optimal radius of the Wasser-
stein ball ε can be computed with given confidence value
within the range (0, 1) using Equation 8 in (Mohajerin Es-
fahani and Kuhn 2018, Theorem 3.4). However, in our ex-
periments, with a fixed value of α, the performance of the
models shows a low correlation with the generalization abil-
ity of the network. As α decreases, the performance of the
network drops dramatically as the importance of WaGe loss
diminishes. When α is larger than 0.001, the performance of
the network drops dramatically, which is due to the inclu-
sion of the gradient term. This experiment indicates that the
effect of WaGe loss is only sensitive to α, which controls
the relative weight of WaGe loss itself, in comparison with
other losses (i.e., KD loss).

Conclusion
We have proposed an approach to enhance the generaliza-
tion ability of the student network when the training data is
quite limited. Concretely, we assume that the ground-truth
data-generating distribution actually lies in a Wasserstein
ball centered on the training examples’ discrete empirical
distribution. Thus we can safely optimize the risks of all pos-
sible distributions within this ball to boost the generalization
ability. Furthermore, for ease of training networks in end-to-
end fashion, we theoretically relax the upper bound of the
supremum risk, and develop a novel loss called WaGe loss
accordingly. In particular, the proposed WaGe loss is also
easy to implement for the networks in real applications. Ex-
tensive experimental results on benchmark datasets validate
the effectiveness of our proposed method. It has been shown
that our WaGe loss is capable of improving the classifica-
tion performance of the student network, and has significant
superiority over other competing methods when the training
data is very limited.

Acknowledgement
This work was supported in part by the Australian Research
Council under Project DE180101438.

4475



References

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasser-
stein generative adversarial networks. In International Con-
ference on Machine Learning, 214–223.
Ba, J., and Caruana, R. 2014. Do deep nets really need
to be deep? In Advances in neural information processing
systems, 2654–2662.
Bertsekas, D. P. 2009. Convex optimization theory. Athena
Scientific Belmont.
Chen, W.; Wilson, J.; Tyree, S.; Weinberger, K.; and Chen,
Y. 2015. Compressing neural networks with the hashing
trick. In International Conference on Machine Learning,
2285–2294.
Chollet, F. 2017. Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 1251–
1258.
Denton, E. L.; Zaremba, W.; Bruna, J.; LeCun, Y.; and Fer-
gus, R. 2014. Exploiting linear structure within convolu-
tional networks for efficient evaluation. In Advances in neu-
ral information processing systems, 1269–1277.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Fournier, N., and Guillin, A. 2015. On the rate of con-
vergence in wasserstein distance of the empirical measure.
Probability Theory and Related Fields 162(3-4):707–738.
Gong, Y.; Liu, L.; Yang, M.; and Bourdev, L. 2014. Com-
pressing deep convolutional networks using vector quantiza-
tion. arXiv preprint arXiv:1412.6115.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville,
A.; and Bengio, Y. 2013. Maxout networks. arXiv preprint
arXiv:1302.4389.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hein, M., and Andriushchenko, M. 2017. Formal guaran-
tees on the robustness of a classifier against adversarial ma-
nipulation. In Advances in Neural Information Processing
Systems, 2266–2276.
Heo, B.; Lee, M.; Yun, S.; and Choi, J. Y. 2019. Knowledge
transfer via distillation of activation boundaries formed by
hidden neurons. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, 3779–3787.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.
Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861.
Hunter, D. R., and Lange, K. 2004. A tutorial on mm algo-
rithms. The American Statistician 58(1):30–37.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, Citeseer.
Lopez-Paz, D.; Bottou, L.; Schölkopf, B.; and Vapnik, V.
2015. Unifying distillation and privileged information.
CoRR abs/1511.03643.
Mohajerin Esfahani, P., and Kuhn, D. 2018. Data-driven dis-
tributionally robust optimization using the wasserstein met-
ric: performance guarantees and tractable reformulations.
Mathematical Programming 171(1):115–166.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; and
Sutskever, I. 2019. Language models are unsupervised mul-
titask learners. OpenAI Blog 1(8).
Romero, A.; Ballas, N.; Kahou, S. E.; Chassang, A.; Gatta,
C.; and Bengio, Y. 2015. Fitnets: Hints for thin deep nets.
CoRR abs/1412.6550.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. CoRR
abs/1409.1556.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013.
Deep inside convolutional networks: Visualising image
classification models and saliency maps. arXiv preprint
arXiv:1312.6034.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 1–9.
Tang, Y.; You, S.; Xu, C.; Shi, B.; and Xu, C. 2019. Bringing
Giant Neural Networks Down to Earth with Unlabeled Data.
arXiv:1907.06065 [cs, stat].
Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanc-
tot, M.; and De Freitas, N. 2015. Dueling network ar-
chitectures for deep reinforcement learning. arXiv preprint
arXiv:1511.06581.
Wang, C.; Li, M.; and Smola, A. J. 2019. Language models
with transformers. CoRR abs/1904.09408.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; and He, K. 2017. Ag-
gregated residual transformations for deep neural networks.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1492–1500.
You, S.; Xu, C.; Xu, C.; and Tao, D. 2017. Learning
from Multiple Teacher Networks. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’17, 1285–1294.
New York, NY, USA: ACM.

4476


