
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation

Mohit Kumar,1 Samuel Kolb,1 Stefano Teso,2∗ Luc De Raedt1

1KU Leuven, 2University of Trento, Italy
{mohit.kumar, samuel.kolb, luc.deraedt}@cs.kuleuven.be, stefano.teso@unitn.it

Abstract

Combinatorial optimization problems are ubiquitous in artifi-
cial intelligence. Designing the underlying models, however,
requires substantial expertise, which is a limiting factor in
practice. The models typically consist of hard and soft con-
straints, or combine hard constraints with a preference func-
tion. We introduce a novel setting for learning combinato-
rial optimisation problems from contextual examples. These
positive and negative examples show – in a particular con-
text – whether the solutions are good enough or not. We de-
velop our framework using the MAX-SAT formalism. We
provide learnability results within the realizable and agnos-
tic settings, as well as HASSLE, an implementation based on
syntax-guided synthesis and showcase its promise on recov-
ering synthetic and benchmark instances from examples.

Introduction

Combinatorial optimisation is an effective and popular class
of techniques for solving real-life problems like schedul-
ing (Demirović, Musliu, and Winter 2019), routing (Mills
and Tsang 2000), and planning (Robinson et al. 2010). How-
ever, encoding the underlying models often proves to be
time-consuming and complicated, as it requires substan-
tial domain and modeling expertise. Therefore, the question
arises as to whether such models can be learned from data.
This question is studied in constraint learning (Bessiere et
al. 2016; De Raedt, Passerini, and Teso 2018), where sev-
eral algorithms have been developed that automatically ac-
quire theories or mathematical models from examples of
past working (positive) and non-working (negative) solu-
tions or analogous forms of supervision.

Combinatorial optimisation models have two compo-
nents: 1) a set of hard constraints φ defining the feasible re-
gion, and 2) a preference function f that measures the qual-
ity of candidate solutions, sometimes defined as a set of soft
constraints. The task of the solver is then to complete a (po-
tentially empty) partial assignment x into a complete assign-
ment xy that is both feasible and optimal, i.e., xy |= φ and
y ∈ argmaxxy|=φ f(xy). We use the term context to refer

∗This work was carried out as ST was working at KU Leuven.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to both partial assignments x and to more general temporary
constraints that restrict the outcome of optimisation.

Current learning approaches suffer from two limitations.
First, to the best of our knowledge, they do not learn
from contextual examples. By doing so, they ignore the
fact that the optima can be affected drastically by the con-
text. For instance, maxx:xy|=φ f(xy) can be very differ-
ent from maxy:xy|=φ f(xy). Furthermore, this is also a
less realistic setting in practice, as examples of good and
bad solutions will always be relative to a context. The
reader may notice a resemblance with structured output
prediction (e.g. (Tsochantaridis et al. 2005)), where one
learns a function f that computes a structured output y =
argmaxy f(x, y) for a given input x. The difference is that
in structured prediction the input and output variables are
fixed, while in combinatorial optimisation they are not.

Second, existing approaches do not jointly learn the hard
constraints and the preference function: they either learn one
or the other, or else learn them sequentially or independently.
But this may break down in applications like personnel ros-
tering. Here, past schedules are often stored in a dataset, but
the reasons why a schedule was found to be unacceptable
is usually not tracked. In cases like this, a negative example
may be either infeasible (because of the hard constraints) or
sub-optimal (because of the preference function). This in-
duces a credit-assignment problem that can only be solved
by learning the constraints and preference function jointly.
See the related work for a more in-depth discussion.

The key contribution of this paper is that we develop a
more realistic setting for learning combinatorial optimisa-
tion models from contextual examples that does not suf-
fer from these limitations. Furthermore, we provide results
within this setting for one of the simplest but most fun-
damental models for combinatorial optimisation, maximum
satisfiability (MAX-SAT). Our theoretical analysis shows
that MAX-SAT models can be probably approximately cor-
rect (PAC) and agnostically learned from contextual data us-
ing empirical risk minimization (ERM). Motivated by this,
we introduce HASSLE (HArd and Soft conStraint LEarning)
an implementation of ERM that exploits syntax-guided syn-
thesis techniques, whereby learning is encoded as an opti-
mization problem and solved using efficient solvers.

4493

Preliminaries

MAX-SAT Let X = {X1, . . . , Xn} be a set of Boolean
variables and Φ = {φ1, . . . , φm} a class of Boolean formu-
las of interest on X , e.g., the set of conjunctions or disjunc-
tions of up to k literals (i.e., variables or their negations). A
value assignment x fixes the value of each Xi to xi.

A partial maximum satisfiability (abbreviated MAX-SAT)
problem M is a collection of hard and soft constraints taken
from Φ (Miyazaki, Iwama, and Kambayashi 1996; Li and
Manya 2009). The hard constraints define the feasible region
while the soft ones define a preference relation over feasible
configurations. The hard constraints in M are encoded as
a vector c ∈ {0, 1}m such that cj = 1 if φj appears as
a hard constraint in M and zero otherwise, while the soft
constraints as w ∈ [−1, 1]m, where wj �= 0 if φj appears
as a soft constraint with weight wj and zero otherwise. This
setup allows each φj ∈ Φ to be either hard (cj = 1 and wj
arbitrary), soft (cj = 0 and wj �= 0), or irrelevant (cj =
wj = 0). All MAX-SAT problems can be written in this
form by rescaling their weights.

The value fw(x) of an assignment x is the total weight of
the constraints it satisfies, that is1:

fw(x) :=
∑m
j=1 wj�(x |= φj) (1)

Here, the indicator function �(cond) evaluates to 1 if cond
holds and to 0 otherwise. Inference amounts to finding a fea-
sible configuration that has optimal objective value, that is:

maxx fw(x) (2)
s.t. (cj = 1) =⇒ (x |= φj) j = 1, . . . ,m

where x |= φj indicates that x satisfies φj . By abbreviating
the conjunction of all hard constraints as:

υc :=
∧m
j=1((cj = 1) ⇒ φj)

we can shorten inference to maxx|=υc fw(x). Although
solving MAX-SAT is NP-hard in general (Li and Manya
2009), practical solvers have recently shown impressive per-
formance on highly non-trivial instances2.

Contexts In real-life applications, decisions are influenced
by temporary conditions and restrictions like resource avail-
ability. For instance, in personnel scheduling some employ-
ees may be unavailable because they are sick or on leave,
while in routing tasks part of the network may be down due
to a temporary failure. Such restrictions are captured by the
notion of context. In the previous examples, a context ψ is a
conjunction of literals, which fixes the value of one or more
decision variables. Letting M to be a MAX-SAT model, in-
ference in a context ψ amounts to:

maxx|=υc∧ψ fw(x) (3)

The set of variables fixed by the context changes too.
Contexts can, however, do more than specifying partial

interpretations: in rostering applications an employee may
1The weights of hard constraints can be safely ignored, as they

offset the value of all feasible configurations by the same amount.
2See for instance: https://maxsat-evaluations.github.io

be unable to work more than four hours a day due to var-
ious contingencies (e.g. pregnancy), while in routing some
routes might be taking more than usual due to high conges-
tion. In these cases, the context ψ is an arbitrary Boolean
formula that does restrict – but does not necessarily fix –
the variables. In the following, Ψ∗ will indicate the set of
all possible contexts, e.g., the class of all Boolean formulas
over X or sub-classes thereof.

Contexts are central in optimization problems as they can
significantly alter the quality of optima: optimal schedules
may be substantially better if a particularly skilled worker is
available. This means ignoring contexts while learning can
lead to under-performing models.

Problem Statement

In contrast to existing constraint learning methods, we con-
sider a more realistic setting where example solutions are
context-specific. More specifically, we expect each example
to be generated as follows: 1) A context ψ ∈ Ψ∗ is observed,
2) A configuration x that satisfies the context (x |= ψ) is
chosen according to some policy, e.g., by asking a domain
expert to provide a good solution, and 3) The configuration
is labelled as positive (y = 1), if it is feasible and works well
enough in practice, and as negative (y = 0) otherwise.

This process induces a joint distribution D(y,x, ψ) =
D(y|x, ψ)D(x|ψ)D(ψ). We are now ready to define MAX-
SAT learning from context-specific data:

Definition 1. Given a set of Boolean variables X , candi-
date constraints Φ, and context-specific examples S sampled
i.i.d. from an unknown joint distribution D, find a MAX-SAT
model M with parameters c and w that can be used to ob-
tain high-quality configurations in any context ψ.

The exact nature of configuration quality will be formalized
in the next section using the notion of regret (Cesa-Bianchi
and Lugosi 2006).

A few remarks are in order. First, we do not know which
negative examples are infeasible and which are simply not
good enough. This introduces an attribution problem: if a
negative configuration is infeasible, then c should be respon-
sible for labeling it, otherwise w should. This can be solved
elegantly using empirical risk minimization, as shown later
on. Second, all configurations are expected to include a de-
scription of the context in which they were obtained. This
is often the case in real-life applications: in rostering, past
schedules are annotated with the unavailable employees,
while in routing, the causes of congestion (e.g. maintenance
work) are kept track of for monitoring purposes. Applica-
tions in which this is not the case can be addressed by treat-
ing the unobserved contexts as latent variables. This non-
trivial extension is left to future work.

Learnability

In this section, we study MAX-SAT learning from the per-
spective of statistical learning theory3. The analysis is bro-
ken into three steps: 1) reducing MAX-SAT learning to

3As is common in this literature, we focus on statistical aspects
and leave computational issues to future work.

4494

classification and showing that the latter is learnable from
context-specific examples, 2) showing that classifiers with
low context-specific risk correspond to MAX-SAT models
with high-quality solutions, and 3) proving that, under mild
assumptions, classifiers with low context-specific risk enjoy
low risk in general. These results show that it is possible to
use ERM to solve MAX-SAT learning from context-specific
examples, and motivate our ERM-based approach, HASSLE.

The intra-context case We consider “MAX-SAT classi-
fiers” of the form:

hc,w(x, ψ) = �

(
x ∈ argmax

x′|=υc∧ψ
fw(x′)

)

Such classifiers label an instance as positive iff it is feasible
with respect to υc and ψ, and optimal with respect to fw.
Let H = {hc,w : c ∈ {0, 1}m,w ∈ [−1, 1]m} be the set of
all MAX-SAT classifiers and Hψ = {h(·, ψ) : h ∈ H} be
the set of those with a fixed ψ.

Our analysis relies on the fact that, regardless of the con-
text ψ, Hψ has finite Vapnik-Chervonenkis (VC) dimension.
In order to show this, we build an easier-to-handle superset
Gψ of Hψ as follows:

Gψ := {�
(
(x |= υc ∧ ψ) ∧ fw(x) ≥ max

x′|=φc′∧ψ
fw(x′)

)
: w ∈ [−1, 1]m, c, c′ ∈ {0, 1}m}

By construction, V C(Hψ) ≤ V C(Gψ). The latter can be
bounded in terms of two simpler sets Gψ,hard and Gψ,soft:

Gψ,hard := {�(x |= υc ∧ ψ) : c ∈ {0, 1}m},
Gψ,soft := {gc′,w(·, ψ) : c′ ∈ {0, 1}m,w ∈ [−1, 1]m}

where:

gc′,w(x, ψ) := �

(
fw(x) ≥ max

x′|=φc′∧ψ
fw(x′)

)
Lemma 1. For any ψ and c ≈ 4.7, it holds that:

V C(Gψ) ≤ c(V C(Gψ,hard) + V C(Gψ,soft))

Proof. Each and every hypothesis in Gψ is the conjunction
of a concept from Gψ,hard with a concept from Gψ,soft. The
claim follows by applying Theorem 1.1 of (van der Vaart
and Wellner 2009).

The remaining step is to prove that Gψ,hard and Gψ,soft both
have bounded VC dimension. It is clear that |Gψ,hard| ≤ 2m

and therefore V C(Gψ,hard) ≤ m. The answer for Gψ,soft is
given by the following lemma:
Lemma 2. For any ψ, it holds that V C(Gψ,soft) ≤ m+ 1.

Proof. Gψ,soft can be rewritten as:
Gψ,soft = {gc′,w(·, ψ) : c′ ∈ {0, 1}m,w ∈ [−1, 1]m}
= {�(fw(x) ≥ maxx′|=φc′∧ψ fw(x′)

)
: c′,w}

⊂ {�(fw(x) ≥ b) : w ∈ [−1, 1]m, b ∈ R}
Here c′ and w implicitly range over {0, 1}m and [−1, 1]m,
respectively. The final set is a subset of L, the class of linear
classifiers over the m features �(x |= φj(x)). This shows
that V C(Gsoft) ≤ V C(L) ≤ m+ 1.

Putting everything together proves that:
Theorem 1. For every ψ, it holds that V C(Hψ) ≤ c(2m+
1), where c is defined as in Lemma 1.
As mentioned above, this entails that MAX-SAT classifiers
are PAC learnable. Let LD,ψ(h) be the risk of some hypoth-
esis h ∈ H applied to some context ψ, i.e.,

LD,ψ(h) = Ey,x|ψ [�(h(x, ψ) �= y)]

=
∑

x|=ψ, y
�(h(x, ψ) �= y)D(x, y |ψ)

Combining Theorem 1 with standard statistical learning re-
sults (e.g. Theorem 6.8 in (Shalev-Shwartz and Ben-David
2014)) entails learnability in both the realizable and agnostic
settings. In particular, in the realizable setting it holds that:
Corollary 1. For any ψ ∈ Ψ∗, and εψ , δψ ∈ [0, 1], there
exists an integer sψ(εψ, δψ) ∈ N such that, given a dataset
S with at least sψ(εψ, δψ) examples specific to ψ, the proba-
bility that a hypothesis h ∈ H with minimal empirical error
on S has risk greater than εψ is less than δψ , i.e.:

P (LD,ψ(h) > ε) ≤ δ

From classification to optimization We have just shown
that ERM can be used to learn low-risk MAX-SAT classi-
fiers for any context. Next, we show that good classifiers
correspond to good MAX-SAT models, that is, models use-
ful for combinatorial optimization.

To simplify the presentation, in the remainder of the sec-
tion, we work in the realizable setting, i.e., there exist a la-
tent model M∗ – or equivalently a hypothesis h∗ ∈ H –
with parameters c∗, w∗ and the examples in S are labeled
according to it: yk = h∗(xk, ψk).

Given h ∈ H, let optψ := {x : x ∈ {0, 1}n, h(x, ψ) =
1} be the instances it classifies as positive, i.e., the set of its
context-specific optima. Also let opt∗ψ be the optima of h∗

in context ψ. The (average) regret measures the difference in
quality between the optima of h and the optima of h∗ (Cesa-
Bianchi and Lugosi 2006):
Definition 2. Let h∗ ∈ H have parameters c∗, w∗, and
let x∗ ∈ opt∗ψ . The regret reg(x, ψ) of using configuration
x |= ψ in context ψ is (fw∗(x∗) − fw∗(x)) if x is feasible
with respect to υc∗ or an application-dependent cost r ∈ R∪
{∞} otherwise. The average regret reg(h, ψ) of a hypothesis
h in context ψ is the average regret of its optima optψ .
Next, we show that the average regret of a MAX-SAT model
is minimized by optimizing its risk:
Theorem 2. Let αj(x) := �(cj = 1 ∧ x |= φj) for all
j = 1, . . . ,m, ρ = maxx,x′ ‖α(x′) − α(x)‖2, and η =
minx:D(x |ψ)>0D(x |ψ). For any h ∈ H and ψ ∈ Ψ∗, it
holds that:

reg(h, ψ) ≤ ‖w∗‖2 ρ+ r

|optψ|η
LD,ψ(h)

Proof. First, notice that:∑
x:h(x,ψ)=1

�(h(x, ψ) �= h∗(x, ψ)) ≤ 1

η
LD,ψ(h) (4)

4495

Indeed, the risk can be lower bounded as:

LD,ψ(h) =
∑

x∈{0,1}n

�(h(x, ψ) �= h∗(x, ψ))D(x |ψ)

≥
∑

x :h(x,ψ)=1

�(h∗(x, ψ) = 0)D(x |ψ)

≥ η
∑

x :h(x,ψ)=1

�(h∗(x, ψ) = 0)

Second, notice that x contributes to the average regret iff
h(x, ψ) = 1 ∧ h∗(x, ψ) = 0: if x is feasible w.r.t. υc∗ , it
contributes a factor (fw∗(x∗)− fw∗(x)), else it contributes
r. Thus, ignoring constants, the regret can be written as the
sum of two terms. The first one is:∑
x :h(x,ψ)=1

�(h∗(x, ψ) = 0 ∧ x |= υc∗) (fw∗(x∗)− fw∗(x))

which is upper bounded by:[
max
x,x′ fw

∗(x)−fw∗(x′)
] ∑

x:h(x,ψ)=1

�(h∗(x, ψ) = 0 ∧ x |= υc∗)

By Cauchy-Schwarz, the left factor is at most ‖w∗‖2 ρ. The
second term is:

r
∑

x :h(x,ψ)=1

�(h∗(x, ψ) = 0 ∧ x �|= υc∗)

The summations in both are upper bounded by the left hand
side of Eq (4). Dividing their sum by |optψ| gives the aver-
age regret and proves the claim.

In many real-life applications, the cost r of obtaining an
infeasible configuration is finite. This is not true in appli-
cations where infeasible configurations violate societal or
safety requirements, where r = ∞. In this case, the bound
in Theorem 2 becomes loose, unless the risk is exactly zero.
This shows that, understandably, extra care should be taken
when applying machine learning to high-stakes domains.

Generalization to the context-independent case So far
we have only considered learning and inference within the
same context. However, learned models are likely going to
be used in previously unobserved contexts. Next, we show
that MAX-SAT classifiers learned from context-specific data
do generalize, under mild assumptions, to the top context –
and therefore have low regret in the top context too. Gener-
alization to arbitrary contexts can be ensured using similar
arguments. Since this complicates exposition, we postpone
a more complete discussion to a longer version of the paper.

Intuitively, generalization requires the observed contexts
to be collectively representative of the global one. More for-
mally, we say that Ψ is representative if whenever h(·,)
makes a mistake, there is at least a context in Ψ that
“catches” that mistake:
Definition 3. For a given true hypothesis h∗, a collection of
contexts Ψ is representative if and only if for every h and x
it holds that:

(h(x,) �= h∗(x,)) =⇒∨
ψ∈Ψ(x |= ψ ∧ h(x, ψ) �= h∗(x, ψ)) (5)

X1 X2 X3

0 0 0
0 0 1
0 1 0
0 1 1
1 1 1
1 1 0
1 0 1
1 0 0

ψ1

ψ2

ψ3

Figure 1: Example representative contexts: ψ1 = X1 (blue),
ψ2 = ¬X1 (violet), ψ3 = X2 ∧ X3 (red) are represen-
tative for Φ = {X1, X2, X3,¬X1,¬X2,¬X3} and w∗ =
{1, 1, 1, 0, 0, 0}; details in the text. (Best viewed in color.)

To see why representativeness is necessary, consider a
ground truth model c∗ = 0 and w∗ = (1, 1, 1, 0, 0, 0) with:

Φ = {X1, X2, X3,¬X1,¬X2,¬X3}
ψ1 = X1, ψ2 = ¬X1, ψ3 = X2 ∧X3

Notice that under ψ1 the optimum is (1, 1, 1) with value 3,
while under ψ2 the optimum is (0, 1, 1) with value 2. Now,
take a hypothesis h that misclassifies x = (0, 1, 1) as a
global optimum. The error does not show up in either ψ1

(because x does not lie in it) nor in ψ2 (because x is indeed
optimal in it). Therefore, a classifier with arbitrarily low risk
on both ψ1 and ψ2 may still misclassify x. Requiring that h
performs well also on ψ3 fixes this issue, because x does lie
in ψ3 but is not optimal in it, cf. Figure 1.

Crucially, if h has low risk on all observed contexts Ψ and
Ψ is representative, then it performs well in general too:
Lemma 3. If Ψ is representative and for every context ψ ∈
Ψ it holds that ∀x |= ψ .D(x |ψ) > 0, there is a finite
constant β ≥ 0 such that for every h ∈ H:

LD,�(h) ≤ β
∑
ψ∈Ψ LD,ψ(h)

Proof. Representativeness of Ψ entails:
�{h(x,) �= h∗(x,)}

≤ �

(∨
ψ∈Ψ(x |= ψ ∧ h(x, ψ) �= h∗(x, ψ))

)
≤∑ψ∈Ψ �(x |= ψ ∧ h(x, ψ) �= h∗(x, ψ))

Plugging this into the risk of h in context gives:∑
x∈{0,1}n

�(h(x,) �= h∗(x,))D(x |)

≤
∑
x

∑
ψ∈Ψ

�(x |= ψ ∧ h(x, ψ) �= h∗(x, ψ))D(x |)

=
∑
ψ∈Ψ

∑
x|=ψ

�(h(x, ψ) �= h∗(x, ψ))D(x |)

Letting βψ = maxx|=ψ
D(x | �)
D(x |ψ) , we can write:

LD,�(h) ≤
∑
ψ∈Ψ

βψ
∑
x|=ψ

�(h(x, ψ) �= h∗(x, ψ))D(x |ψ)

=
∑
ψ∈Ψ

βψLD,ψ(h) ≤ β
∑
ψ∈Ψ

LD,ψ(h)

4496

where we chose β = maxψ∈Ψ βψ . It only remains to show
that β is finite. Notice that for each βψ the max runs over
those x’s that satisfy ψ, hence D(x|ψ) is always non-zero,
and so each βψ is finite. This proves that β is finite as it is
maximum over a set of finite value elements.

We are now ready to state our main result:

Theorem 3. In the realizable case, for any Ψ and D that
satisfy the conditions of Lemma 3 and for every ε, δ ∈ (0, 1),
there exist integers tψ(ε, δ) for ψ ∈ Ψ such that, if S con-
tains at least tψ(ε, δ) context-specific examples for every
ψ ∈ Ψ, then any hypothesis h with minimal empirical risk
on S satisfies:

P (LD,�(h) > ε) < δ

Proof. In the realizable case, any empirical risk minimizer
h attains zero empirical risk over S:∑

(x,ψ)∈S �(h(x, ψ) �= h∗(x, ψ)) = 0

and therefore, since all terms appearing in the sum are non-
negative, LS,ψ(h) = 0 for all ψ ∈ Ψ. In turn, Corollary 1
guarantees that for every εψ , δψ ∈ (0, 1), there exists an
integer sψ(εψ, δψ) such that if S includes at least sψ(εψ, δψ)
examples for context ψ, then:

P (LD,ψ(h) > εψ) < δψ ψ ∈ Ψ (6)

The second part of the proof involves upper bounding the
probability that h has large risk in context :

P (LD,�(h) ≥ ε) ≤ P (β
∑
ψ∈Ψ LD,ψ(h) ≥ ε)

≤ P (β|Ψ|maxψ∈Ψ LD,ψ(h) ≥ ε)

= P (maxψ∈Ψ LD,ψ(h) ≥ ε
β|Ψ|)

≤ P (
∨
ψ∈Ψ(LD,ψ(h) ≥ ε

β|Ψ|))

≤∑ψ∈Ψ P (LD,ψ(h) ≥ ε
β|Ψ|) (7)

The first step follows from Lemma 3. By Eq (6), the last
expression can be made smaller than any δ by adding enough
context-specific examples to S. In particular, having at least:

tψ(ε, δ) = sψ

(
ε

β|Ψ| , δψ
)

examples for every context guarantees that Eq (7) is less than
any δ =

∑
ψ∈Ψ δψ . This concludes the proof.

Summarizing, so long as the observed contexts are represen-
tative and there are enough examples, ERM learns a low-risk
MAX-SAT model that has low regret in both the observed
and in the global context with high probability.

Remarks Our results can be easily extended to more gen-
eral settings: 1) Nothing in our theory relies on the variables
being Boolean nor on the constraints being propositional
formulas. Hence, our results transfer to general weighted
constraint satisfaction problems with discrete variables and
additive preference functions (Rossi and Sperduti 2004;
Schiex et al. 1995). 2) Theorem 2 can be adapted to the

case where positive examples are high-quality yet not op-
timal. This is often the case in practice, as examples are
likely produced by a human domain expert. 3) Theorem 3
can be easily adapted to the agnostic case by using standard
generalization bounds based on the VC dimension (Anthony
and Bartlett 2009). 4) The bound in Lemma 3 can be made
tighter by careful tracking of which contexts in Ψ catch an
error for a particular h and x. In order to keep the presen-
tation accessible, we will detail these extensions in a longer
version of the paper.

MAX-SAT Learning with HASSLE

We are finally ready to present HASSLE, a prototype imple-
mentation of our ERM-based algorithm. Given X , Φ, and a
context-specific dataset S encompassing contexts Ψ, find-
ing a MAX-SAT model M with minimal empirical error
equates to solving the following optimization problem:

find c ∈ {0, 1}m,w ∈ [−1, 1]m

s.t. yk ⇔
(
xk ∈ argmax

x′|=υc∧ψk

fw(x′)

)
k = 1, . . . , s (8)

Following the literature on syntax-guided synthesis (Alur et
al. 2018), we would like to solve this problem using an ap-
propriate solver. However, this is problematic, as Eq (8) im-
plicitly defines s nested partial MAX-SAT problems.

We circumvent this difficulty by converting the above into
a mixed-integer linear program (MILP), shown in Figure 2.
The encoding can be split into two parts. The objective
function (Eq (9)) maximizes a set of per-context variables
γψ ∈ R and together with Eq (10) computes a feasible opti-
mum x′

ψ�
for every contextψ� ∈ Ψ in the data. Next, Eq (11)

ensures that c and w are chosen so that every positive exam-
ple xk is feasible and optimal in its own context ψk – using
the context-specific optimum x′

ψk
as a reference – and that

no negative instance is. Once solved, the learned MAX-SAT
model is read off from c and w. Two important remarks are
in order. First, γψ is always bounded thanks to Eq (10). For
contexts that have at least one positive example, Eq (10) is
superfluous and can be omitted for efficiency. Second, the
MILP encoding does not exactly correspond to the encoding
in Eq (8) – it is, instead, a tight approximation.

To solve the nested MAX-SAT problems, the MILP en-
coding uses variables γψ�

to represent the value of an op-
timal solution in a context ψ� according to the MAX-SAT
problem encoded by c and w. However, instead of individ-
ually maximizing the γψ�

, it has to resort to maximizing the
sum

∑
ψ�
γψ�

instead. This summation introduces a depen-
dency that allows the encoding to choose γ suboptimally for
some contexts – allowing it to falsely label examples as pos-
itive that are not positive w.r.t. to the current c and w – in
order to increase the γ’s for different contexts (an example
of this behavior is included in the supplementary material,
Example 1). A simple post-processing step can detect such
suboptimal γ’s and an iterative procedure4 could be used to
solve the problem, but our experimental results show that

4In cases where falsely labeled positives are detected, an itera-
tive procedure could be used to solve the problem to optimality: For

4497

max
c,w,γ

∑
ψ�∈Ψ γψ�

(9)

s.t. (x′
ψ�

|= υc ∧ ψ�) ∧ (γψ�
≤ fw(x′

ψ�
)) ψ� ∈ Ψ (10)

yk ⇔ (xk |= υc ∧ ψk) ∧ (γψk
≤ fw(xk)) k = 1, . . . , s (11)

γ ∈ R
|Ψ|, c ∈ {0, 1}m, w ∈ [0, 1]m

Figure 2: Simplified MILP encoding of HASSLE. The full encoding is given in the Supplement due to space restrictions.

this mismatch occurs rarely in practice. Indeed, in our exper-
iments, the MILP encoding makes a mistake on the training
set less than 1% of the time.

Experiments

We answer the following research questions: Q1) Does HAS-
SLE acquire accurate, low-regret models? Q2) Do more ex-
amples lead to a better model? Q3) How well does it scale
to more complex target models?

To this end, we used our MILP encoding for recovering
synthetic and benchmark MAX-SAT models M∗ of increas-
ing complexity from examples. The experimental setup can
be found at https://github.com/mohitKULeuven/hassle.

Datasets For the experiments we used both synthetic and
benchmark models. The synthetic models were generated
by enumerating all possible disjunctions of up to k literals
of n variables, and then sampling c∗ and w∗ at random so
that they have exactly mhard and msoft non-overlapping non-
zero entries, respectively, and the weights are sampled from
[−1, 1] uniformly. A total of 36 configurations were obtained
by varying n = 5, 10, 15, k = 2, 5 mhard = 0, 5, 10, and
msoft = 5, 10, and 5 random models were synthesized for
every configuration, giving a total of 180 models.

Benchmark MAX-SAT instances are typically huge, with
thousands of variables and constraints. So, to make sure that
HASSLE can learn hard combinatorial problems, we instead
chose five phase-transition SAT instances (Gent and Walsh
1994) with 20 variables and 91 constraints 5, and for each of
them, turned most of the hard constraints into soft ones by
adding random weights.

A dataset S was collected for each model M∗ by sam-
pling |Ψ| = 2, 5, 10 random contexts (that are not the
context) and then taking s+ positive and s− negative exam-
ples for each context. However when s+ is large, for some
contexts there may not exist s+ positive examples. For these
cases, we used as many as possible and in the results we re-
port the average number ŝ+. The contexts were chosen to be
conjunctions of literals, which act like partial assignments.

every context ψ� for which there exists an instance x′ with a value
larger than a positive instance x+ |= ψ�: fw(x′) > fw(x+), a
constraint: x′ �|= υc ∨ fw(x′) ≤ fw(x+) is added to the encod-
ing. The extended encoding is solved and this procedure is repeated
until all instances are labeled correctly.

5Taken from: www.cs.ubc.ca/∼hoos/SATLIB/benchm.html

Performance measures The performance of learned mod-
els M was captured using precision and average regret. Pre-
cision measures how often the optimal solutions of M are
feasible in M∗, while regret measures how far the optimal
solutions in M are from the ones in M∗. To calculate preci-
sion, first we generate 100×5

n
10 optimal examples using M

and then calculate the percentage of feasible ones. Increas-
ing n leads to increase in the set of optimal examples, that is
why we increase the sample size with n. Next we compute
the regret for the set of feasible examples using definition 2.
To simplify the comparison, the regret is normalized to [0, 1]
by dividing it by fw∗(x∗), where x∗ is an optimum of M∗.
In order to assess generalization across contexts, precision
and regret are computed in both the global context and
random contexts not used in training. GUROBI was used to
solve the MILP encoding on an Intel(R) Xeon(R) CPU E3-
1225 v3 @ 3.20GHz with 32 GiB RAM.

Results on synthetic models To answer Q1, we evaluated
HASSLE on ground truth models with an increasing number
of hard constraints mhard while keeping the number of posi-
tive and negative examples fixed (to ŝ+ = 2.4 and s− = 5).
The other parameters are averaged over. The results are re-
ported in Figure 3 (left). The two left bar plots show the
results for the global context, while the right ones the re-
sults for the random contexts. Increasing the number of hard
constraints understandably leads to a drop in precision and a
slight increase in regret, although the latter is less than 10%
on average. Learning also takes less than 5s per model.

We also looked into the effect of the number of contexts
by increasing |Ψ| = 2, 5, 10: precision does increase slightly
(around +4%) while regret remains stable in both global and
random contexts. This may be because the training contexts
have a non-trivial overlap and have common optima.

An important part of the experiment was to see if the per-
formance can be improved by increasing s+, s− as claimed
in the theory. So to answer Q2 we did experiments by fixing
some parameters (n = 10, k = 2, mhard = 5, msoft = 5,
|Ψ| = 20) and varying the number of examples (s+, s−)
used to learn the model, see the right graph in Figure 3. As
can be noticed, increasing the number of examples improves
the precision as well as recall, although as expected the time
taken also increases fast (from 4 Seconds to 6 hours). We
remark that HASSLE is a proof-of-concept implementation,
and that it can be sped-up by optimizing the encoding and
using techniques like explicit cutting planes (Joachims, Fin-
ley, and Yu 2009), symmetry-breaking constraints and exact

4498

Figure 3: Left: Performance versus number of hard constraints in M∗. Right: Performance versus number of examples used
for learning. Increasing the number of hard constraints in M∗ decreases the precision, although does not impact regret much.
However increasing the number of examples improves the model by both increasing the precision and decreasing the regret.

incremental learning (Kolb et al. 2018). A detailed explo-
ration of this is left to future work. Notice also that, once
learnt, these models can be used multiple times on different
contexts, justifying the cost of learning. So Q3 can be an-
swered affirmatively. Summarizing, HASSLE almost always
produces a low regret model, with more complex models re-
quiring more examples to be learned at the cost of run-time.

Results on benchmark models The experiments were
run on 5 benchmark instances, fixing |Ψ| = 2, s = 50,
mhard = 6 and msoft = 85. The average precision observed
was 91.7% in the global context, while it drops to 73.5%
for randomly generated contexts. However the average re-
gret remains ≈ 5% in both the cases.

Related Work

HASSLE is closely related to constraint learning and ac-
quisition (Bessiere et al. 2016; De Raedt, Passerini, and
Teso 2018). There contexts, which are pervasive in real-
life decision making, are usually ignored. One exception
is QuAcq (Bessiere et al. 2013), which acquires hard con-
straints from membership queries about partial assignments.
QuAcq, however, is allowed to choose informative partial
assignments, while in our (harder) case the contexts are fixed
by the environment. Further, QuAcq has neither support for
preference functions nor for general contexts.

Most approaches in constraint learning acquire hard con-
straints only by searching the version space with one-
directional (Beldiceanu and Simonis 2012) or bi-directional
search (Bessiere et al. 2016). HASSLE leverages ideas from
syntax-guided synthesis (Alur et al. 2018), where learn-
ing is cast as a proper satisfaction or optimization prob-
lem and tackled with a solver. This strategy has been
used for learning rules (Malioutov and Meel 2018), hybrid
logical-numerical formulas (Kolb et al. 2018), Bayesian net-
works (Berg, Järvisalo, and Malone 2014), and causal mod-
els (Hyttinen et al. 2013).

Approaches that learn soft constraints build on machine
learning techniques such as regression (Rossi and Sper-

duti 2004), learning-to-rank (Pawlak and Krawiec 2017), or
structured prediction (Teso, Sebastiani, and Passerini 2017),
depending on the kind of available supervision. However,
these methods require the hard constraints to be given.

Other related areas are structured prediction (McAllester
2007; London, Huang, and Getoor 2016) and contextual
(combinatorial) bandits (Li et al. 2010). In these settings
the supervision consists of input-output pairs for which the
partitioning of variables into inputs and outputs is fixed.
This schema is much more restrictive than general context-
specific examples. In addition, in structured prediction there
is no support for learning hard constraints.

MPE inference in Bayesian networks and Markov Logic
Networks can be cast as weighted MAX-SAT (Park 2002;
Richardson and Domingos 2006). However, MLNs are not
learned from contextual examples where both context x and
completion xy are provided. Rather the xy are sampled from
the underlying probability distribution and it is not assumed
that the examples are optimal (i.e., maximally likely).

Conclusion

We introduced the novel learning task of acquiring combi-
natorial optimization models from contextual data, focusing
specifically on MAX-SAT models. Our analysis shows that
empirical risk minimization (ERM) provably learns low-
regret MAX-SAT models from context-specific examples,
and justifies our ERM-based implementation, HASSLE. The
latter relies on an approximate but tight MILP encoding to
perform learning and, given enough examples, is able to re-
cover both synthetic and benchmark instances.

Acknowledgments

This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.
[694980] SYNTH: Synthesising Inductive Data Models).
This research has also received funding from the European
Union’s Horizon 2020 FET Proactive project “WeNet – The
Internet of us”, grant agreement No. 823783

4499

References

Alur, R.; Singh, R.; Fisman, D.; and Solar-Lezama, A. 2018.
Search-based program synthesis. Communications of the
ACM 61(12):84–93.
Anthony, M., and Bartlett, P. L. 2009. Neural network learn-
ing: Theoretical foundations. cambridge university press.
Beldiceanu, N., and Simonis, H. 2012. A Model Seeker:
Extracting global constraint models from positive examples.
In International Conference on Principles and Practice of
Constraint Programming, 141–157. Springer.
Berg, J.; Järvisalo, M.; and Malone, B. 2014. Learning op-
timal bounded treewidth bayesian networks via maximum
satisfiability. In Artificial Intelligence and Statistics, 86–95.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.; Lazaar,
N.; Narodytska, N.; Quimper, C.-G.; and Walsh, T. 2013.
Constraint acquisition via partial queries. In Twenty-Third
International Joint Conference on Artificial Intelligence.
Bessiere, C.; Daoudi, A.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Mechqrane, Y.; Narodytska, N.; Quimper, C.-G.;
and Walsh, T. 2016. New approaches to constraint acquisi-
tion. In Data mining and constraint programming. Springer.
51–76.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, learn-
ing, and games. Cambridge university press.
De Raedt, L.; Passerini, A.; and Teso, S. 2018. Learning
constraints from examples. In Thirty-Second AAAI Confer-
ence on Artificial Intelligence.
Demirović, E.; Musliu, N.; and Winter, F. 2019. Modeling
and solving staff scheduling with partial weighted MaxSAT.
Annals of Operations Research 275(1):79–99.
Gent, I. P., and Walsh, T. 1994. The sat phase transition. In
ECAI.
Hyttinen, A.; Hoyer, P. O.; Eberhardt, F.; and Järvisalo, M.
2013. Discovering cyclic causal models with latent vari-
ables: a general sat-based procedure. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial Intel-
ligence, 301–310. AUAI Press.
Joachims, T.; Finley, T.; and Yu, C.-N. J. 2009. Cutting-
plane training of structural SVMs. Machine Learning
77(1):27–59.
Kolb, S.; Teso, S.; Passerini, A.; and De Raedt, L. 2018.
Learning SMT(LRA) Constraints using SMT Solvers. In
IJCAI, 2333–2340.
Li, C. M., and Manya, F. 2009. MaxSAT, Hard and Soft
Constraints. Handbook of satisfiability 185:613–631.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, 661–670. ACM.
London, B.; Huang, B.; and Getoor, L. 2016. Stability and
generalization in structured prediction. The Journal of Ma-
chine Learning Research 17(1):7808–7859.
Malioutov, D., and Meel, K. S. 2018. MLIC: A MaxSAT-
Based framework for learning interpretable classification

rules. In International Conference on Principles and Prac-
tice of Constraint Programming, 312–327. Springer.
McAllester, D. 2007. Generalization bounds and consis-
tency. Predicting structured data 247–261.
Mills, P., and Tsang, E. 2000. Guided local search for solv-
ing sat and weighted max-sat problems. Journal of Auto-
mated Reasoning 24(1-2):205–223.
Miyazaki, S.; Iwama, K.; and Kambayashi, Y. 1996.
Database queries as combinatorial optimization problems.
In Proceedings of the International Symposium on Coopera-
tive Database Systems for Advanced Applications, 448–454.
Park, J. D. 2002. Using weighted max-sat engines to solve
mpe. In AAAI/IAAI, 682–687.
Pawlak, T. P., and Krawiec, K. 2017. Automatic synthe-
sis of constraints from examples using mixed integer linear
programming. European Journal of Operational Research
261(3):1141–1157.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1-2):107–136.
Robinson, N.; Gretton, C.; Pham, D. N.; and Sattar, A. 2010.
Partial weighted maxsat for optimal planning. In Pacific rim
international conference on artificial intelligence, 231–243.
Springer.
Rossi, F., and Sperduti, A. 2004. Acquiring both constraint
and solution preferences in interactive constraint systems.
Constraints 9(4):311–332.
Schiex, T.; Fargier, H.; Verfaillie, G.; et al. 1995. Valued
constraint satisfaction problems: Hard and easy problems.
IJCAI (1) 95:631–639.
Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
university press.
Teso, S.; Sebastiani, R.; and Passerini, A. 2017. Structured
learning modulo theories. Artificial Intelligence 244:166–
187.
Tsochantaridis, I.; Joachims, T.; Hofmann, T.; and Altun, Y.
2005. Large margin methods for structured and interdepen-
dent output variables. Journal of machine learning research
6(Sep):1453–1484.
van der Vaart, A., and Wellner, J. 2009. A note on bounds
for VC dimensions. Institute of Mathematical Statistics col-
lections 5:103–107.

4500

