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Abstract

Subsampled Randomized Hadamard Transform (SRHT), a
popular random projection method that can efficiently project
a d-dimensional data into r-dimensional space (r � d)
in O(dlog(d)) time, has been widely used to address the
challenge of high-dimensionality in machine learning. SRHT
works by rotating the input data matrix X ∈ R

n×d by Ran-
domized Walsh-Hadamard Transform followed with a subse-
quent uniform column sampling on the rotated matrix. De-
spite the advantages of SRHT, one limitation of SRHT is
that it generates the new low-dimensional embedding with-
out considering any specific properties of a given dataset.
Therefore, this data-independent random projection method
may result in inferior and unstable performance when used
for a particular machine learning task, e.g., classification.
To overcome this limitation, we analyze the effect of using
SRHT for random projection in the context of linear SVM
classification. Based on our analysis, we propose importance
sampling and deterministic top-r sampling to produce ef-
fective low-dimensional embedding instead of uniform sam-
pling SRHT. In addition, we also proposed a new supervised
non-uniform sampling method. Our experimental results have
demonstrated that our proposed methods can achieve higher
classification accuracies than SRHT and other random pro-
jection methods on six real-life datasets.

Introduction

Classification is one of the fundamental machine learn-
ing tasks. In the era of big data, huge amounts of high-
dimensional data become common in a wide variety of
applications. As the dimensionality of the data for real-
life classification tasks has increased dramatically in recent
years, it is essential to develop accurate and efficient classi-
fication algorithms for high-dimensional data.

One of the most popular methods to address the high-
dimensionality challenge is dimensionality reduction. It al-
lows the classification problems to be efficiently solved in
a lower dimensional space. Popular dimensionality reduc-
tion methods includes Principal Component Analysis (PCA)
(Jolliffe 2011), Linear Discriminant Analysis (LDA) (Mika
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et al. 1999) etc. However, these traditional dimensional-
ity reduction methods are computationally expensive which
makes them not suitable for big data. Recently, random pro-
jection (Bingham and Mannila 2001) that projects a high-
dimensional feature vector x ∈ R

d into a low-dimensional
feature x̃ ∈ R

r (r � d) using a random orthonormal ma-
trix R ∈ R

d×r. Namely, x̃ = RTx. Since random projec-
tion methods are (1) computationally efficient while main-
taining accurate results; (2) simple to implement in prac-
tice; and (3) easy to analyze (Mahoney and others 2011;
Xu et al. 2017), they have attracted significant research at-
tentions in recent years.

The theoretical foundation of random projection is the
Johnson-Lindenstrauss Lemma (JL lemma) (Johnson, Lin-
denstrauss, and Schechtman 1986). JL lemma proves that
in Euclidean space, high-dimensional data can be randomly
projected into lower dimensional space while the pairwise
distances between all data points are preserved with a high
probability. Based on the JL lemma, several different ways
are proposed for constructing the random matrix R: (1)
Gaussian Matrix (Dasgupta and Gupta 1999): each entry
in R is generated from a Gaussian distribution with mean
equals to 0 and variance equals to 1

d ; (2) Achlioptas ma-
trix (Achlioptas 2003): each entry in R is generated from
{−1, 0, 1} from a discrete distribution. This method gen-
erates a sparse random matrix R. Therefore it requires less
memory and computation cost; (3) sparse embedding ma-
trix (or called count sketch matrix) (Clarkson and Woodruff
2017) and its similar variant feature hashing (Weinberger et
al. 2009; Freksen, Kamma, and Larsen 2018): for each row
R, only one column is randomly selected and assign either 1
or −1 with probability 0.5 to this entry; and (4) Subsampled
Randomized Hadamard Transform (SRHT) (Tropp 2011):
It uses a highly structured matrix R for random projection.
The procedure of SRHT can be summarized as follows: It
first rotates the input matrix X ∈ R

n×d (n is the number of
samples, d is the dimensionality of the data) by Randomized
Walsh-Hadamard Transform and then uniformly sampling r
columns from the rotated matrix. More details of SRHT will
be discussed in next section.

Although random projection methods have attracted a
great deal of research attention in recent years (Sarlos
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2006; Choromanski, Rowland, and Weller 2017) and have
been studied for regression (Lu et al. 2013), classification
(Paul et al. 2013; Zhang et al. 2013; Paul, Magdon-Ismail,
and Drineas 2015) and clustering (Boutsidis, Zouzias, and
Drineas 2010; Liu, Shen, and Tsang 2017), most of the exist-
ing studies focused on data-independent projection. In other
words, the random matrix R was constructed without con-
sidering any specific properties of a given dataset.

In this paper, we focus on SRHT for random projection
and study how it affects the classification performance of lin-
ear Support Vector Machines (SVM). SRHT achieve dimen-
sionality reduction by uniformly sampling r columns from
a rotated version of the input data matrix X. Even though
Randomized Walsh-Hadamard transform in SRHT tends to
equalize column norms (Boutsidis and Gittens 2013), we ar-
gue that the importance of different columns in the rotated
data matrix are not equal. Therefore, the uniformly random
sampling procedure in SRHT would result in low accuracy
when used as a dimensionality reduction method in high-
dimensional data classification.

To overcome the limitation of SRHT, we propose to pro-
duce effective low-dimensional embedding by using non-
uniform sampling instead of uniform sampling. To achieve
this goal, we first analyze the effect of using SRHT for ran-
dom projection in linear SVM classification. Based on our
analysis, we have proposed importance sampling and deter-
ministic top-r sampling methods to improve SRHT. Further-
more, we also propose a new sampling method by incorpo-
rating label information. It samples the columns which can
achieve optimal inter-class separability along with the intra-
class compactness of the data samples.

Finally, we performed experiments to evaluate our pro-
posed methods on six real-life datasets. Our experimental
results clearly demonstrate that our proposed method can
obtain higher classification accuracies than SRHT and other
three popular random projection methods while only slightly
increasing the running time.

Preliminaries

Random Projection

Given a data matrix X ∈ R
n×d, random projection methods

reduce the dimensionality of X by multiplying it by a ran-
dom orthonormal matrix R ∈ R

d×r with parameter r � d.
The projected data in the low-dimensional space is

X̃ = XR ∈ R
n×r. (1)

Note that the matrix R is randomly generated and is inde-
pendent of the input data X. The theoretical foundation of
random projection is the Johnson-Lindenstrauss Lemma (JL
lemma) as shown in following,
Lemma 1 (Johnson-Lindenstrauss Lemma (JL lemma)
(Johnson, Lindenstrauss, and Schechtman 1986)). For any
0 < ε < 1 and any integer n, let r = O(log n/ε2) and
R ∈ R

d×r be a random orthonormal matrix. Then for any
set X of n points in R

d, the following inequality about pair-
wise distance between any two data points xi and xj in X
holds true with high probability:

(1−ε)‖xi−xj‖2 ≤ ‖RTxi−RTxj‖2 ≤ (1+ε)‖xi−xj‖2.

JL lemma proves that in Euclidean space, high-
dimensional data can be randomly projected into lower di-
mensional space while the pairwise distances between all
data points are well preserved with high probability. There
are several different ways to construct the random projec-
tion matrix R. In this paper, we focus on SRHT which uses
a structured orthonormal matrix for random projection. The
details about SRHT are as follows.

Subsampled Randomized Hadamard Transform
(SRHT)

For d = 2qwhere q is any positive integer1 , SRHT defines a
d× r matrix as:

R =

√
d

r
DHS (2)

where
• D ∈ R

d×d is a diagonal matrix whose elements are inde-
pendent random signs {1,−1};

• H ∈ R
d×d is a normalized Walsh-Hadamard matrix. The

Walsh-Hadamard matrix is defined recursively as:

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
with H2 =

[
1 1
1 −1

]
, and

H = 1√
d
Hd ∈ R

d×d;

• S ∈ R
d×r is a subset of randomly sampling r columns

from the d×d identity matrix. The purpose of multiplying
S is to uniformly sample r columns from the rotated data
matrix Xr = XDH.
There are several advantages of using SRHT for random

projection. Firstly, we do not need to explicitly represent H
in memory and only need to store a diagonal random sign
matrix D and a sampling matrix S with r non-zero values.
Therefore, the memory cost of storing R is only O(d + r).
Secondly, due to the recursive structure of Hadamard ma-
trix H, matrix multiplication XR only takes O(nd log(d))
time by using Fast Fourier Transform (FFT) for matrix mul-
tiplication (Tropp 2011). Ailon and Liberty (Ailon and Lib-
erty 2009) further improve the time complexity of SRHT to
O(nd log(r)) if only r columns in Xr are needed.

Methodology

Limitation of Uniform Sampling in SRHT

Despite the advantages of SRHT as mentioned in the pre-
vious section, one limitation of SRHT is that the random
matrix R is constructed without considering any specific
properties of input data X. Based on the definition in (2),
SRHT works by first rotating the input data matrix X by
multiplying it with DH and then uniformly random sam-
pling r columns from the rotated matrix Xr = XDH. Since
this uniform column sampling method does not consider the
underlying data distribution of Xr, it would result in low
and unstable accuracy when used as a dimensionality re-
duction method in a specific classification problem. To il-
lustrate the limitation of uniformly random sampling step in
SRHT, we generate a simple two-dimensional synthetic data

1We can ensure this by padding zeros to original data
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(a) Original data X (b) Rotated data Xr = XDH (c) Accuracy of SRHT on different runs

Figure 1: Limitation of uniform sampling

as shown in Figure 1(a). The first class (i.e., class label ‘+’)

was generated from N (μ1 = [3, 3], Σ =

[
1 1.75

1.75 1

]
).

The second class (i.e., class label ‘•’) was generated from

N (μ2 = [−3,−3], Σ =

[
1 1.75

1.75 1

]
). After multiply-

ing with matrix DH, the original data was rotated into new
feature space as shown in Figure 1(b). In this simple illus-
tration example, SRHT might choose the feature that can not
distinguish these two classes (i.e, the vertical feature in Fig-
ure 1(b)) and then leads to low classification accuracy. In
Figure 1(c), we shown the classification accuracy of using
SRHT on a real-life dataset for 15 different runs. It clearly
shows that this data-independent random projection method
could result in low and unstable performance on this syn-
thetic dataset. In the following sections, we will describe our
proposed methods to construct the data-dependent sampling
matrix S in (2) by exploiting the underlying data properties
from both unsupervised and supervised perspectives.

Improved SRHT by unsupervised non-uniform
sampling

First, we present our proposed non-uniform sampling meth-
ods from unsupervised perspective. In this paper, we study
SRHT in the context of using linear SVM for classification.
Assume we are given a training data set D = {xi, yi}ni=1,
where xi is a d-dimensional input feature vector, yi is its
corresponding class label. The dual problem of SVM can be
written in matrix format as shown in following,

max 1Tα− 1

2
αTYXXTYα

s.t 1TYα = 0

0 ≤ α ≤ C,

(3)

where X ∈ R
n×d is the input feature matrix, and Y is a

diagonal matrix where the elements in the diagonal are class
labels, Yii = yi, C is the regularization parameter.

By applying SRHT to project original X from d-
dimensional space into r-dimensional space, i.e., X̃ =√

d
rXDHS, the SVM optimization problem on projected

data X̃ will be

max 1T α̃− 1

2
α̃TYX̃X̃TYα̃

s.t 1TYα̃ = 0

0 ≤ α̃ ≤ C.

(4)

Comparing the dual problem (3) in the original space and
the dual problem (4) in the projected low-dimensional space,
the only difference is that XXT in (3) is replaced by X̃X̃T

in (4). The constraints on optimal solutions (i.e., α∗ of (3)
and α̃∗ of (4) ) do not depend on input data matrix. There-
fore, α̃∗ is expected to be close to α∗ when X̃X̃T is close
to XXT .

Let us rewrite X̃ = XrS
√

d
r where Xr = XDH, we

can view the effect of XrS
√

d
r is to uniformly sample r

columns from Xr and then re-scale each selected column by

a scaling factor
√

d
r . It corresponds to use uniform column

sampling for approximating matrix multiplication (Mahoney
and others 2011). It has been proved in (Drineas, Kannan,
and Mahoney 2006) that (i, j)-th element in X̃X̃T equals to
the (i, j)-th element of exact product XrX

T
r in expectation

regardless of the sampling probabilities. However, the vari-
ance of the (i, j)-th element in X̃X̃T depends on the choice
of sampling probabilities. Therefore, simply using uniform
sampling would result in large variance of each element in
X̃X̃T and then cause a large approximation error between
X̃X̃T and XrX

T
r .

Motivated by this observation, we first propose to im-
prove SRHT by employing importance sampling for ran-
domized matrix multiplication. Specifically, we would like
to design a method to construct S̃ based on specific data
properties of Xr instead of using random sampling matrix
S in original SRHT. The idea is based on importance sam-
pling for approximating matrix multiplication: (1) we assign
each column i in Xr a probability pi such that pi ≥ 0 and∑d

i=1 pi = 1; (2) we then select r columns from Xr based
on the probability distribution {pi}di=1 to form X̃; (3) a col-

umn in X̃ is formed as
√

1
rpi

Xr(:,i) if this column is chosen
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from the i-th column in Xr where
√

1
rpi

is the re-scaling

factor. In other word, the matrix S̃ ∈ R
d×r is constructed

as: for every column j in S̃ only one entry i (i is a random
number from {1, . . . , d}) is selected by following the prob-
ability distribution {pi}di=1 and a non-zero value is assigned
to this entry. The non-zero value is set as

S̃ij =

√
1

rpi
. (5)

In the uniform sampling setting, pi = 1
d , therefore S̃ =√

d
rS which is consistent with the setting in original SRHT

as shown in (2).
Now, the question is what choice of probability {pi}di=1

can optimally reduce the expected approximation error be-
tween X̃X̃T and XXT . We use Frobenius norm to measure
the approximation error between X̃X̃T and XXT .

Let us use Xr(:,j) to denote the j-th column of Xr, as
shown in the Proposition 1, the optimal sampling probability
to minimize E[‖X̃X̃T −XXT ‖F ] is

pj =
‖Xr(:,j)‖22∑d
j=1 ‖Xr(:,j)‖22

. (6)

Proposition 1. Suppose X ∈ R
n×d, Xr = XDH ∈ R

n×d

and X̃ = XrS̃ij where S̃ij ∈ R
d×r is defined as in (5).

Then, the optimal sampling probability to minimize the ex-
pectation of the Frobenius norm of the approximation er-
ror between X̃X̃T and XXT , i.e., E[‖X̃X̃T − XXT ‖], is

pj =
‖Xr(:,j)‖2

2∑d
j=1 ‖Xr(:,j)‖2

2

.

To prove Proposition 1, we first use the fact XXT =
XrX

T
r since DHHTDT = I. Then, we apply the Lemma

4 from (Drineas, Kannan, and Mahoney 2006) to obtain the
optimal sampling probability.

In addition, we also propose a deterministic top-r sam-
pling, which select the r columns with largest Euclidean
norms from Xr. As shown in the Proposition 2, this deter-
ministic top-r sampling method directly optimizes an upper
bound of ‖X̃X̃T −XXT ‖F without using re-scaling factor.

Proposition 2. Suppose X ∈ R
n×d, Xr = XDH ∈ R

n×d

and X̃ = XrP where P ∈ R
d×d is a diagonal matrix whose

elements are 1 or 0. Pii = 1 denotes the i-th column in Xr

is selected. Then,
∑

Pjj=0 ‖Xr(:,j)‖22 is an upper bound of

the approximation error ‖X̃X̃T −XXT ‖F .

Proof. Since X̃ = XrP and XXT = XrX
T
r , ‖X̃X̃T −

XXT ‖F = ‖XrPPTXT
r − XrX

T
r ‖F . Let us rewrite the

matrix product XrX
T
r as the sum of d rank one matri-

ces
∑d

j=1 Xr(:,j)Xr(:,j)
T . Similarly, XrPPTXT

r can be

rewritten as
∑d

j=1 PjjXr(:,j)Xr(:,j)
T . Therefore, the ap-

proximation error ‖X̃X̃T −XXT ‖F can be upper bounded

as follows,
‖X̃X̃T −XXT ‖F = ‖

∑
Pjj=0

Xr(:,j)Xr(:,j)
T ‖F

≤
∑

Pjj=0

‖Xr(:,j)Xr(:,j)
T ‖F =

∑
Pjj=0

‖Xr(:,j)‖22
(7)

In our experimental section, we have shown that this de-
terministic top-r sampling obtains better classification ac-
curacy than importance sampling method. Adelman and
Silberstein(Adelman and Silberstein 2018) also observed
that deterministic top-r sampling gets better results when
they use randomized matrix multiplication approximation to
speedup the training of deep neural networks.

Improved SRHT by Supervised Non-uniform
Sampling

In this section, we describe our proposed non-uniform sam-
pling method from supervised perspective. We propose to
construct the sampling matrix S̃ by incorporating label in-
formation. Our proposed method is based on the idea of
metric learning (Xing et al. 2003). The idea is to select r
columns from Xr for improving the inter-class separability
along with the intra-class compactness as used in (Lan et al.
2019).

Let zi be new feature representation of the i-th data sam-
ple in Xr. Then, we measure the interclass separability by
the sum of squared pair-wise distances between zi’s from
different classes as

∑
yi �=yj

‖zi − zj‖2. Similarly, we mea-
sure the intra-class tightness by the sum of squared pair-wise
distances between zi’s from the same class as

∑
yi=yj

‖zi−
zj‖2. We formulate our objective as a combination of these
two terms,∑

i,j∈D

‖zi − zj‖2Aij = trace((XrS̃)
�L(XrS̃))

= trace(Xr
�LXrS̃S̃

�),
(8)

where Aij = 1 if yi = yj , and Aij = −a if yi �= yj , pa-
rameter a is used to balance the tradeoff between inter-class
separability and intra-class tightness, L is the Laplacian ma-
trix of A, defined as L = D − A, and D is a diagonal
degree matrix of A such that Dii =

∑
j Aij . S̃ is the sam-

pling matrix whose elements are 0 or 1. We want to learn S̃
by minimizing (8).

Without losing any information, let us rewrite our variable
S̃ as a d× d diagonal matrix P where the diagonal element
Pii ∈ {0, 1}. Pii = 1 means the i-th column in Xr is se-
lected and Pii = 0 means the i-th column is not selected.
Then S̃ can be viewed as a submatrix of P that selects the
columns with Pii = 1 from P.

It is straight-forward to verify that S̃S̃� in (8) equals to
P. Therefore, our optimization is formulated as

min
P

trace(Xr
�LXrP)

s.t P ii ∈ {0, 1},
d∑

i=1

P ii = r.

(9)
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Algorithm 1 Improved Subsampled Randomized Hadamard
Transform (ISRHT) for linear SVM classification

Training
Input: training set Xtrain, reduced dimension r, regular-
ization parameter c;
Output: model w ∈ R

r×1, matrix D ∈ R
d×d and S̃ ∈

R
d×r;

1: Generate a diagonal random sign matrix D as in (2)
2: Compute Xr = XtrainDH ∈ R

n×d by FFT
3: Obtain the sampling matrix S̃

4: Compute X̂train = XrS̃ ∈ R
n×r

5: Train a linear SVM on X̂train and obtain the model w
Prediction

Input: test data Xtest, model w, matrix D, S̃;
Output: predicted labels ŷtest;

1: compute X̂test = XtestDHS̃ ∈ R
n×r

2: predict by ŷtest = X̂testw;

Let vector b denote the diagonal of the matrix Xr
�LXr,

i.e bi = (Xr
�LXr)ii, vector p denote the diagonal of P.

Then, the objective (9) is simplified to

min
p

b�p

s.t. pi ∈ {0, 1},
d∑

i=1

pi = r.

(10)

The optimal solution of (10) is just to select the largest r
elements in bi and set the corresponding entries in pi to 1.
Then S̃ can easily obtained based on non-zero values in p.

Algorithm Implementation and Analysis

We summarize our proposed algorithm in algorithm 1 and
name it as Improved Subsampled Randomized Hadamard
Transform (ISRHT). With respect to training time com-
plexity, step 2 needs O(ndlog(d)) time by using FFT. In
step 3, for unsupervised column selection, we need O(nd)
time to compute the Euclidean norm for each column. For
supervised column selection, bi in (10) are computed as
bi = (Xr

�LXr)ii and the Laplacian matrix L is equal to
D− yyT, therefore, the required time is still O(nd). Step
4 needs O(r) time and step 5 needs O(tnr) where t is the
number of iterations needed for training linear SVM. There-
fore, the overall time complexity of our proposed algorithm
is O(ndlog(d) + nd+ tnr). With respect to prediction time
complexity, our proposed method needs O(d log(d) + r)
time to make a prediction for a new test sample. With re-
spect to space complexity, D is a diagonal matrix, matrix
S̃ is a sampling matrix with r non-zero entries. Therefore,
the required space for storing the projection matrix R of
our proposed methods is O(d + r). Our proposed methods
achieve very efficient time and space complexities for model
deployment. We compare the time and space complexity of
different random projection methods in Table 1.

Table 1: Comparison of different random projection meth-
ods

Algorithms Space for R Time for projection
Gaussian O(dr) O(ndr)

Achlioptas O( 13dr) O( 13ndr)
Sparse Embedding O(d) O(nnz(X))

SRHT O(d+ r) O(ndlog(r))
ISRHT-unsupervised O(d+ r) O(ndlog(d) + nd)

ISRHT-supervised O(d+ r) O(ndlog(d) + nd)

Extension to High-dimensional Sparse Data

In this section, we describe an extension of our algorithm on
high-dimensional sparse data. One disadvantage of apply-
ing Hadamard transform on sparse data is that it produces
a dense matrix. As shown in the step 2 in Algorithm 1, the
memory cost is increased from O(nnz(X)) to O(nd). To
tackle this challenge, we use a combination of sparse em-
bedding and SRHT as proposed in (Chen et al. 2015) for
memory-efficient projection. We improve their work by re-
placing the original SRHT by our proposed ISRHT meth-
ods. We expect that our proposed data-dependent projection
methods can obtain higher accuracies than data-independent
projection methods on high-dimensional sparse data.

Specifically, we first use sparse embedding matrix
Rsparse ∈ R

d×r′ to project X into r′-dimensional space
and then use our improved SRHT methods to project into r
dimensional space. The sparse embedding matrix Rsparse

is generated as follows, for each row in random matrix
Rsparse, randomly selected one column and assign either
1 or −1 with probability 0.5 to this entry. All other en-
tries are 0s. Due to the sparse structure of Rsparse, ma-
trix multiplication XRsparse takes O(nnz(X)) time. By
doing this, the time complexity of the proposed method on
high-dimensional sparse data was reduced to O(nnz(X) +
nr′log(r′) + nr′) and the memory cost was reduced to
O(nnz(X) + nr′). In our experimental setting, we set r′ =
2r as suggested in (Chen et al. 2015).

Experiments

In this section, we compare our proposed methods with
other four popular random projection methods on six
real-world benchmark datasets. These benchmark datasets
are downloaded from LIBSVM website 2. For datasets
(mushrooms,real-sim, rcv1-binary, news20-binary), we
refer to the setting in (Pourkamali-Anaraki, Becker, and
Wakin 2018) and randomly select 70% of the original train-
ing data as training data and the rest 30% as test data. The
detailed information about these six datasets is summarized
in in Table 3.

We evaluate the performance of the following seven ran-
dom projection algorithms in our experiments:

• Gaussian: random projection by Gaussian Matrix (Das-
gupta and Gupta 1999);

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2: The classification accuracy and running time (in seconds) (The best results for each dataset are in bold and italic and
the best results among the seven random projection methods are in bold).

Algorithms
Datasets mushrooms usps-b gisette real-sim rcv1-binary news20-binary

(r = 16) (r = 16) (r = 256) (r = 256) (r = 256) (r = 256)

All features 99.85 91.03 97.5 97.43 96.43 96.01
0.1s 2.8s 3.0s 0.1s 0.1s 0.3s

PCA 96.23 85.85 96.50 93.10 95.05 -
0.3s 0.6s 3.2s 51.0s 34.5s -

DLSS 94.66 80.21 93.90 89.89 91,43 79.33
0.2s 1.0s 5.8s 2.0s 1.6s 9.3s

Gaussian 89.15±3.85 80.05±3.33 89.76±0.56 76.48±0.55 78.90±0.61 70.10±0.78
0.2s 1.0s 5.9s 19s 1.2s 20.3s

Achlioptas 91.74±2.75 81.50±2.28 89.56±0.65 76.20±0.63 79.03±1.28 69.29±0.99
0.3s 0.9s 7.8s 6.3s 1.5s 28.6s

Sparse Embedding 89.06±4.18 82.09±2.05 89.65±0.86 76.82±0.45 79.11±1.20 70.08±0.69
0.3s 0.8s 1.5s 2.4s 0.2s 0.6s

SRHT 92.45±2.59 81.87±1.55 91.77±0.76 72.80±0.23 79.08±0.97 70.58±0.26
0.3s 0.3s 1.5s 23.3s 0.5s 0.7s

ISRHT-nps 94.30±1.15 83.34±1.31 91.17±0.51 73.04±0.51 79.28±0.63 70.36±0.84
0.4s 0.6s 1.4s 24.2s 0.6s 0.9s

ISRHT-top-r 94.23±1.58 82.91±1.07 93.20±0.61 76.81±0.46 82.81±0.89 73.46±0.90
0.4s 0.4s 1.4s 18.7s 0.6s 0.9s

ISRHT-supervised 96.25±1.22 86.25±0.81 93.90±0.72 80.04±0.52 87.81±0.42 78.33±0.74
0.2s 0.4s 1.4s 44.3s 1.0s 1.1s

Table 3: Experiment dataset

Dataset train size test size dimensionality
mushrooms 6,000 2124 112

usps-b 7,291 2007 256
gisette 6,000 1000 5,000

real-sim 48,447 23862 20,958
rcv1-binary 13,562 6680 47,236

news20-binary 13,397 6599 1,355,191

• Achlioptas: random projection by Achlioptas matrix
(Achlioptas 2003);

• Sparse Embedding: random projection by count sketch
matrix (Clarkson and Woodruff 2017);

• SRHT: original subsampled randomized Hadamard trans-
form with uniform sampling (Tropp 2011);

• ISRHT-nps: our proposed method for ISRHT with norm-
proportional sampling as defined in (6);

• ISRHT-top-r: our proposed deterministic sampling
method for ISRHT which select r columns with largest
Euclidean norms;

• ISRHT-supervised: our proposed method by incorporat-
ing label information as defined in (10);

We also include the results of using all features and
two other popular data-dependent dimensionality reduction
methods: PCA and Deterministic Leverage Score Sampling
(DLLS) (Papailiopoulos, Kyrillidis, and Boutsidis 2014) in
Table 2. Due to high computational complexity of Singu-
lar Value Decomposition (SVD) in PCA and leverage score

sampling, we employed randomized SVD (Halko, Martins-
son, and Tropp 2011) in our experiments.

Experimental setup. The feature values for all data
sets are linearly scaled to [−1, 1]. For dense datasets
(mushrooms, usps-b and gisette), we directly apply
our proposed ISRHT methods on them. For the high-
dimefnsional sparse datasets (real-sim, rcv1-binary and
news20-binary), we use an extension of our proposed
methods that combines of sparse embedding and ISRHT for
memory efficient projection as discussed in previous sec-
tion. The regularization parameter C in linear SVM is cho-
sen from {2−5, 2−4, . . . , 24, 25} by 5-fold cross validation.
The tradeoff parameter a for ISRHT-supervised is fixed to
1.0. Our experiments are performed on a server with Dual
6-core Intel Xeon 2.4GHz CPU and 128 GB RAM.

Experimental Results. The accuracy and training time
of all algorithms are reported in Table 2. ’-’ is used to de-
note that PCA cannot be completed because of space com-
plexity. The number of reduced dimension r is shown in the
first column of the table. We also explore the impact of pa-
rameter r in Figure 2 and will be discussed later. The re-
ported accuracies are the averaged accuracies on test data
based on 15 repetitions. As shown in Table 2, our pro-
posed ISRHT-(top-k) method achieves significant higher ac-
curacies than other four data-independent random projec-
tion methods (i.e., Gaussian, Achlioptas, Sparse Embedding
and SRHT) on all six datasets. The ISRHT-nps gets slightly
better results than SRHT. Furthermore, by incorporating the
label information, our proposed ISRHT-supervised method
gets the best accuracy on all six datasets among the seven
random projection methods. Using all features gets the best
accuracy on all six datasets. PCA gets better accuracy than
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(a) mushrooms (b) usps (c) gisette

(d) real-sim (e) rcv (f) news

Figure 2: classification accuracies of different algorithms with different r

DLSS and other random projection methods while needs
longer running time. We also observe that our proposed
methods produce dense feature representation after random
projection and therefore it needs longer running time than
directly applying liblinear on high-dimensional sparse data.

With respect to the running time, all the random projec-
tion methods are more efficient than data-dependent dimen-
sion reduction method such as PCA and DLSS especially
on large datasets. Among these random projection methods
Gaussian and Achiloptas are much slower than Sparse Em-
bedding and SRHT since they need O(ndr) time for pro-
jection. The running times of our proposed methods ISRHT-
nps and ISRHT-top-r are very close to SRHT. The results
demonstrate that our proposed methods only slightly in-
crease the running time since the computing norm can be
done very efficiently.

Impact of parameter r. We evaluate the impact of pa-
rameter r in our proposed algorithms. We show the accura-
cies of all the algorithms with respect to different r in Figure
2. We can observe that our proposed methods gets higher ac-
curacy than other four methods. The accuracy improvement
is large when the parameter r is set to relative small num-
ber. As expected, the difference will become smaller as the
parameter r increases.

Stability Comparison Between ISRHT and SRHT. In
this section, we would like to further investigate the stability
of our proposed methods and SRHT with respect to differ-
ent choices of the regularization parameter C in SVM and
reduced dimension r. We evaluate all methods for different
parameter combinations of C and r. Regularization param-

(a) ISRHT-nps vs. SRHT (b) ISRHT-top-r vs. SRHT

Figure 3: Classification Accuracies of SRHT (x-axis) and
ISRHT (y-axis) for different parameters.

eter C is chosen from {2−5, 2−4, . . . , 25} and reduced di-
mension r is chosen from { d

26 ,
d
25 , . . . ,

d
2}.

Due to the space limitation, we only show the results
of comparing the prediction accuracies of ISRHT-nps and
ISRHT-top-r with SRHT on mushrooms dataset in Fig-
ure 3. The accuracies plotted in Figure 3 are based on the
average of 15 repetitions. For each parameter combination,
we plot its corresponding accuracy of SRHT on the x-axis
and the accuracy of our proposed methods on y-axis. So the
points above y = x line indicate an accuracy improvement
of our proposed methods (y-axis) (ISRHT-nps or ISRHT-
top-r) over SRHT(x-axis). Overall speaking, our proposed
methods is more stable with different choices of parameter
combinations.
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Conclusion and Future work
In this paper, we propose to produce more effective low-
dimensional embedding than original SRHT by using non-
uniform sampling instead of uniform sampling in SRHT.
To achieve this goal, we first analyze the effect of using
SRHT for random projection in the context of linear SVM
classification. Based on our analysis, we have proposed im-
portance sampling and deterministic top-r sampling to im-
prove the embedding. Secondly, we also propose a new
sampling method to incorporate label information based on
the idea of metric learning. We performed extensive ex-
periments to evaluate our proposed non-uniform samplings
methods. Our experimental results demonstrate that our pro-
posed new methods can achieve better accuracy than origi-
nal SRHT and other three popular random projection meth-
ods. Our results also demonstrate that our proposed method
only slightly increase the running time but results in more
effective embedding. In the future, we would like to ex-
tend our proposed ISRHT methods to nonlinear classifi-
cation problems. Another interesting direction is to design
data-dependent sparse embedding methods.
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