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Abstract

Convolutional Neural Networks are widely used to process
spatial scenes, but their computational cost is fixed and de-
pends on the structure of the network used. There are meth-
ods to reduce the cost by compressing networks or vary-
ing its computational path dynamically according to the in-
put image. However, since a user can not control the size of
the learned model, it is difficult to respond dynamically if
the amount of service requests suddenly increases. We pro-
pose User-Resizable Residual Networks (URNet), which al-
lows users to adjust the computational cost of the network as
needed during evaluation. URNet includes Conditional Gat-
ing Module (CGM) that determines the use of each residual
block according to the input image and the desired cost. CGM
is trained in a supervised manner using the newly proposed
scale(cost) loss and its corresponding training methods. UR-
Net can control the amount of computation and its inference
path according to user’s demand without degrading the accu-
racy significantly. In the experiments on ImageNet, URNet
based on ResNet-101 maintains the accuracy of the baseline
even when resizing it to approximately 80% of the original
network, and demonstrates only about 1% accuracy degrada-
tion when using about 65% of the computation.

Introduction

Generally, the computational graph in a deep neural network
is fixed and unchanged during inference time. But in many
situations of real applications, there may be the case that the
system needs to handle various amounts of computation per
request (Herbst, Kounev, and Reussner 2013). For example,
in the situation that the number of requests is rapidly increas-
ing but the system is forced to respond quickly, it is better for
the system to dynamically allocate less resource for requests
within a moderate performance degradation bound.

There are many researches that suggest static compressed
model(Hinton, Vinyals, and Dean 2015; Howard et al. 2017;
Iandola et al. 2016). Unlike these works, recent researches
(Wu et al. 2018; Lin et al. 2017) suggest the methods that a
neural network dynamically changes its computation graph

∗These authors also contributed equally to this work
†This author is a corresponding author

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Bl
oc

k

Cat

Bl
oc

k

Bl
oc

k

Cat

Increase of service requests
scale 1.0

scale 0.3

Figure 1: The concept of URNet. Our method uses the entire
network when resources are sufficient. If the number of ser-
vice requests increases, the system or a user can change the
scale(the size of the computational cost) of the network to
use only a fraction of the entire blocks, thereby reducing the
amount of computation in the network and processing the
increased requests in time.

at test time, rather than fixed all the time. But these works
only change the network path for each input, e.g., easy sam-
ples follow the path with less computation but complex sam-
ples require maximum available computation. Therefore,
these works can not take care of the demand from the ex-
ternal environment. They are dynamic but cannot resize on
our own purpose.

In this paper, we suggest a model that can adjust its com-
putational cost by dropping some of its components. It fol-
lows given user’s demand by itself, like 70% or 50% of max-
imum resource for usage, at any inference time. Our model is
also variant to input samples, but its computational cost does
not deviate significantly from the desired one. It is robust to
the environment where the resources per request are limited
or dynamically changing over time, and therefore, it fits such
applications as in a backend server or background applica-
tions in a client. Figure 1 intuitively describes our concept.
Our model is basically a plain ResNet (He et al. 2016) archi-
tecture with additional gate modules located between neigh-
boring blocks. Our gate module is computationally very
cheap compared to the backbone network. Like the works
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Figure 2: Overall structure of URNet. URNet locates Conditional Gating Module (CGM) for each residual block of ResNet,
and determines whether each block is used or not. CGMs receive two inputs and output one gate value: one of the inputs is the
features of the previous layer and the other is the desired scale parameter S . To output a gate value, it uses a sigmoid function
with probability p and a binary step function with probability 1−p as an activation function. CGMs, with sigmoid function, can
be trained through scale loss Ls and classification loss Lc to increase classification performance while controlling the number
of blocks used. At the time of inference, p is set to 0, so that only the binary step is used and the amount of computation is
reduced by not using the blocks with the gate value of 0.

in (Mirza and Osindero 2014; Sohn, Lee, and Yan 2015;
Chen et al. 2016), these modules are conditional, that is,
the user-specified scale condition of a network can be fed
into them. The network actually adjusts its scale by drop-
ping some blocks of ResNet according to the binary output
of the conditional gating module.

To train the network so that it can gate the correspond-
ing block, we may necessarily need to use 0/1 binary valued
function which decides whether to use the component or
not. Since this binary valued function is not differentiable,
this problem has usually been approached with reinforce-
ment learning (Wu et al. 2018; Lin et al. 2017). On the other
hand, we use a sigmoid function instead as a differentiable
substitute of a binary function, and train the whole model
while taking each gate module as either a sigmoid or a bi-
nary function based on a probabilistic rate. In addition, since
our training losses can be implemented from the conven-
tional classification loss by just adding mean squared error
loss between the desired input scale parameter S and the ac-
tual network scale, we do not need reinforcement learning,
and the training is fast and stable.

We validate our model from the experiments on CIFAR-
10, CIFAR-100 (Krizhevsky 2009) and ImageNet (Deng et
al. 2009) datasets. By experiments, we show that our method
can fit its scale to a given condition well, and sometimes out-
performs the baseline ResNet model when the scale parame-
ter S is 70% or 80%. Furthermore, even if we only use 60%
of blocks, the accuracy does not severely degrade.

Our contributions are summarized as follows:
(1) We propose URNet that can control its computational
complexity and inference path according to the user’s de-
mand.
(2) URNet does not suffer much from performance degrada-
tion even if it reduces the amount of computation.
(3) URNet is able to learn non-differentiable binary gates us-

ing a supervised learning method instead of using reinforce-
ment learning, thus improving learning speed and stability.

Related Works

Model Compression There are many works on compression
of neural networks, like pruning(Luo, Wu, and Lin 2017;
He, Zhang, and Sun 2017; He and Han 2018; Yu et al. 2017),
architecture search(Pham et al. 2018; Zoph and Le 2016),
model designing(Howard et al. 2017; Iandola et al. 2016;
Chen et al. 2018). Most of these compression methods pro-
duce one static-sized model. To cope with the requirements
of dynamically changing environment, it should prepare
many different-sized networks to its memory, which is not
desirable for a resource-constrained scenario like in an em-
bedded environment.
Rule-based Dynamic Network To cope with those dynamic
demand, there are several methods who can cut away the
computational graph, like early stopping(Huang and Chen
2018), or channel throwing(Yu et al. 2018). In inference
time those methods can choose fixed subset of full computa-
tional graph that gradually shallower with depth, or narrower
with channel, on predefined rule-based points of computa-
tion amount, like {0.5, 0.75, 1.0}.
Learning-based Dynamic Network Unlike those rule
based methods that value of computation amount is not con-
tinuous and selected sub-graph is fixed under architecture,
there are another approaches that selection of subgraph is
decided by model itself(Lin et al. 2017; Wu et al. 2018;
Liu and Deng 2018; Odena, Lawson, and Olah 2017; Boluk-
basi et al. 2017). Those methods have variance of computa-
tional graph for inputs, so more dynamically flexible than
rule based one. But to make the model to decide itself, these
work usually encounter the problem of handling the non dif-
ferentiable function(e.g. binary gate) on deciding hard gates.
In many times this approaches are achieved by reinforce-
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Figure 3: The structure of Conditional Gating Module
(CGM). The left is the ResNet module, and the right side
is the ResNet module with CGM. CGM is a module that
receives an input feature of residual block and a scale pa-
rameter S , then outputs a gate in a sigmoid or binary form
through a lightweight mapping function.

ment learning, which normally encounters the problem of
slowness and instability.

Our method can achieve both two dynamic approach’s
main goal, learning-based dynamic network with user con-
straint, with the benefit of variance per samples under any
continuous valued resource constraint, without using rein-
forcement learning.

User-Resizable Residual Networks

Our goal is to train a network to adjust its size according
to the given desired scale parameter S with a constraint of
spontaneously minimizing the performance degradation. S
can be any value between 0 and 1, representing what amount
the user wants to scale the network. To achieve this, we
propose User-Resizable Residual Networks (URNet) and a
training method for them. Figure 2 is the overview of our
URNet. We use ResNet as a baseline network, and drop
the residual blocks spontaneously upon S to scale the net-
work. For this, URNet includes a Conditional Gating Mod-
ule (CGM) as a method to decide whether to use each block
or not. This module is located one for each residual block,
and outputs a gate value under the condition of input fea-
ture and the scale parameter S . To train the gates with
the conventional supervised learning method, we propose
a scale loss and its training method. More specifically, be-
cause binary gates can not be back-propagated due to its
non-differentiable characteristics, our gate has either a sig-
moid or binary form at a certain probability during training.
However, at the time of inference, it is always set as a binary
step function.

Conditional Gating Module

To determine whether to use each block of a ResNet, some
modules or separate networks are required. And it must be
decided before each block is activated. We propose a condi-
tional gating module (CGM), a lightweight network mod-
ule for this purpose. CGM is a simple structure that can
be embedded in a ResNet, which can effectively determine
whether to use a block or not with much fewer parameters
and computation compared to those of the main ResNet.

As shown in Figure 3, this gate module has two input en-
tries, one is related to the features in the previous layer (X ∈
R

H×W×C), and the other is the scale parameter S . Thus,
the gate module is conditional to both X and S . Several
studies (Lin, Chen, and Yan 2013; Hu, Shen, and Sun 2018;
Chang et al. 2018) have used global pooling to handle global
features with fewer operations, and the proposed CGM also
uses a global average pooling to handle the features of the
previous layer. CGM then concatenates the globally pooled
features of size 1 × 1 × C with S expanded to the same
size, and outputs one gate variable through several fully con-
nected layers and activation functions. In order to reduce the
amount of computation, we use a reduction rate r after the
concatenation of the global feature and the scale condition
like SENet (Hu, Shen, and Sun 2018).

For scalability at inference time, we use Gate-Activation
function followed by several fully connected layers. Gate-
Activation is a simple function we designed for CGM, which
works as either a sigmoid function or a binary step, depend-
ing on the given probability. CGM can learn only when the
gate is sigmoid where gradients can be calculated and back-
propagated. We call this frequency as a gate-training proba-
bility p. The Gate-Activation operates as a sigmoid function
with probability p and acts as a binary step function with
probability 1 − p. In this case, training with binary gates
plays a very important role as well. When all gates are acti-
vated with a sigmoid function, the remaining blocks cannot
learn properly the cases of not using specific blocks. Dur-
ing the evaluation, this p is fixed to 0 and only the binary
function is used as an activation.

This gate module is then incorporated within the ResNet.
Generally, the ResNet Module can be defined as:

Y = X + F (X), (1)
where X and Y are the input and the output vectors of
each layer, and the function F (X) represents the residual
mapping to be learned. The operation X + F represents an
element-wise addition as a shortcut connection. Since the
purpose of CGM is to gate the output of the function F (X),
the ResNet module with CGM can be expressed as:

Y = X + Fgating(F (X))

= X + CGM(X,S) · F (X)

= X + gate · F (X).

(2)

Fgating refers to block-wise multiplication between F (X)
and a gate which is the output of CGM(X,S). When the
Gate-Activation works as a binary gate during evaluation,
the module can be expressed as:

Y =

{
X, if gate = 0

X + F (X), otherwise.
(3)
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As shown in (3), the corresponding block can be dropped
if the value of the gate is 0. The computation of the block
can then be reduced because F (X) operation is omitted. For
small S , the gate values will have a good chance to be 0,
depending on the input feature map X , resulting in a reduced
computational complexity on average. On the other hand,
large S will mostly activate gates such that most blocks will
be used for inference, resulting in high performance.

Training CGM

Scale Loss It was mentioned that CGM can output a sigmoid
or binary gate, and can be learned through back propagation
when using sigmoid gates. However, for actual learning, an
objective function must be defined. The goal of our method
is not only to increase or maintain the performance of the
classification, but also to allow the user to change the size of
the network according to the desired one. Thus, the objec-
tive function must also satisfy both of these requirements.
We propose a scale loss that can be used with conventional
supervised learning methods. This loss is defined so that the
average of CGM gates is close to the scale parameter S , as
follows.

Ls = ((
1

N

N∑
n=1

gaten)− S)2, (4)

where N denotes the number of residual blocks in the UR-
Net and gaten represents the output of the CGM corre-
sponding to the n-th block. The full objective of URNet
is the sum of this scale loss, Ls, and the classification loss
(cross entropy), Lc, of ResNet:

L = Lc + βLs. (5)

Here, β is a hyper parameter that controls the weights of Lc

and Ls. Smaller β means a bigger weight on classification,
while bigger β means a bigger weight on the scale loss. As β
increases, the actual block usage becomes similar to S , but
the classification performance may be sacrificed somewhat.
Our experiments show that the number of actual blocks used
can be controlled to be very close to the scale parameter S .
Gate Training Scheme According to (5), the CGMs are
optimized to increase the classification performance and to
make the average value of gates similar to the input param-
eter S . However, in order to ensure that URNet operates at
various values of S during inference, these values must be
learned during training. This is done by randomly changing
the range of S as we want to resize. The distribution of S is
set as a uniform distribution of U(Smin,Smax) during train-
ing. Here, Smin and Smax are the minimum and maximum
of the range, respectively. Through this, the value of S and
the actual block usage are synchronized with each other.

Since we use a pre-trained ResNet as the base network,
we train only the CGM first, similar to BlockDrop (Wu et al.
2018) which trains the policy network first. This is to min-
imize the influence of premature CGM on the pre-trained
ResNet. After then, ResNet and CGM are jointly trained.
However, by using the supervised learning method, CGM
can be learned directly without using the method like the

curriculum learning (Bengio 2013) which is used to over-
come the instability of reinforcement learning in the Block-
Drop paper, and learning can be performed with much less
epochs. For CIFAR datasets, our method requires only 500
epochs which is a considerably smaller number compared
to the training of BlockDrop which takes a total of 7,000
epochs including curriculum learning of 5,000 epochs.

Experiments

Baselines and Experimental Setup

In the following experiments, we have trained and evaluated
our method on CIFAR-10, CIFAR-100 (Krizhevsky 2009)
and ImageNet (Deng et al. 2009) datasets with top-1 ac-
curacy. As a base network for our URNet, we have used
ResNet-110 (54 blocks) for CIFAR datasets, and ResNet-
101 (33 blocks) for ImageNet. We have chosen the chan-
nel reduction rate r of CGM (see Figure 3) as 2 for CI-
FAR datasets and 16 for ImageNet. Similar to the evaluation
of other compression methods, we calculate the number of
multiply-accumulate operations of convolutional layers and
linear layers in FLOPs (floating point operations). The total
number of FLOPs of all the CGMs in ResNet-110 is only
0.04% of the base network and 0.08% for the ResNet-101.
We train CGM only for 100 epochs on CIFAR datasets and
5 epochs on ImageNet. Then, we train CGM and the base
network jointly for 400 additional epochs on CIFAR and
15 epochs on ImageNet. The learning rate is adjusted from
10−3 to 10−5.

Result on CIFAR

Table 1 shows the result of our method on CIFAR-10 and
CIFAR-100, under various values of scale parameter S . As
shown in the table, our method can be resized as desired
according to the given value of S , without severe accuracy
degradation. The table contains two baseline results of plain
ResNet-110 which contains 54 residual blocks. It also con-
tains the results of the proposed URNet (Ours), and other
different settings with ablation. For those experiments we
have set β in equation (5) as 2.0. During training, the scale
parameter S has been uniformly sampled in the range of
[0.2, 1.0], for every iteration.

The first and the second rows show the result of two base-
line experiments with ResNet-110. The first row (ResNet-
110 with rand, val) is the plain pretrained ResNet but we ran-
domly drop the residual blocks at test time, to resize the net-
work according to the given S . The second row (ResNet-110
with rand, train/val) is the results of the finetuned ResNet
that was trained with randomly dropping the blocks. It is
not surprising that the performance of the second row is in-
creased compared to the baseline at S = 1.0, because this
can be interpreted as the dropout effect applied to block
units. This result is very similar to the work in (Huang et al.
2016), as they trained the ResNet with dropping each layer
by a specific probability and unified them at test time. What
is different from (Huang et al. 2016) is that they trained dif-
ferent drop probability for each blocks but ours is the same
for all blocks.

4572



Table 1: The accuracy (%) and the number of block used under various scale conditions S . The two row numbers in each cell
are the accuracy (first row) and the number of blocks used (second row). Our method URNet(Ours) can be resized to match
the user condition well, without severe accuracy degradation. Compared to the baseline with S = 1.0 (93.2% (CIFAR-10),
72.3% (CIFAR-100)), our method performs better for a wide range of S (0.6 ∼ 1.0). The variance of block usage is in the
supplementary.

CIFAR-10 CIFAR-100
scale parameter S 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
ResNet-110
(rand, val)

11.8 15.4 28.0 68.6 93.2 1.3 2.4 7.3 38.1 72.3
10.80 21.65 32.34 43.21 54.00 10.77 21.56 32.46 43.19 54.00

ResNet-110
(rand, train/val)

83.3 91.0 92.8 93.3 93.7 50.0 66.2 70.8 72.2 73.0
10.80 21.65 32.38 43.16 54.00 10.83 21.58 32.40 43.24 54.00

External network
(ResNet-8)

91.5 92.6 92.7 93.1 93.0 70.3 71.1 71.4 72.5 72.5
31.15 32.30 32.92 47.34 51.00 18.73 21.00 28.56 45.25 53.94

URNet SG
(p = 1.0)

12.7 21.4 74.9 81.7 81.3 2.2 5.3 16.6 20.0 17.7
6.75 14.05 46.69 53.64 53.88 8.58 12.26 40.58 51.87 53.49

URNet BG
(p = 0.0)

93.2 93.1 93.0 92.9 92.8 71.5 71.6 71.7 71.8 71.7
28.55 28.60 28.67 28.81 28.84 27.97 28.20 28.54 28.81 29.03

ResNet+B/A
(rand, train/val)

83.1 91.1 92.5 93.3 93.7 50.1 66.4 70.4 72.2 73.2
10.78 21.54 32.42 43.15 54.00 10.79 21.56 32.44 43.22 54.00

URNet(Ours)
(p = 0.1)

92.2 93.3 93.7 93.7 93.6 70.7 71.5 72.4 73.0 72.8
18.08 20.86 32.02 44.37 52.19 28.10 28.57 32.00 44.61 49.41

The URNet (Ours) is trained with the gate training proba-
bility p = 0.1, from the pretrained ResNet-110. Our method
can match the network size to the desired value of S very
well, without severe accuracy degradation. Note that at sizes
in the range between 60% and 100% (32 blocks to 54
blocks), our method can even perform better than the base-
line ResNet (93.2% (CIFAR-10) and 72.3% (CIFAR-100)).
Unlike the finetuned dropped ResNet in the second row, our
method does not severely degrade under very sparse block
usage. Our method does not drop the blocks randomly like
the compared method in the second row, but it drops the
blocks by the decision of CGMs. This can be the reason for
the lowered damage, as the CGMs can separate the blocks
into most usable blocks and the remainder. As shown in Fig-
ure 4, under low S the CGMs have a tendency to open most
important blocks exclusively, and these blocks are opened at
every scale. And as S gets bigger, the rest of blocks grad-
ually start to open (color changes from blue to yellow) be-
cause more blocks are getting more affordable.

Ablation Study In Table 1, there are 4 other experiments
for ablation study. The External network method uses an ex-
ternal small network with 3 residual blocks (equivalent to
ResNet-8), which is separated from the base network, sim-
ilar to the method presented in (Wu et al. 2018), but it is
not trained using reinforcement learning. This external net-
work is trained similar to the CGMs, by switching between
sigmoid and binary activation with a rate of p. However, an
important difference is that this module handles all of the
gating at once with input data. It needs more computation
compared to ours, but it is hard to expect them to extract rich
features as it is smaller than the base network. As shown in
the Table, the external network method does not work well
to meet our purpose and the network usage deviates much

Figure 4: The block usage map of URNet-110 on the
CIFAR-10 test set with β = 4.0. The horizontal axis is the
scale parameter S and the vertical axis is the index of 54
residual blocks. As S increases, the usage of blocks gradu-
ally increases. Also, the presence of blocks whose usage is
not 1 or 0, means that the usage of the block varies according
to the input image even on the same scale.

from the scale parameter S .
The URNet with sigmoid only (URNet-SG) is a special

case of URNet with p = 1.0, where the network is never
trained with binary activation. But at inference time, all the
CGMs are binary activated because our purpose is to drop
some blocks. This experiment is a counter example that
shows why the binary activation is needed during gate train-
ing. It shows that if we gate the block by just using a sigmoid
value, the performance degrades severely. The URNet-BG
is trained with p = 0, which indicates that the network is
trained with only binary activations. In this case, the CGMs
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(a) Accuracy (b) Block usage (c) FLOPs

Figure 5: Accuracy, Block usage, and FLOPs versus scale parameter S under various βs, result of URNet-110 on CIFAR-10
dataset. The block usage and FLOPs follow the scale parameter S well, and better if β is bigger. For accuracy, too big β can
downgrade the accuracy, so a moderate value of β can perform better.

are actually not trained and the block features are just mul-
tiplied by the untrained CGM output. The URNet-BG ex-
periment shows that without sigmoid activation, the URNet
can not resize to the desired size S at all, and the result is
just from an additional training (400 epochs) of an arbitrary
subgraph of ResNet.

The ResNet+B/A always uses plain sigmoid function for
the activation of CGM, which can be considered that p = 1.0
at both train and test time. Note that the variants of URNet
set p = 0.0 at test time. In this case, it can learn the continu-
ous block-wise attention (0∼1), so possibly it gains more ac-
curacy than the baseline ResNet. However, the ResNet+B/A
has no binary function, thus it should calculate all the blocks,
which means that it is not resizable. Resizing it with a ran-
dom drop during training (ResNet+B/A(rand, train/val)) re-
sults in similar performance with the second row of the Ta-
ble. It shows that the model can get accuracy gain with block
attention, but suffers such a degradation when trying to re-
size by applying a random drop. If we force the B/A module
output to hard attention by thresholding the continuous at-
tention at test time, it is identical to URNet-SG, which also
fails to our purpose. Even if the CGMs in URNet does not
utilize the gain from continuous block-attention (0∼1), it
outperforms the ResNet+B/A for most values of S . How the
URNet does not suffer such degradation (and even gain ac-
curacy) is that it can learn whether the block is necessary
or can be abandoned, under given S , by the proposed gate
training scheme. As can be inferred from Figure 4.

Resize Ability The hyper-parameter β in (5) can represent
how strictly we want the network to follow the desired scale
S . If we set β higher, the network is more strongly affected
by the scale loss. As shown in Figure 5(b), the higher β be-
comes, the more strict the network becomes in following the
target scale. For lower β, the block usage is slowly fixed at
the boundary of S , especially when S = 0.2. If β is too
big, the accuracy of the network seems to be downgraded as
shown in the case of β = 8.0 in Figure 5 (a). This is because
too much scale loss can constrain the network capacity lead-
ing to a poor classification loss. But Figure 5 (a) shows that
β and the accuracy does not have a complete negative corre-
lation for relatively small β (β = 1, 2, 4), and the maximum

Table 2: The accuracy and the block usage under various
scale condition. The baseline accuracy of ResNet-101 on
ImageNet is 76.4. It uses downsample option ’B’ in (He et
al. 2016). Our best accuracy is achieved at S > 0.95, which
is 76.9%.

ImageNet
#Blocks FLOPs(E+10) Accuracy

ResNet-72 24.0 1.17 75.8
ResNet-75 25.0 1.21 75.9
ResNet-84 28.0 1.34 76.1
ResNet-101 33.0 1.56 76.4
S 0.2 0.4 0.6 0.8 1.0
Accuracy 74.0 74.9 75.7 76.4 76.9
Block usage 18.78 19.77 22.01 26.94 32.00
FLOPs(E+10) 0.94 0.98 1.08 1.30 1.52

accuracy point lies between β = 1.0 and β = 4.0. Because
our scale loss can work like regularization of the weight,
under the proper choice of β, the network accuracy can be
increased.

Result on ImageNet

Table 2 is our result on ImageNet (ILSVRC2012). We
trained the URNet from ResNet-101 which total 33 blocks.
The downsample option ’B’(He et al. 2016) is applied to
the (Wu et al. 2018), and we use it too for fair compari-
sion. The result of ResNet-{72, 75, 84, 101} are brought
from (Wu et al. 2018). In this experiment, β is set to 4.0.
Our method performs better than ResNets with the same
amount of computation in all the cases. When S is about
0.72, our URNet performs equal to ResNet-101 (accuracy:
76.4%) using about 1.24E+10 FLOPs. The accuracy keeps
increasing gradually with S , and our best accuracy 76.9%
is achieved at S > 0.95. Note that the accuracy of ResNet-
101+B/A(rand, train/val) is {26.2%, 49.9%, 64.1%, 71.6%,
76.0%} for each S={0.2, 0.4, 0.6, 0.8, 1.0} (see B/A module
in Ablation Study section).
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(a) American egret (b) Golden retriever

(c) Peacock (d) Koala

Figure 6: ImageNet samples that activate the blocks differ-
ently with an equal scale parameter (S = 0.6). In each ob-
ject class, the left ones activate 19 blocks of the network,
whereas the right ones activate 23 blocks.

(a) Brambling
(Night snake)

(b) Turtle
(Alligator)

(c) Mouse
(Jack O lantern)

Figure 7: Samples in ImageNet that was correctly classified
for large S (0.8) but misclassified as S gets reduced (0.6).
The misclassified label is written in parentheses. These sam-
ples can be regarded as hard samples.

Qualitative Results

Our CGMs not only considering the given S , also consider
the input features from the previous layer to decide whether
to use the corresponding block or not. In Figure 4, there
is green, blue area that represents the block usage is about
0.2∼0.8. These blocks are dynamically opened or closed de-
pending on the input image. These blocks may contain mi-
nor but detailed features for hard samples. Figure 6 is the ex-
amples of pair of samples that induce the model to activate
blocks differently during inference under given S = 0.6. In
the Figure, the pair of samples look very different visually.
The left ones, which use the minimum number of blocks
have very distinctive and remarkable features. Whereas the
samples on the right, which need the maximum number of
blocks, are hard samples that have too small object (a), too
large object (b), too noisy (c), interrupted by other object (d).

Resizable Range

Our URNet can obtain accuracy/FLOPs similar to state-of-
the-art compression methods, even though ours has addi-
tional characteristics of resizability. As stated previously, we
have trained S with 0.2 ∼ 1.0, but it is hard to satisfy both
high performance and large range of S simultaneously and

Figure 8: Accuracy vs FLOP. This figure compares UR-
Net(Ranged) and URNet(Fixed) on ImageNet with other
methods (Wu et al. 2018; Figurnov et al. 2017). The dot rep-
resents one model, and the solid horizontal line represents
the standard deviation of one model. URNet(Ranged) repre-
sents user resized results at test time by one model. Those of
ResNet-{72, 75, 84, 101} and other results are all brought
from (Wu et al. 2018).

there exists trade-off between them. In an environment that
accepts a more narrow range of S , there is a room to boost
performance.

If we train a network with a fixed S (Sfixed), our method
can be considered as a static compression method. In this
scenario, there is no need to consider the model architecture
(number of blocks, kernel size, channel size, etc.) and we
just need to set Sfixed as a desirable size.

While the resizable one (URNet(Ranged)) uses various
values of S during training, the fixed scale URNet(Fixed)
uses only a small fraction of entire range of S , so there may
be the case where only a few blocks are selected to use from
the beginning of the training, rather than considering var-
ious blocks. To prevent this, the scale parameter Sfixed is
initially set to 1, and then gradually reduced to a desirable
size. This is called Scale Annealing and Sfixed is decayed
with the cosine annealing schedule (Loshchilov and Hutter
2016) for specific epochs. In addition, to keep the ability
of selectively using blocks, the Gaussian noise is added so
Sfixed is sampled from N (Sfixed, σ

2) but restricted not to
exceeds 1.

Figure 8 shows the accuracy versus FLOPs of URNet and
other compression methods on ImageNet. The solid hori-
zontal line in the figure represents the standard deviation
of FLOPs of one model at test time. Note that the UR-
Net(Ranged) is just one model, and can be resized according
to user’s demand, that others cannot. The URNet(Fixed) is
trained with Sfixed = 0.5, 0.6 and 0.7, and the Gaussian
noise with σ = 0.1 is added to Sfixed at training time. 5
epochs of scale annealing is applied. Our URNet(Ranged)
performs almost equal to BlockDrop, and URNet(Fixed)
performs better than that.

Conclusion

We showed that our User-Resizable Residual Networks
(URNet) can resize itself as a response to the demand of
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a user, at any inference time. Experimental results show that
our URNet can change its computational cost without severe
accuracy degradation. Unlike other methods, using part of
the computational graph according to the pre-defined rules,
URNet can determine its computational path by the network
itself. Our method can be applied to any ResNet-based net-
work with very little (<0.1%) additional computational bur-
den. Using our method, the user of a network can dynami-
cally balance the number of requests executed per time, by
dynamically adjusting the amount of resources per request.
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