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Abstract

Robustness of Deep Reinforcement Learning (DRL) algo-
rithms towards adversarial attacks in real world applications
such as those deployed in cyber-physical systems (CPS) are
of increasing concern. Numerous studies have investigated
the mechanisms of attacks on the RL agent’s state space.
Nonetheless, attacks on the RL agent’s action space (cor-
responding to actuators in engineering systems) are equally
perverse, but such attacks are relatively less studied in the
ML literature. In this work, we first frame the problem as
an optimization problem of minimizing the cumulative re-
ward of an RL agent with decoupled constraints as the budget
of attack. We propose the white-box Myopic Action Space
(MAS) attack algorithm that distributes the attacks across the
action space dimensions. Next, we reformulate the optimiza-
tion problem above with the same objective function, but with
a temporally coupled constraint on the attack budget to take
into account the approximated dynamics of the agent. This
leads to the white-box Look-ahead Action Space (LAS) at-
tack algorithm that distributes the attacks across the action
and temporal dimensions. Our results showed that using the
same amount of resources, the LAS attack deteriorates the
agent’s performance significantly more than the MAS attack.
This reveals the possibility that with limited resource, an ad-
versary can utilize the agent’s dynamics to malevolently craft
attacks that causes the agent to fail. Additionally, we leverage
these attack strategies as a possible tool to gain insights on
the potential vulnerabilities of DRL agents.

Introduction

The spectrum of Reinforcement Learning (RL) applications
ranges from engineering design and control (Lee et al. 2019;
Tan et al. 2019) to business (Hu et al. 2018) and creative
design (Peng et al. 2018). As RL-based frameworks are in-
creasingly deployed in real-world, it is imperative that the
safety and reliability of these frameworks are well under-
stood. While any adversarial infiltration of these systems
can be costly, the safety of DRL systems deployed in cyber-
physical systems (CPS) such as industrial robotic applica-
tions and self-driving vehicles are especially safety and life-
critical.
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A root cause of these safety concerns is that in certain ap-
plications, the inputs to an RL system can be accessed and
modified adversarially to cause the RL agent to take sub-
optimal (or even harmful) actions. This is especially true
when deep neural networks (DNNs) are used as key com-
ponents (e.g., to represent policies) of RL agents. Recently,
a wealth of results in the ML literature demonstrated that
DNNs can be fooled to misclassify images by perturbing
the input by an imperceptible amount (Goodfellow, Shlens,
and Szegedy 2015) or by introducing specific natural look-
ing attributes (Joshi et al. 2019). Such adversarial perturba-
tions have also demonstrated the impacts of attacks on an
RL agent’s state space as shown by (Huang et al. 2017).

Besides perturbing the RL agent’s state space, it is also
important to consider adversarial attacks on the agent’s ac-
tion space, which in engineering systems, represents physi-
cally manipulable actuators. We note that (model-based) ac-
tuator attacks have been studied in the cyber-physical secu-
rity community, including vulnerability of continuous sys-
tems to discrete time attacks (Kim et al. 2016); theoret-
ical characteristics of undetectable actuator attacks (Ayas
and Djouadi 2016); and “defense” schemes that re-stabilizes
a system when under actuation attacks (Huang and Dong
2018). However, the issue of adversarial attacks on a RL
agent’s action space has relatively been ignored in the DRL
literature. In this work, we present a suite of novel attack
strategies on a RL agent’s action space.
Our contributions:

1. We formulate a white-box Myopic Action Space (MAS)
attack strategy as an optimization problem with decou-
pled constraints.

2. We extend the formulation above by coupling constraints
to compute a non-myopic attack that is derived from the
agent’s state-action dynamics and develop a white-box
Look-ahead Action Space (LAS) attack strategy. Empir-
ically, we show that LAS crafts a stronger attack than
MAS using the same budget.

3. We illustrate how these attack strategies can be used to
understand a RL agent’s vulnerabilities.

4. We present analysis to show that our proposed attack
algorithms leveraging projected gradient descent on the
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surrogate reward function (represented by the trained RL
agent model) converges to the same effect of applying
projected gradient descent on the true reward function.

Related Works

Due to the large amount of recent progress in the area of
adversarial machine learning, we only focus on reviewing
the most recent attack and defense mechanisms proposed for
DRL models. Table 1 presents the primary landscape of this
area of research to contextualize our work.

Adversarial Attacks on RL Agent

Several studies of adversarial attacks on DRL systems have
been conducted recently. (Huang et al. 2017) extended the
idea of FGSM attacks in deep learning to RL agent’s poli-
cies to degrade the performance of a trained RL agent. Fur-
thermore, (Behzadan and Munir 2017) showed that these
attacks on the agent’s state space are transferable to other
agents. Additionally, (Tretschk, Oh, and Fritz 2018) pro-
posed attaching an Adversarial Transformer Network (ATN)
to the RL agent to learn perturbations that will deceive the
RL agent to pursue an adversarial reward. While the attack
strategies mentioned above are effective, they do not con-
sider the dynamics of the agent. One exception is the work
by (Lin et al. 2017) that proposed two attack strategies. One
strategy was to attack the agent when the difference in prob-
ability/value of the best and worst action crosses a certain
threshold. The other strategy was to combine a video predic-
tion model that predicts future states and a sampling-based
action planning scheme to craft adversarial inputs to lead the
agent to an adversarial goal, which might not be scalable.
Other studies of adversarial attacks on the specific applica-
tion of DRL for path-finding have also been conducted by
(Xiang et al. 2018) and (Bai et al. 2018), which results in
the RL agent failing to find a path to the goal or planning a
path that is more costly.

Robustification of RL Agents

As successful attack strategies are being developed for RL
models, various works on training RL agents to be ro-
bust against attacks have also been conducted. (Pattanaik
et al. 2018) proposed that a more severe attack can be en-
gineered by increasing the probability of the worst action
rather than decreasing the probability of the best action.
They showed that the robustness of an RL agent can be
improved by training the agent using these adversarial ex-
amples. More recently, (Tessler, Efroni, and Mannor 2019)
presented a method to robustify RL agent’s policy towards
action space perturbations by formulating the problem as
a zero-sum Markov game. In their formulation, a separate
nominal and adversary policy are trained simultaneously
with a critic network being updated over the mixture of both
policies to improve both adversarial and nominal policies.
Meanwhile, (Havens, Jiang, and Sarkar 2018) proposed a
method to detect and mitigate attacks by employing a hierar-
chical learning framework with multiple sub-policies. They
showed that the framework reduces agent’s bias to maintain
high nominal rewards in the absence of adversaries. We note

that other methods to defend against adversarial attacks ex-
ist, such as studies done by (Tramèr et al. 2017) and (Sinha,
Namkoong, and Duchi 2018). These works are done mainly
in the context of a DNN but may be extendable to DRL
agents that employs DNN as policies, however discussing
these works in detail goes beyond the scope of this work.

Mathematical Formulation

Preliminaries

We focus exclusively on model-free RL approaches. Be-
low, let st and at denote the (continuous, possibly high-
dimensional) vector variables denoting state and action, re-
spectively, at time t. We assume a state evolution function,
st+1 = E(st, at) and let R(st, at) denote the reward sig-
nal the agent receives for taking the action at, given st. The
goal of the RL agent is to choose actions that maximizes the
cumulative reward,

∑
t R(st, at), given access to the trajec-

tory, τ , comprising all past states and actions. In value-based
methods, the RL agent determines action at each time step
by finding an intermediate quantity called the value func-
tion that satisfies the recursive Bellman Equations. One ex-
ample of such method is Q-learning (Watkins and Dayan
1992) where the agent discovers the Q-function, defined re-
cursively as:

Qt(st, at) = R(st, at) + max
a′

Qt+1(E(st, at), a
′).

The optimal action (or “policy”) at each time step is to deter-
ministically select the action that maximizes this Q-function
conditioned on the observed state, i.e.,

a∗t = argmax
a

Q(st, a).

In DRL, the Q-function in the above formulation is approx-
imated via a parametric neural network Θ; methods to train
these networks include Deep Q-networks (Mnih et al. 2015).

In policy-based methods such as policy gradients (Sutton
et al. 2000), the RL agent directly maps trajectories to poli-
cies. In contrast with Q-learning, the selected action is sam-
pled from the policy parameterized by a probability distri-
bution, π = P(a|s,Θ), such that the expected rewards (with
expectations taken over π) are maximized:

π∗ = argmax
π

E[R(τ)], a∗t ∼ π∗.

In DRL, the optimal policy π is the output of a parametric
neural network Θ, and actions at each time step are sampled;
methods to train this neural network include proximal policy
optimization (PPO) (Schulman et al. 2017).

Threat Model

Our goal is to identify adversarial vulnerabilities in RL
agents in a principled manner. To this end, We define a for-
mal threat model, where we assume the adversary possesses
the following capabilities:
1. Access to RL agent’s action stream. The attacker can

directly perturb the agent’s nominal action adversarially
(under reasonable bounds, elaborated below). The nomi-
nal agent is also assumed to be a closed-loop system and
have no active defense mechanisms.
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Table 1: Landscape of adversarial attack strategies on RL agents. First column denotes if the attack takes into account the
dynamics of the agent. Second column shows the method of computing the attacks; O denotes an optimization-based method
and M denotes a model-based method where the parameters of a model needs to be learned. Last column represents if the
attacks are mounted on agent’s state space (S) or action space (A).

Method Includes Dynamics Method Space of Attack

FGSM on Policies (Huang et al. 2017) X O S
ATN (Tretschk, Oh, and Fritz 2018) X M S
Gradient based Adversarial Attack (Pattanaik et al. 2018) X O S
Policy Induction Attacks (Behzadan and Munir 2017) X O S
Strategically-Timed and Enchanting Attack (Lin et al. 2017) � O, M S
NR-MDP (Tessler, Efroni, and Mannor 2019) X M A
Myopic Action Space (MAS) X O A
Look-ahead Action Space (LAS) � O A

2. Access to RL agent’s training environment. This is
required to perform forward simulations to design an op-
timal sequence of perturbations (elaborated below).

3. Knowledge of trained RL agent’s DNN. This is needed
to understand how the RL agent acts under nominal con-
ditions, and to compute gradients. In the adversarial ML
literature, this assumption is commonly made under the
umbrella of white-box attacks.
In the context of the above assumptions, the goal of the

attacker is to choose a (bounded) action space perturba-
tion that minimizes long-term discounted rewards. Based
on how the attacker chooses to perturb actions, we define
and construct two types of optimization-based attacks. We
note that alternative approaches, such as training another
RL agent to learn a sequence of attacks, is also plausible.
However, an optimization-based approach is computation-
ally more tractable to generate on-the-fly attacks for a tar-
get agent compared to training another RL agent (especially
for high-dimensional continuous action spaces considered
here) to generate attacks. Therefore, we restrict our focus on
optimization-based approaches in this paper.

Myopic Action-Space (MAS) Attack Model

We first consider the case where the attacker is myopic, i.e.,
at each time step, they design perturbations in a greedy man-
ner without regards to future considerations. Formally, let δt
be the action space perturbation (to be determined) and b be
a budget constraint on the magnitude of each δt

1. At each
time step t, the attacker designs δt such that the anticipated
future reward is minimized

min
δt

Radv(δt) = R(st, at + δt) +

T∑

j=t+1

R(sj , aj)

subject to : ‖δt‖p ≤ b,

sj+1 = E(sj , aj),

aj = Θ(sj) (for j = t, . . . , T ),

(1)

where ‖ · ‖p denotes the �p-norm for some p ≥ 1. Observe
that while the attacker ostensibly solves separate (decou-

1Physically, the budget may reflect a real physical constraint,
such as the energy requirements to influence an actuation, or it may
be a reflection on the degree of imperceptibility of the attack.

pled) problems at each time, the states themselves are not
independent since given any trajectory, sj+1 = E(sj , aj),
where E(sj , aj) is the transition of the environment based
on sj and aj . Therefore, R is implicitly coupled through
time since it depends heavily on the evolution of state tra-
jectories rather than individual state visitations. Hence, the
adversary perturbations solved above are strictly myopic and
we consider this a static attack on the agent’s action space.

Look-ahead Action Space (LAS) Attack Model

Next, we consider the case where the attacker is able
to look ahead and chooses a designed sequence of fu-
ture perturbations. Using the same notation as above, let∑t+H

j=t R(sj , aj+δj) denote the sum of rewards until a hori-

zon parameter H , and let
∑T

j=t+H+1 R(sj , aj) be the future
sum of rewards from time j = t+H + 1. Additionally, we
consider the (concatenated) matrix Δ = [δt, δt+1 . . . δt+H ]
and B denote a budget parameter. The attacker solves the
optimization problem:

min
Δ

Radv(Δ) =
t+H∑

j=t

R(sj , aj + δj) +
T∑

j=t+H+1

R(sj , aj)

subject to : ‖Δ‖p,q ≤ B,Δ = [δt, δt+1, . . . , δH ],

sj+1 = E(sj , aj),

aj = Θ(sj)
(2)

where ‖ · ‖p,q denotes the �p,q-norm (Boyd and Vanden-
berghe 2004). By coupling the objective function and con-
straints through the temporal dimension, the solution to the
optimization problem above is then forced to take the dy-
namics of the agent into account in an explicit manner.

Proposed Algorithms

In this section, we present two attack algorithms based on
the optimization formulations presented in previous section.

Algorithm for Mounting MAS Attacks

We observe that (1) is a nonlinear constrained optimization
problem; therefore, an immediate approach to solve it is via
projected gradient descent (PGD). Specifically, let S denote
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the �p ball of radius b in the action space. We compute the
gradient of the adversarial reward, ∇Radv w.r.t. the action
space variables and obtain the unconstrained adversarial ac-
tion ât+ 1

2
using gradient descent with step size η. Next, we

calculate the unconstrained perturbation δt and project in
onto S to get δ′t :

ât+ 1
2
= at − η∇Radv(st, ât),

δt = ât+ 1
2
− at,

δ′t = PS(δt).

(3)

Here, at represents the nominal action. We note that
this approach resembles the fast gradient-sign method
(FGSM) (Goodfellow, Shlens, and Szegedy 2015), although
we compute standard gradients here. As a variation, we can
compute multiple steps of gradient descent w.r.t the action
variable prior to projection; this is analogous to the basic it-
erative method (or iterative FGSM) (Kurakin, Goodfellow,
and Bengio 2016). The MAS attack algorithm is shown in
the supplementary material.

We note that in DRL approaches, only a noisy proxy of the
true reward function is available: In value-based methods,
we utilize the learned Q-function (for example, a DQN) as
an approximate of the true reward function, while in policy-
iteration methods, we use the probability density function
returned by the optimal policy as a proxy of the reward,
under the assumption that actions with high probability in-
duces a high expected reward. Since DQN selects the action
based on the argmax of Q-values and policy iteration sam-
ples the action with highest probability, the Q-values/action-
probability remains a useful proxy for the reward in our at-
tack formulation. Therefore, our proposed MAS attack is
technically a version of noisy projected gradient descent on
the policy evaluation of the nominal agent. We elaborate on
this further in the theoretical analysis section.

Algorithm for Mounting LAS Attacks

The previous algorithm is myopic and can be interpreted as
a purely spatial attack. In this section, we propose a spa-
tiotemporal attack algorithm by solving Eq. (2) over a given
time window H . Due to the coupling of constraints in time,
this approach is more involved. We initialize a copy of both
the nominal agent and environment, called the adversary and
adversarial environment respectively. At time t, we sample
a virtual roll-out trajectory up until a certain horizon t +H
using the pair of adversarial agent and environment. At each
time step k of the virtual roll-out, we compute action space
perturbations δt,k by taking (possibly multiple) gradient up-
dates. Next, we compute the norms of each δt,k and project
the sequence of norms back onto an �q-ball of radius B.
The resulting projected norms at each time point now rep-
resents the individual budgets, bk, of the spatial dimension
at each time step. Finally, we project the original δt,k ob-
tained in the previous step onto the �p-balls of radii bk, re-
spectively to get the final perturbations δ′t,k.2 We note that
to perform virtual roll-outs at every time step t, the state of

2Intuitively, these steps represent the allocation of overall bud-
get B across different time steps.

Algorithm 1: Look-ahead Action Space (LAS) Attack
1 Initialize nominal and adversary environments Enom,

Eadv with same random seed
2 Initialize nominal agent πnom weights, θ
3 Initialize budget B, adversary action buffer Aadv ,

horizon H
4 while t ≤ T do
5 Reset Aadv

6 if H = 0 then
7 Reset H and B
8 while k ≤ H do
9 Compute gradient of surrogate reward ∇Radv

10 Compute adversarial action ât+ 1
2 ,k

using
∇Radv

11 Compute δt,k = ât+ 1
2 ,k
− at,k

12 Append δt,k to Aadv

13 Step through Eadv with at,k to get next state
14 Compute ||δt,k||�p for each element in Aadv

15 Project sequence of ||δt,k||�p in Aadv on to ball of
size B to obtain look-ahead sequence of budgets
[bt,k, bt,k+1 . . . bt,k+H ]

16 Project each δt,k in Aadv on to look-ahead sequence
of budgets computed in the previous step to get
sequence [δ′t,k δ′t,k+1 . . . δ

′
t,k+H ]

17 Compute projected adversarial action ât = at + δ′t,k
18 Step through Enom with ât
19 B ← max(0, B − δ′t,k)
20 H ← H − 1

the Eadv has to be the same as the state of Enom at t. To
accomplish this, we saved the history of all previous actions
to re-compute the state of the Eadv at time t from t = 0.
While this current implementation may be time-consuming,
we believe that this problem can be avoided by giving the
adversary direct access to the current state of the nominal
agent through platform API-level modifications; or explicit
observations (in real-life problems).

In subsequent time steps, the procedure above is repeated
with a reduced budget of B −∑t

t=0 δ
′
t and reduced horizon

H − t until H reaches zero. The horizon H is then reset
again for planning a new spatiotemporal attack. An alterna-
tive formulation could also be shifting the window without
reducing its length until the adversary decides to stop the at-
tack. However, we consider the first formulation such that
we can compare the performance of LAS with MAS for an
equal overall budget. This technique of re-planning the δ′t at
every step while shifting the window of H is similar to the
concept of receding horizons regularly used in optimal con-
trol (Mayne and Michalska 1990). It is evident that using this
form of dynamic re-planning mitigates the planning error
that occurs when the actual and simulated state trajectories
diverge due to error accumulation (Qin and Badgwell 2003).
Hence, we perform this re-planning at every t to account for
this deviation. The pseudocode is provided in Alg. 1.
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(a) MAS

(b) LAS

Figure 1: Visual comparison of MAS and LAS. In MAS,
each δt is computed via multi-step gradient descent w.r.t. ex-
pected rewards for the current step. In LAS, each δ

′
t,k is com-

puted w.r.t. the dynamics of the agent with receding horizon.
An adversarial agent & environment is used to compute LAS
for each step. Projection is applied to each δt in the temporal
domain. The final perturbed action is obtained by adding the
first δ

′
t,k to the nominal action. This is done until the end of

the attack window, i.e., H − t = 0.

Theoretical Analysis

We can show that projected gradient descent on the surro-
gate reward function (modeled by the RL agent network) to
generate both MAS and LAS attacks provably converges;
this can be accomplished since gradient descent on a surro-
gate function is akin to a noisy gradient descent on the true
adversarial reward.

As described in previous sections, our MAS/LAS algo-
rithms are motivated in terms of the adversarial reward Radv .
However, if we use either DQN or policy gradient networks,
we do not have direct access to the reward function, but only
its noisy proxy, defined via a neural network. Therefore, we
need to argue that performing (projected) gradient descent
using this proxy loss function is a sound procedure. To do
this, we appeal to a recent result by (Ge et al. 2015), who
prove convergence of noisy gradient descent approximately
converges to a local minimum. More precisely, consider a
general constrained nonlinear optimization problem:

min f(x)

s.t. c(x) = 0,

where c is an arbitrary (differentiable, possibly vector-
valued) function encoding the constraints. Define S =
{x|c(x) = 0} define the constraint set. We attempt to min-
imize the objective function via noisy (projected) gradient
updates:

xt+1/2 = xt − η∇f(xt) + ξt ,

xt+1 = PS(xt+1/2).

Theorem 1. (Convergence of noisy projected gradients.) As-
sume that the noise terms {ξt} are i.i.d., satisfying E[ξ] =
0, E[ξξT ] = σ2Id, ‖ξ‖ ≤ O(1) almost surely. Assume that
both the constraint function c()̇ and the objective function
f(·) is β-smooth, L-Lipschitz, and possesses ρi-Lipschitz
Hessian. Assume further that the objective function f is B-
bounded. Then, there exists a learning rate η = O(1) such
that with high probability, in polylog(1/η2) iterations, noisy
projected gradient descent converges to a point x̂ that is
polylog(

√
η)-close to some local minimum of f .

In our case, f and ξ depends on the structure of the RL
agent’s neural network. (Smoothness assumptions of f can
perhaps be justified by limiting the architecture of the net-
work, but the iid-ness assumption on ξ is hard to verify).
As such, it is difficult to ascertain whether the assump-
tions of the above theorem are satisfied in specific cases.
Nonetheless, an interesting future theoretical direction is to
understand Lipschitz-ness properties of specific families of
DQN/policy gradient agents.

We defer further analysis of the double projection step
onto mixed-norm balls used in our proposed LAS algorithms
to the supplementary material.

Experimental Results & Discussion

To demonstrate the effectiveness and versatility of our meth-
ods, we implemented them on RL agents with continuous
action environments from OpenAI’s gym (Brockman et al.
2016) as they reflect the type of action space in most prac-
tical applications 3. For policy-based methods, we trained a
nominal agent using the PPO algorithm and a DoubleDQN
(DDQN) agent (Van Hasselt, Guez, and Silver 2016) for
value-based methods4. Additionally, we utilize Normalized
Advantage Functions (Gu et al. 2016) to convert the discrete
nature of DDQN’s output to continuous action space. For
succinctness, we present the results of the attack strategies
only on PPO agent for the Lunar-Lander environment. Addi-
tional results of DDQN agent in Lunar Lander and Bipedal-
Walker environments and PPO agent in Bipedal-Walker,
Mujoco Hopper, Half-Cheetah and Walker environments are
provided in the supplementary materials. As a baseline, we
implemented a random action space attack, where a random
perturbation bounded by the same budget b is applied to the
agent’s action space at every step. For MAS attacks, we im-
plemented two different spatial projection schemes, �1 pro-
jection based on (Condat 2016) that represents a sparser dis-
tribution and �2 projection that represents a denser distribu-
tion of attacks. For LAS attacks, all combinations of spatial
and temporal projection for �1 and �2 were implemented.

3Codes and links to supplementary are available at https://
github.com/xylee95/Spatiotemporal-Attack-On-Deep-RL-Agents

4The only difference in implementation of policy vs value-
based methods is that in policy methods, we take analytical gra-
dients of a distribution to compute the attacks (e.g., in line 10 of
Algorithm 1) while for value-based methods, we randomly sample
adversarial actions to compute numerical gradients.
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Figure 2: Box plots of PPO Lunar Lander showing average cumulative reward across 10 episodes for each attack methods.
The top Figs. (a-c) have H=5 with B= 3, 4, and 5 respectively. For a direct comparison, corresponding MAS budgets are
taken as b = B/H . Similarly, Figs.(d-f) have the same B values but with H=10. An obvious trend is that as B increases, the
effectiveness of LAS over MAS becomes more evident as seen in the decreasing trend of the reward.

Comparison of MAS and LAS Attacks

Fig. 2 shows distributions of cumulative rewards obtained by
the PPO agent across ten episodes in a Lunar Lander envi-
ronment, with each subplot representing different combina-
tions of budget, B and horizon, H . Top three subplots show
experiments with a H value of 5 time steps and b value of
3, 4, and 5 from left to right respectively. Bottom row of fig-
ures show a similar set of experiments but with a H value of
10. For a direct comparison between MAS and LAS attacks
with equivalent budgets across time, we have assigned the
corresponding MAS budget values as b = B/H . This as-
sumes that the total budget B is allocated uniformly across
every time step for a given H , while LAS has the flexibil-
ity to allocate the attack budget non-uniformly in the same
interval, conditioned on the dynamics of the agent.

We note that keeping H constant while increasing B pro-
vides both MAS and LAS with a higher budget to inject δt to
the nominal actions. We observe that with a low budget of 3
(Fig. 2a), only LAS is successful in attacking the RL agent,
as seen by the corresponding decrease in rewards. With a
higher budget of 5 (Fig. 2c), MAS has a more apparent ef-
fect on the performance of the RL agent while LAS reduces
the performance of the agent severely.

With B constant, increasing H allows the allocated B
to be distributed along the increased time horizon. In other
words, LAS virtually looks-ahead further into the future. In
the most naive case, a longer horizon dilutes the severity of
each δt in compared to shorter horizons. By comparing sim-
ilar budget values of different horizons (i.e horizons 5 and
10 for budget 3, Fig. 2a and Fig. 2d respectively), attacks for

H = 10 are generally less severe than their H = 5 counter-
parts. For all B and H combinations, we observe that MAS
attacks are generally less effective compared to LAS. We
note that this is a critical result of the study as most literature
on static attacks have shown that the attacks can be ineffec-
tive below a certain budget. Here, we demonstrate that while
MAS attacks can seemingly look ineffective for a given bud-
get, a stronger and more effective attack can essentially be
crafted using LAS with the same budget.

In the following sections, we further study the difference
between MAS and LAS as well as demonstrate how the at-
tacks can be utilized to understand the vulnerabilities of the
agent in different environments.

Action Dimension Decomposition of LAS Attacks

Fig. 3 shows action dimension decomposition of LAS at-
tacks. The example shown in Fig. 3 is the result of �2 pro-
jection in action space with �2 projection in time. From Fig.
3a, we observe that through all the episodes of LAS attacks,
one of the action dimension (i.e., Up - Down direction of lu-
nar lander) is consistently perturbed more, i.e., accumulates
more attack, than Left-Right direction.

Fig. 3b shows a detailed view of action dimension at-
tacks for an episode (Episode 1). It is evident from the fig-
ure that the Up-Down actions of the lunar lander are more
prone to attacks throughout the episode than Left-Right ac-
tions. Additionally, Left-Right action attacks are restricted
after certain time steps and only the Up-Down actions are
attacked further. Fig. 3c further corroborates the observation
in the Lunar Lander environment. As the episode progresses
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Figure 3: Time vs Attack magnitude along action dimension for LAS attacks with B = 4, H = 5 in Lunar Lander environment
with PPO RL agent. (a) Variation of attack magnitude along Up-Down and Left-Right action dimensions through different
episodes. In all episodes except episode 2, Up-Down action is more heavily attacked than Left-Right. (b) Variation of attack
magnitude through time for episode 1 of (a). After 270 steps, the agent is not attacked in the Left-Right dimension, but heavily
attacked in Up-Down directions. (c) Actual rendering of Lunar Lander environment for episode 1 of (a) corresponding to (b).
Frame 1-5 are strictly increasing time steps showing trajectory of the RL agent controlling the lunar lander.

in Fig. 3c, the lunar lander initially lands on the ground in
frame 3, but lifts up and hovers until the episode ends in
frame 5. This observation supports the fact that the pro-
posed attacks are effective in perturbing the action dimen-
sions in an optimal manner; as in this case, perturbing the
lunar lander in the horizontal direction will not further de-
crease rewards. On the other hand, hovering the lunar lander
will cause the agent to use more fuel, which consequently
decreases the total reward. From these studies, it can be con-
cluded that LAS attacks (correlated with projections of ac-
tions in time) can clearly isolate vulnerable action dimen-
sion(s) of the RL agent to mount a successful attack.

Ablation Study of Horizon and Budget

Lastly, we performed multiple ablation studies to compare
the effectiveness of LAS and MAS attacks. While we have
observed that LAS attacks are generally stronger than MAS,
we hypothesize that there will be an upper limit to LAS’s
advantage as the allowable budget increases. We take the
difference of each attack’s reduction in rewards (i.e. attack
- nominal) and visualize how much rewards LAS reduces
as compared to MAS under different conditions of B and
H . In the case of PPO in Lunar Lander, we observe that the
reduction in rewards of LAS vs MAS becomes less drastic as
budget increases, hence showing that LAS has diminishing
returns as both MAS and LAS saturates at higher budgets.
We defer detailed discussions and additional figures of the
ablation study to the supplementary materials.

Conclusion & Future Work

In this study, we present two novel attack strategies on an
RL agent’s action space; a myopic attack (MAS) and a non-
myopic attack (LAS). The results show that LAS attacks,
that were crafted with explicit use of the agent’s dynam-
ics information, are more powerful than MAS attacks. Ad-
ditionally, we observed that applying LAS attacks on RL
agents reveals the possible vulnerable actuators of an agent,
as seen by the non-uniform distribution of attacks on cer-
tain action dimensions. This can be leveraged as a tool to
identify the vulnerabilities and plan a mitigation strategy un-
der similar attacks. Possible future works include extending
the concept of LAS attacks to state space attacks where the
agent’s observations are perturbed instead of the agent’s ac-
tions while taking into account the dynamics of the agent.
Additionally, while we did not focus on the imperceptibility
and deployment aspects of the proposed attacks in this study,
defining a proper metric in terms of detectability in action
space and optimizing the budget to remain undetected for
different environments will be a future research direction.
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