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Abstract

Recently, techniques have been developed to provably guar-
antee the robustness of a classifier to adversarial perturba-
tions of bounded L1 and L2 magnitudes by using random-
ized smoothing: the robust classification is a consensus of
base classifications on randomly noised samples where the
noise is additive. In this paper, we extend this technique to
the L0 threat model. We propose an efficient and certifiably
robust defense against sparse adversarial attacks by randomly
ablating input features, rather than using additive noise. Ex-
perimentally, on MNIST, we can certify the classifications
of over 50% of images to be robust to any distortion of at
most 8 pixels. This is comparable to the observed empirical
robustness of unprotected classifiers on MNIST to modern
L0 attacks, demonstrating the tightness of the proposed ro-
bustness certificate. We also evaluate our certificate on Ima-
geNet and CIFAR-10. Our certificates represent an improve-
ment on those provided in a concurrent work (Lee et al. 2019)
which uses random noise rather than ablation (median certifi-
cates of 8 pixels versus 4 pixels on MNIST; 16 pixels versus
1 pixel on ImageNet.) Additionally, we empirically demon-
strate that our classifier is highly robust to modern sparse ad-
versarial attacks on MNIST. Our classifications are robust, in
median, to adversarial perturbations of up to 31 pixels, com-
pared to 22 pixels reported as the state-of-the-art defense, at
the cost of a slight decrease (around 2.3%) in the classifica-
tion accuracy. Code and supplementary material is available
at https://github.com/alevine0/randomizedAblation/.

Introduction

Adversarial attacks, and defenses against these attacks, have
been active topics of research in machine learning in re-
cent years (Szegedy et al. 2013; Carlini and Wagner 2017;
Madry et al. 2017). In the case of image classification, given
a classifier f , the goal of an adversarial attack on an image
x is to produce an image x′, such that x′ is visually sim-
ilar to x, but f classifies x′ differently than it classifies x.
Assuming that x is a natural image that was classified cor-
rectly, this means that the attacker can produce an image x′

which looks imperceptibly similar to this natural image, but
is misclassified by f .
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When designing or evaluating an adversarial attack, one
must choose an objective measure of ‘similarity’ between
two images: more precisely, the goal of the attacker is
to minimize d(x,x′), subject to f(x) �= f(x′), where
d is a chosen distance metric. Most existing work in ad-
versarial examples has used Lp norms as distance met-
rics, focusing in particular on L∞ and L2 norms (Good-
fellow, Shlens, and Szegedy 2015; Szegedy et al. 2013;
Madry et al. 2017; Dong et al. 2018; Kurakin, Goodfellow,
and Bengio 2018). The L0 metric, which is simply the num-
ber of pixels at which x′ differs from x, has also been the
target of adversarial attacks. This metric presents a distinct
challenge, because d(x,x′) is non-differentiable. However,
both gradient-based (white-box) attacks (Madry et al. 2017;
Papernot et al. 2016a) and zeroth-order (black-box) attacks
(Schott et al. 2019) have been proposed under the L0 attack
model. The L0 attack model is the focus of this paper.
Several practical defenses against adversarial attacks un-
der the L0 attack model have been proposed in the last
couple of years. These methods include defensive distil-
lation (Papernot et al. 2016b), as well as attempts to re-
cover x from x′ using compressed sensing (Bafna, Murtagh,
and Vyas 2018) or generative models (Schott et al. 2019;
Meng and Chen 2017). However, as new defenses are pro-
posed, new attacks are also developed for which these de-
fenses are vulnerable (e.g. (Carlini and Wagner 2016)). Ex-
perimental demonstrations of a defense’s efficacy based on
currently existing attacks do not provide a general proof of
security. In response, certifiably robust classifiers have been
developed for adversarial examples for a variety of attack
models (Wong and Kolter 2018; Gowal et al. 2018). For
these classifiers, given an image x, it is possible to com-
pute a radius ρ such that it is guaranteed that no adversarial
example x′ exists within a distance ρ of x. One drawback
of many of these certifiable approaches is that they can be
computationally expensive since they attempt to minimize
d(x,x′) (or its lower bound) using formal methods.
Recently, a relatively computationally inexpensive family of
certifiably robust classifiers have been proposed which em-
ploy randomized smoothing (Lecuyer et al. 2019; Cohen,
Rosenfeld, and Kolter 2019; Li et al. 2018; Salman et al.
2019). This development has mostly been focused on the L1
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Figure 1: An illustration of our proposed certifiably robust classification scheme on MNIST. At the top, the image to be classified
is shown. For randomly ablated images, we retain only k out of 784 total pixels (green pixels in these images are not used in
classification). For each value of k, we show four randomly ablated images along with their base classifier labels. For small
values of k, the smoothed classifier’s accuracy in the test set is low (∼ 32% for k = 5) while the accuracy increases for moderate
values of k (∼ 97% for k = 45). In each case, we compute the median certified robustness for the smoothed classifier of the L0

attack magnitude that classifications are provably protected against. The median is over the MNIST test set. For example, for
k = 45, we guarantee the robustness of our proposed method against all L0 adversarial attacks that perturb 8 or fewer pixels.

and L2 metrics. Conceptually, these schemes work by re-
peatedly adding random noise to the image x, in order to cre-
ate a large set of noised images. A base classifier is then used
to classify each of these noised samples, and the final robust
classification is made by ‘majority vote.’ The key insight is
that, if the magnitude of the noise added to each image is
much larger than the distance between x and a potentially
adversarial image x′, then any particular noised image gen-
erated from x could have been generated from x′ with nearly
equal likelihood. Then the expected number of ‘votes’ for
each class can only differ between x and x′ by a bounded
amount. Therefore, if we use a statistically sufficient num-
ber of random noise samples, and if the observed ‘gap’ be-
tween the number of votes for the top class and the number
of ‘votes’ for any other class at x is sufficiently large, then
we can guarantee with high probability that the robust clas-
sification at x′ will be the same as it is at x. Note that the
success probability can be made arbitrarily high by adding
more noise samples to x in the smoothing process.
In this work, we develop a certifiably robust classifica-
tion scheme for the L0 metric (i.e. sparse adversarial per-
turbations). To guarantee the robustness of the classifica-

tion against sparse adversarial attacks, we propose a novel
smoothing method based on performing random ablations
on the input image, rather than adding random noise. In our
proposed L0 smoothing method, for each sample generated
from x, a majority of pixels are randomly dropped from the
image before the image is given to the base classifier. If a
relatively small number ρ of pixels have been adversarially
corrupted (which is the case in sparse adversarial attacks),
then it is highly likely that none of these pixels are present
in a given ablated sample. Then, for the majority of possible
random ablations, x and x′ will give the same ablated image.
Therefore, the expected number of votes for each class can
only differ between x and x′ by a bounded amount. Using
this, we can prove that with high probability, the smoothed
classifier will classify x robustly against any sparse adver-
sarial attack which is allowed to perturbed certain number
of input pixels, provided that the ‘gap’ between the number
of votes for the top class and the number of ‘votes’ for any
other class at x is sufficiently large. (See Figure 1)
Our ablation method produces significantly larger robust-
ness guarantees compared to a more direct extension of ran-
domized smoothing to the L0 metric provided in a concur-
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rent work by (Lee et al. 2019): see the Discussion section for
a comparison of the techniques.
We note that our proposed approach bears some similari-
ties to (Hosseini, Kannan, and Poovendran 2019), in that
both works aim to defend against L0 adversarial attacks by
randomly ablating pixels. However, several differences ex-
ist: most notably, (Hosseini, Kannan, and Poovendran 2019)
presents a practical defense with no robustness certificate
given. By contrast, the main contribution of this work is a
provable guarantee of robustness to adversarial attack.
In summary, our contributions are as follows:
• We develop a novel defense technique against sparse ad-

versarial attacks (threat models that use the L0 metric)
based on randomized ablation.

• We characterize robustness guarantees for our proposed
defense against arbitrary sparse adversarial attacks.

• We show the effectiveness of the proposed technique on
standard datasets: MNIST, CIFAR-10, and ImageNet.

Preliminaries and Notation
We will use S to represent the set of possible pixel values
in an image. For example, in an 24-bit RGB color image,
S = {0, 1, ..., 255}3, while in a binarized black-and-white
image, S = {0, 1}. We will use X = Sd to represent the set
of possible images, where d is the number of pixels in each
image. Additionally, we will use SNULL to represent the set
S∪{NULL}, where NULL is a null symbol representing the
absence of information about a pixel, and XNULL = SNULL

d

to represent the set of images where some elements in
the images may be replaced by the null symbol. Note that
NULL is not the same as a zero-valued pixel, or black. For
example, if S = {0, 1} and d = 5, then [0, 1, 1, 0, 1]T ∈ X ,
while [NULL, 1,NULL, 0, 1]T ∈ XNULL.
Also, let [d] represent the set of indices {1, ..., d}, let
H(d, k) ⊆ P([d]) represent all sets of k unique indices in
[d], and let U(d, k) represent the uniform distribution over
H(d, k). (To sample from U(d, k) is to sample k out of d
indices uniformly without replacement. For example, an
element sampled from U(5, 3) might be {2, 4, 5}.)
We define the operation ABLATE ∈ X ×H(d, k) → XNULL,
which takes an image and a set of indices, and
outputs the image, with all pixels except those
in the set replaced with the null symbol NULL.
For example, ABLATE([0, 1, 1, 0, 1]T , {2, 4, 5}) =
[NULL, 1,NULL, 0, 1]T
For images x,x′ ∈ X , let ‖x− x′‖0 denote the L0 distance
between x and x′, defined as the number of pixels at which
x and x′ differ. Note that we are following the convention
used by (Carlini and Wagner 2017), where, for a color
image, the number of channels in which the images differ at
a given pixel location does not matter: any difference at a
pixel location (corresponding to an index in [d]) counts the
same. This differs from (Papernot et al. 2016a), in which
channels are counted separately. Also (in a slight abuse of
notation) let x 	 x′ denote the set of pixel indices at which
x and x′ differ, so that ‖x− x′‖0 = |x	 x′|.
Finally, for multiclass classification problems, let c be the
number of classes.

Figure 2: The bounding constant Δ from Theorem 1, shown
for MNIST-sized images (d=784). The constant k is the
number of pixels retained in each randomly ablated sample.

Certifiably Robust Classification Scheme
First, we note that in this section, we closely follow the nota-
tion of (Cohen, Rosenfeld, and Kolter 2019), using appropri-
ate analogs between the L2 smoothing scheme of that work,
and the proposed L0 ablation scheme of this work. In par-
ticular, let f ∈ XNULL → [c] denote a base classifier, which
is trained to classify images with some pixels ablated. Let
g ∈ X → [c] represent a smoothed classifier, defined as:

g(x) = argmax
i

[
Pr

T ∼U(d,k)
(f(ABLATE(x, T )) = i)

]
(1)

where k is the retention constant; i.e., the number of pixels
retained (not ablated) from x. In other words, g(x) denotes
the class most likely to be returned if we first randomly ab-
late all but k pixels from x and then classify the resulting
image with the base classifier f . To simplify notation, we
will let pi(x) denote the probability that, after ablation, f
returns the class i:

pi(x) = Pr
T ∼U(d,k)

(f(ABLATE(x, T )) = i) . (2)

Thus, g(x) can be defined simply as argmaxi [pi(x)].
We first prove the following general theorem, which can be
used to develop a variety of related robustness certificates.
Theorem 1. For images x,x′, with ‖x − x′‖0 ≤ ρ, for all
classes i ∈ [c]:

|pi(x′)− pi(x)| ≤ Δ (3)
where

Δ = 1−
(
d−ρ
k

)
(
d
k

) . (4)

See Figure 2 for a plot of how the constant Δ scales with
k and ρ. We present a short proof of Theorem 1 here:

Proof. Recall that (with T ∼ U(d, k)):
pi(x) = Pr(f(ABLATE(x, T )) = i)

pi(x
′) = Pr(f(ABLATE(x′, T )) = i)

(5)
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By the law of total probability:

pi(x) =

Pr([f(ABLATE(x, T )) = i] ∧ [T ∩ (x	 x′) = ∅])+
Pr([f(ABLATE(x, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])
pi(x

′) =

Pr([f(ABLATE(x′, T )) = i] ∧ [T ∩ (x	 x′) = ∅])+
Pr([f(ABLATE(x′, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])

(6)

Note that if T ∩ (x 	 x′) = ∅, then x and x′ are identical
at all indices in T . Then in this case, ABLATE(x, T )) =
ABLATE(x′, T )), which implies:

Pr(f(ABLATE(x, T )) = i | T ∩ (x	 x′) = ∅) =
Pr(f(ABLATE(x′, T )) = i | T ∩ (x	 x′) = ∅)

(7)

Multiplying both sides of (7) by Pr(T ∩(x	x′) = ∅) gives:

Pr([f(ABLATE(x, T )) = i] ∧ [T ∩ (x	 x′) = ∅]) =
Pr([f(ABLATE(x′, T )) = i] ∧ [T ∩ (x	 x′) = ∅])

(8)

Substituting (8) into (6) and rearranging yields:

pi(x
′) = pi(x)−

Pr([f(ABLATE(x, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])+
Pr([f(ABLATE(x′, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])

(9)

Because probabilities are non-negative, this gives:

pi(x)−
Pr([f(ABLATE(x, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])
≤ pi(x

′) ≤
pi(x)+

Pr([f(ABLATE(x′, T )) = i] ∧ [T ∩ (x	 x′) �= ∅])

(10)

By the conjunction rule, this implies:

pi(x)− Pr(T ∩ (x	 x′) �= ∅)
≤pi(x

′) ≤
pi(x) + Pr(T ∩ (x	 x′) �= ∅)

(11)

Note that:
Pr(T ∩ (x	 x′) �= ∅) =

1− Pr(T ∩ (x	 x′) = ∅) =1−
(
d−|x�x′|

k

)
(
d
k

) (12)

Where the last equality follows because T is an uniform
choice of k elements from d: there are

(
d
k

)
total ways to make

this selection,
(
d−|x�x′|

k

)
of which contain no elements from

(x	 x′). Then:

Pr(T ∩ (x	 x′) �= ∅) = 1−
(
d−|x�x′|

k

)
(
d
k

)

= 1−
(
d−‖x−x′‖0

k

)
(
d
k

) ≤ 1−
(
d−ρ
k

)
(
d
k

) = Δ

(13)

Combining inequalities (13) and (11) gives the statement of
Theorem 1.

Practical Robustness Certificates

Depending on the architecture of the base classifier, it may
be infeasable to directly compute pi(x), and therefore to
compute g(x). However, we can instead generate a repre-
sentative sample from U(d, k), in order to bound pi(x) with
high confidence. In particular, let pi(x) represent a lower
bound on pi(x), with (1− α) confidence, and let pi(x) rep-
resent a similar upper bound. We first develop a certificate
analogous for the L0 attack to the certificate presented in
(Cohen, Rosenfeld, and Kolter 2019):
Corollary 1. For images x,x′, with ‖x− x′‖0 ≤ ρ, if:

pi(x)−Δ > 0.5 (14)
then, with probability at least 1− α:

g(x′) = i (15)
Proof. With probability at least 1− α:

.5 < pi(x)−Δ ≤ pi(x)−Δ ≤ pi(x
′) (16)

where the final inequality is from Theorem 1. Then g(x′) =
i from the definition of g.

This bound applies directly to the true population value of
g(x′), not necessarily to an empirical estimate of g(x′). Fol-
lowing (Cohen, Rosenfeld, and Kolter 2019), we therefore
use a separate sampling procedure to estimate the value of
the classifier g(.), which itself has a bounded failure rate in-
dependent from the failure rate of the certificate, and which
may abstain from classification if the top class probabilities
are too similar to distinguish based on the samples. Note
that by using a large number of samples, this estimation er-
ror can be made arbitrarily small. In fact, because Corollary
1 is directly analogous to the condition for L2 robustness
presented in (Cohen, Rosenfeld, and Kolter 2019), we bor-
row both the empirical classification and the empirical certi-
fication procedures from that paper wholesale. We refer the
reader to that work for details: it is sufficient to say that with
these procedures, we can bound pi(x) with (1 − α) confi-
dence and also estimate g(x′) with (1−α) confidence. This
is the procedure we use in our experiments.
Alternatively, one can instead use a certificate analogous to
the certificate presented in (Lecuyer et al. 2019).
Corollary 2. For images x,x′, with ‖x− x′‖0 ≤ ρ, if:

pi(x)−Δ > argmax
k �=i

pk(x) + Δ (17)

then, with probability at least 1− α:
g(x′) = i. (18)

Proof. For each k �= i:
pk(x

′) ≤ pk(x) + Δ ≤ pk(x) + Δ ≤ argmax
k �=i

pk(x) + Δ

< pi(x)−Δ ≤ pi(x)−Δ ≤ pi(x
′)

(19)
where the first and last inequalities are from Theorem 1.

In a multi-class setting, Corollary 2 might appear to give
a tighter certificate bound. However, the upper and lower
bounds on pj(x) must hold simultaneously for all j with a
total failure rate of (1− α). This can lead to greater estima-
tion error if the number of classes c is large.
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Architectural and training considerations

Similar to existing works on smoothing-based certified ad-
versarial robustness, we train our base classifier f on noisy
images (i.e. ablated images), rather than training g directly.
For performance reasons, during training, we ablate the
same pixels from all images in a minibatch. We use the same
retention constant k during training as at test time.

Encoding SNULL . We use standard CNN-based architec-
tures for the classifier f(.). However, this presents an ar-
chitectural challenge: we need to be able to represent the
absence of information at a pixel (the symbol NULL), as
distinct from any color that can normally be encoded. Addi-
tionally, we would like the encoding of NULL to be equally
far from every possible encodable color, so that the net-
work is not biased towards treating it as one color moreso
than another. To achieve these goals, we encode images as
follows: for greyscale images where pixels in S are float-
ing point values between zero and one (i.e. S = [0, 1]),
we encode s ∈ S as the tuple (s, 1 − s), and then en-
code NULL as (0, 0). Practically, this means that we dou-
ble the number of color channels from one to two, with one
channel representing the original image and the other chan-
nel representing its inverse. Then, NULL is represented as
zero on both channels: this is distinct from grey (0.5, 0.5),
white (1, 0), or black (0, 1). Notably, the values over the
channels add up to one for a pixel representing any color,
while it adds up to zero for a null pixel. For color images,
we use the same encoding technique increasing the num-
ber of channels from 3 to 6. The resulting channels are then
(red, green, blue, 1− red, 1− green, 1− blue), while NULL
is encoded as (0, 0, 0, 0, 0, 0).1

Results

In this section, we provide experimental results of the pro-
posed method on MNIST, CIFAR-10, and ImageNet. When
reporting results, we refer to the following quantities:

• The certified robustness of a particular image x is the
maximum ρ for which we can certify (with probability at
least 1− α) that the smoothed classifier g(x′) will return
the correct label where x′ is any adversarial perturbation
of x such that ‖x − x′‖0 ≤ ρ. If the unperturbed clas-
sification g(x) is itself incorrect, we define the certified
robustness as N/A (Not Applicable).

• The certified accuracy at ρ on a dataset is the fraction of
images in the dataset with certified robustness of at least
ρ. In other words, it is the guaranteed accuracy of the clas-
sifier g(.), if all images are corrupted with any L0 adver-
sarial attack of measure up to ρ.

• The median certified robustness on a dataset is the me-
dian value of the certified robustness across the dataset.
Equivalently, it is the maximum ρ for which the certified

1On CIFAR-10, we scaled colors between 0 and 1 when using
this encoding. On ImageNet, we normalized each channel to have
mean 0 and standard deviation 1 before applying this encoding:
in this case, the NULL symbol is still distinct, although it is not
equidistant from all other colors.

accuracy at ρ is at least 0.5. When computing this me-
dian, images which g(.) misclassifies when unperturbed
(i.e., certified robustness is N/A) are counted as having
−∞ certified robustness. For example, if the robustness
certificates of images in a dataset are {N/A,N/A,1,2,3},
the median certified robustness is 1, not 2.

• The classification accuracy on a dataset is the fraction of
images on which our empirical estimation of g(.) returns
the correct class label, and does not abstain.

• The empirical adversarial attack magnitude of a partic-
ular image x is the minimum ρ for which an adversar-
ial attack can find an adversarial example x′ such that
‖x− x′‖0 ≤ ρ, and such that our empirical classification
procedure misclassifies or abstains on x′.

• The median adversarial attack magnitude on a dataset is
the median value of the empirical adversarial attack mag-
nitude across the dataset.

Unless otherwise stated, the uncertainty α is 0.05, and
10,000 randomly-ablated samples are used to make each
prediction. The empirical estimation procedure we use to
generate certificates, from (Cohen, Rosenfeld, and Kolter
2019), requires two sampling steps: the first to identify the
majority class i, and the second to bound pi(x). We use
1,000 and 10,000 samples, respectively, for these two steps.

Results on MNIST

We first tested our robust classification scheme on MNIST,
using a simple CNN model as the base classifier (see supple-
mentary material for architectural details.) Results are pre-
sented in Table 1. We varied the number of retained pixels
k in each sample: note that for small k, certified robustness
and accuracy both increase as k increases. However, after a
certain threshold, here achieved at k = 45, certified robust-
ness starts to decrease with k, while classification accuracy
continues to increase. This can be understood by consider-
ing Figure 2: For larger k, the bounding constant Δ grows
considerably faster with the L0 distance ρ. In other words,
a larger fraction of ablated samples must be classified cor-
rectly to achieve the same certified robustness. For small k,
the fraction of ablated samples classified correctly increases
sufficiently quickly with k to counteract this effect; however,
after a certain point, it is no longer beneficial to increase k
because a large majority of samples are already classified
correctly by the base classifier (For example, see Figure 1).
We also tested the empirical robustness of our classifier

to an L0 adversarial attack. Specifically, we chose to use
the black-box Pointwise attack proposed by (Schott et al.
2019). We choose a black-box attack because comparisons
to other robust classifiers using gradient-based attacks (such
as the L0 attack proposed by (Carlini and Wagner 2017))
may be somewhat asymmetric since our smoothed classi-
fier is non-differentiable (because the base classifier’s out-
put is discretized.) While (Salman et al. 2019) does propose
a gradient-based scheme for attacking L2-smoothed classi-
fiers which are similarly non-differentiable, adapting such
a scheme would be a non-trivial departure from the exist-
ing L0 Carlini-Wagner attack, precluding a direct compari-
son to other robust classifiers. By contrast, a practical reason
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Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

5 32.32% (5.65%) N/A
10 74.90% (5.08%) 0
15 86.09% (2.82%) 0
20 90.29% (1.81%) 3
25 93.05% (1.02%) 5
30 94.68% (0.77%) 7
35 95.40% (0.66%) 7
40 96.27% (0.52%) 8
45 96.72% (0.45%) 8
50 97.16% (0.32%) 7
55 97.41% (0.34%) 7
60 97.78% (0.18%) 7
65 98.05% (0.15%) 6
70 98.18% (0.20%) 6
75 98.28% (0.20%) 6
80 98.37% (0.12%) 5
85 98.57% (0.12%) 5
90 98.58% (0.16%) 5
95 98.73% (0.11%) 5
100 98.75% (0.16%) 4

Table 1: Robustness certificates on MNIST, using different
numbers of retained pixels (k). The maximum median certi-
fied robustness on the MNIST test set is achieved when us-
ing k = 40 or k = 45 retained pixels: because k = 45 gives
better classification accuracy, we use this model (highlighted
in bold) when evaluating against adversarial attacks.

we choose the Pointwise Attack is that the reference imple-
mentation of the attack is available as part of the Foolbox
package (Rauber, Brendel, and Bethge 2017), meaning that
we can directly compare our results to that of (Schott et al.
2019), without any concerns about implementation details.
We note that (Schott et al. 2019) reports a median adversarial
attack magnitude of 9 pixels for an unprotected CNN model
on MNIST, which is comparable to the mean adversarial at-
tack magnitude of 8.5 reported for the L0 Carlini-Wagner
attack. This suggests that the attack is comparably effective.
Results are presented in Table 2. Note that our model ap-
pears to be significantly more robust to L0 attack than any
of the models tested by (Schott et al. 2019), at a slight cost
of classification accuracy (We would anticipate this trade-
off, see (Tsipras et al. 2019).) Also note that while there is a
gap between the median certified lower bound for the mag-
nitude of any attack, 8 pixels, and the empirical upper bound
given by an extant attack, 31 pixels, these quantities are at
least in the same order of magnitude, indicating that our cer-
tificate is a non-trivial guarantee. See Figure 3 for examples
of adversarial attacks on our classifier.

Results on CIFAR-10

We implemented our technique on CIFAR-10 using
ResNet18 (with the number of input channels increased to
6) as a base classifier; see Table 3 for our robustness cer-
tificates as a function of k. The median certified robust-
ness is somewhat smaller than for MNIST: however, this

Model Class. Median adv.
acc. attack mag.

CNN 99.1% 9.0
Binarized CNN 98.5% 11.0

Nearest Neighbor 96.9% 10.0
L∞-Robust (Madry et al. 2017) 98.8% 4.0

(Schott et al. 2019) 99.0% 16.5
Binarized (Schott et al. 2019) 99.0% 22.0

Our model (k = 45) 96.7% 31.0

Table 2: Median adversarial attack magnitude on MNIST us-
ing the Pointwise attack from (Schott et al. 2019), taking the
best attack on each image from 10 random restarts. Note
that all values except for our model are taken directly from
(Schott et al. 2019). For every evaluation performed by the
black-box attack, 10,000 ablated samples were used to cal-
culate class scores of our model: this was to ensure stabil-
ity of the evaluated scores. Additionally, causing our model
to abstain from classifying was counted as a successful at-
tack, even if the correct class score was still marginally high-
est. Because the black-box attack performs a large number
of classifications, and each of these classifications required
10,000 evaluations of the base classifier, we used only a sub-
set of the MNIST test set, consisting of 275 images.

Figure 3: Adversarial examples to our classifier on MNIST.
Note that because we consider the classifier abstaining to be
a successful attack, these adversarial examples are in fact
on the boundary between classes, rather than being entirely
misclassified.

is in line with the performance of empirical attacks. For
example, the L0 attack proposed by (Carlini and Wagner
2017) achieves a mean adversarial attack magnitude of 8.5
pixels on MNIST and 5.9 pixels on CIFAR-10. This sug-
gests that CIFAR-10 samples are more vulnerable to L0 ad-
versarial attacks compared to the MNIST ones. Intuitively,
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Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

25 68.41% (1.76%) 6
50 74.21% (1.19%) 7
75 78.25% (0.93%) 7
100 80.91% (0.86%) 6
125 83.25% (0.60%) 5
150 85.22% (0.53%) 4

Table 3: Robustness certificates on CIFAR-10, using differ-
ent numbers of retained pixels (k), and using ResNet18 (He
et al. 2016) as the base classifier. Note that without smooth-
ing, the base implementation of an unprotected ResNet18
classifier which we used (Liu 2019) has a classification ac-
curacy of 93.02% on CIFAR-10.

Retained Base classifier Base classifier
pixels k training accuracy test accuracy

25 83.16% 57.72%
50 96.63% 68.29%
75 99.33% 74.08%
100 99.76% 77.88%
125 99.91% 80.48%
150 99.95% 83.16%

Table 4: Accuracy of the base classifier f in CIFAR-10
experiments, on training versus test data, using ResNet18.
Note that the base classifier significantly overfits to the train-
ing data. (Training accuracies are averaged over the final
epoch of training.)

this is because CIFAR-10 images are both visually com-
plex and low-resolution, so that each pixel carries a large
amount of information regarding the classification label.
Also note that the classification accuracy on unperturbed im-
ages is somewhat reduced. For example, in a model using
k = 150, the median certified robustness is 4 pixels, and
the classifier accuracy is 85.22%. The trade-off between ac-
curacy and robustness is also more pronounced. However,
it is not unusual for practical L0 defenses to achieve ac-
curacy below 90% on CIFAR-10 (Meng and Chen 2017;
Xu, Evans, and Qi 2017): our defense may therefore still
prove to be usable.
One phenomenon which we encountered when applying our
technique to CIFAR-10 was over-fitting of the base classi-
fier (see Table 4), which was unexpected because during the
training, the classifier is always exposed to new random ab-
lations of the training data. However, the network was still
able to memorize the training data, despite never being ex-
posed to the complete images. While interpolation of even
randomly labeled training data is a known phenomenon in
deep learning (Zhang et al. 2017), we were surprised to see
that over-fitting may happen on ablated images, where a par-
ticular ablation is likely never repeated in training. In order
to better understand this, we use a model trained on a higher-
capacity network architecture, ResNet50. The results for the
base classifier are given in Table 5. Surprisingly, increasing
network capacity decreased the generalization gap slightly

Retained Base classifier Base classifier
pixels k training accuracy test accuracy

25 83.89% 57.58%
50 96.91% 69.45%
75 99.09% 75.22%
100 99.66% 79.54%
125 99.78% 81.83%
150 99.92% 84.43%

Table 5: Accuracy of the base classifier f in CIFAR-10
experiments, on training versus test data, using ResNet50.
Note that the base classifier significantly overfits to the train-
ing data: however, for k > 25, this higher-capacity model
overfits less than ResNet18.

for k ≥ 50 (Note that because the improvement to the base
classifier is only marginal, and because ResNet50 is substan-
tially more computationally intensive to use as a base classi-
fier to classify 10,000 ablated samples per image, we opted
to compute certificates using the ResNet18 model).

Results on ImageNet

We implemented our technique on ImageNet using
ResNet50 (again with the number of input channels in-
creased to 6) as a base classifier; see Table 6 for our robust-
ness certificates as a function of k. For testing, we used a ran-
dom subset of 400 images from the ILSVRC2012 validation
set. Note that ImageNet classification is a 1,000-class prob-
lem: here we consider only top-1 accuracy. Because these
top-1 accuracies are only moderately above 50 percent, the
calculation of the median certified robustness is skewed by
relatively large fraction of misclassified points: on the points
which are correctly classified, the certificates can be con-
siderably larger. For example, at k = 1000, if we consider
only the 61% of images which are certified for the correct
class, the median certificate is 33 pixels. Similarly, consid-
ering only images with certificates other than ‘N/A’, the me-
dian certificates for k = 500 and k = 2000 are 63 pixels and
16 pixels, respectively.

Retained Classification accuracy Median certified
pixels k (Percent abstained) robustness

500 52.75% (1.75%) 0
1000 61.00% (0.00%) 16
2000 62.50% (1.75%) 11

Table 6: Robustness certificates on ImageNet, using differ-
ent numbers of retained pixels k, and using ResNet50 (He et
al. 2016) as the base classifier. For ImageNet, d = 224×224.
Note that without smoothing, the base implementation of an
unprotected ResNet50 classifier can be trained on ImageNet
to a top-1 accuracy of 76.15% (Paszke et al. 2017).

Discussion

Comparison to (Lee et al. 2019)

In a concurrent work, (Lee et al. 2019) also present
a randomized-smoothing based robustness certification
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scheme for the L0 metric. In this scheme, each pixel is re-
tained with a fixed probability κ and is otherwise assigned
to a random value from the remaining possible pixel values
in S . Note that there is no NULL in this scheme. As a con-
sequence, the base classifier lacks explicit information about
which pixels are retained from the original image, and which
have been randomized. The resulting scheme has consider-
ably lower median certified robustness on the datasets tested
in both works2 (Table 7):

Dataset Median certified Median certified
robustness (pixels) robustness (pixels)
(Lee et al. 2019) (our model)

MNIST 4 8
ImageNet 1 16

Table 7: Comparison of robustness certificates in (Lee et al.
2019) and in this work, using the optimal choices of hy-
perparameters tested in each work. Numbers for (Lee et al.
2019) are derived from those reported in that work. Note that
for ImageNet, (Lee et al. 2019) considers each color channel
as a separate pixel: therefore the median image is robust to
distortion in only one channel of one pixel. By contrast, our
model is robust to distortions in all channels in 16 pixels (or,
in the limiting case, one channel in 16 pixels).

To illustrate quantitatively how our robust classifier ob-
tains more information from each ablated sample than is
available in the randomly noised samples in (Lee et al.
2019), let us consider images of ImageNet scale. Because
(Lee et al. 2019) considers each color channel as a sepa-
rate pixel when computing certificates, we will use S =
{0, ..., 255}, and d = 3∗224∗224. Using (Lee et al. 2019)’s
certificate scheme, in order to certify for one pixel of robust-
ness with κ = 0.1 probability of pixel retention, we would
need to accurately classify noised images with probability
pi(x) = .596. Meanwhile, using our ablation scheme, in
order to certify one pixel of robustness by correctly classi-
fying same fraction (pi(x) = .596) of ablated images, we
can retain at most k = 14521 pixels. This is 9.6% of pixels,
slightly fewer than the expected number retained in (Lee et
al. 2019)’s scheme.

However, we will now calculate the mutual information
between each ablated/noised image and the original image
for each scheme: this is the expected number of bits of infor-
mation about the original image which are obtained from ob-
serving the ablated/noised image. For illustrative purposes,
we will make the simplifying assumption that the dataset
overall is uniformly distributed (while this is obviously not
true for image classification, it is a reasonable assumption in
other classification tasks.) In our scheme, we have simply

Iablate = log2 |S| ∗ k = 8 ∗ k = 116168 bits. (20)
2(Lee et al. 2019) uses a similar scheme to ours to derive an

empirical bound on pi(x); however, that work uses 100 samples to
select i and 100,000 samples to bound it, and reports bounds with
99.9% confidence (α = .001). In order to provide a fair compar-
ison, we repeated our certifications on MNIST and ImageNet (for
optimized values of k) using these empirical certification parame-
ters. This did not change the median robustness certificates.

Each of the k retained pixels provides 8 bits of information.
However, in the noising scheme from (Lee et al. 2019), we
instead have:

ILee et al.

= d

(
log2 |S|+ κ log2 κ+ (1− κ) log2

1− κ

|S| − 1

)

≈ 50590.4 bits.

(21)

Therefore, despite using slightly fewer pixels from the orig-
inal image, over twice the amount of information about the
original image is available in our scheme when making each
ablated classification. (A derivation of Equation 21 is pro-
vided in the supplementary material.)

Alternative encodings of SNULL

The multichannel encoding of SNULL described above, while
theoretically well-motivated, is not the only possible encod-
ing scheme. In fact, for MNIST and CIFAR-10, we tested a
somewhat simpler encoding for the NULL symbol: we sim-
ply used the mean pixel value on the training set, similarly
to the practical defense proposed by (Hosseini, Kannan, and
Poovendran 2019). We tested using the optimal values of k
from the Results section above (k = 45 for MNIST and
k = 75 for CIFAR-10). This resulted in only marginally de-
creased accuracy and certificate sizes (Table 8):

SNULL Classification acc. Median certified
encoding (Pct. abstained) robustness
MNIST

Multichannel 96.72% (0.45%) 8
Mean 96.27% (0.43%) 7

CIFAR-10

Multichannel 78.25% (0.93%) 7
Mean 77.71% (1.05%) 7

Table 8: Accuracy and robustness using different encoding
schemes for SNULL.

To understand this, note that the mean pixel value (grey in
both datasets) is not necessarily a common value: it is still
possible to distinguish which pixels are ablated (Figure 4).

Figure 4: (a) An image from MNIST. (b) The image with
k = 85 pixels ablated, with a unique NULL encoding. (c)
The same image with NULL encoded as the mean pixel
value (dark grey). Note that both black and white pixels are
still distinguishable. (d) If we replace ablated pixels with
random noise, the image is no longer easily distinguishable.
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Conclusion

In this paper, we introduced a novel smoothing-based cer-
tifiably robust classification method against sparse adver-
sarial attacks, in which the adversary can perturb a cer-
tain number features in input samples. Our method, which
is modeled after randomised smoothing methods for cer-
tifiably robust classification for L1 and L2 attack models,
was shown to produce non-trivial robustness certificates on
MNIST, CIFAR-10, and ImageNet, and to be an effective
empirical defense against L0 attacks on MNIST.
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