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Abstract

Exact recovery of tensor decomposition (TD) methods is a
desirable property in both unsupervised learning and scien-
tific data analysis. The numerical defects of TD methods,
however, limit their practical applications on real-world data.
As an alternative, convex tensor decomposition (CTD) was
proposed to alleviate these problems, but its exact-recovery
property is not properly addressed so far. To this end, we fo-
cus on latent convex tensor decomposition (LCTD), a practi-
cally widely-used CTD model, and rigorously prove a suffi-
cient condition for its exact-recovery property. Furthermore,
we show that such property can be also achieved by a more
general model than LCTD. In the new model, we general-
ize the classic tensor (un-)folding into reshuffling operation,
a more flexible mapping to relocate the entries of the ma-
trix into a tensor. Armed with the reshuffling operations and
exact-recovery property, we explore a totally novel applica-
tion for (generalized) LCTD, i.e., image steganography. Ex-
perimental results on synthetic data validate our theory, and
results on image steganography show that our method outper-
forms the state-of-the-art methods.

Introduction

Tensor decomposition (TD), a multi-linear extension of ma-
trix factorization, has been successfully employed on var-
ious applications (Rabusseau and Kadri 2016; Sharan and
Valiant 2017; He et al. 2017). More importantly, TD meth-
ods are also crucial tools for unsupervised discovery of
structures hidden behind the data, e.g., localizing the regions
of brain from EEG waveforms (Becker et al. 2014), user de-
tection from mobile-communication data, and understand-
ing the kinetic-theory description of materials (González et
al. 2010). One of the reasons, behind the success of TD
methods in these tasks, is due to the exact-recovery of their
solutions, i.e., TD methods are able to achieve a demixing of
data in which individual component can tightly correspond
with physical interpretation (Williams et al. 2018).

The numerical properties of TD methods, however, are
not as promising as their exact-recovery property. The most
popular canonical polyadic decomposition (CPD) provides
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a uniqueness solution up to permutation, but the openness
of its solution space and the weak express power are too
restrictive for higher-dimensional problems (Comon, Lu-
ciani, and De Almeida 2009). Other alternatives, such as
(heretical) Tucker decomposition (Cichocki et al. 2009;
Song et al. 2013), tensor-train decomposition (Oseledets
2011) and tensor-ring decomposition (Zhao et al. 2016), un-
fortunately do not possess the exact-recovery property, i.e.,
their components can be arbitrarily rotated without changing
the resultant. Block term decomposition (BTD) (De Lath-
auwer 2008), a constrained version of Tucker decomposi-
tion, inherits the uniqueness property from CPD but has
more flexible decomposition form. However, the model se-
lection for BTD, such as the determination of the multi-
linear rank for each block, would be highly challenging.
Furthermore, the non-convexity of the aforementioned TD
methods generally leads to unstable convergence to global
minimum (Kolda and Bader 2009).

Convex-optimization-based approaches were pro-
posed to alleviate these unsatisfactory numerical
problems (Imaizumi, Maehara, and Hayashi 2017;
Tomioka, Hayashi, and Kashima 2010; Yu et al. 2019). In
these methods, it is not necessary to specify the rank of the
decomposition beforehand, and the convexity of the models
guarantees both the convergence to the global minimum
and their statistical performance. However, there is an
important issue that is not properly addressed so far: Are
the convex approaches able to exactly recover the low-rank
components like their non-convex counterparts?

To answer this question, we theoretically prove a suffi-
cient condition for exact-recovery of latent convex tensor de-
composition (LCTD), a practically widely-used convex TD
method (Yamada et al. 2017; Nimishakavi, Jawanpuria, and
Mishra 2018) that decomposes a tensor into a mixture of
low-rank components. Armed with the notion of incoher-
ence among the components, we rigorously prove that the
low-rank components can be exactly recovered when a type
of incoherence measure is sufficiently small. Moreover, we
show that the exact-recovery property can be owned by a
more general class of models than LCTD. In the new model,
we introduce the reshuffling operation to replace the conven-
tional tensor (un-)folding used in LCTD, and the new reshuf-
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fling operations can give the model the capacity to explore
richer low-rank structures. Last, by leveraging the reshuf-
fling operations and the exact-recovery property, we explore
a totally novel application of (generalized) LCTD, i.e., im-
age steganography, a classic task in both computer vision
and information security. Experimental results not only val-
idate the correctness of our theory, but also demonstrate the
model’s effectiveness in real-world application. Supplemen-
tary materials are available at: http://qibinzhao.github.io.

Related Works

The notion of convex tensor decomposition (CTD) was
firstly introduced in (Tomioka, Hayashi, and Kashima
2010), where the decomposition was implemented by min-
imizing a type of tensor nuclear norm. Subsequently, the
studies on CTD, especially on latent convex tensor decom-
position (LCTD), were continually concerned on both theo-
retical and practical sides. LCTD was theoretically proved
to achieve tighter upper-bound on the reconstruction per-
formance than its overlapped counterpart (Tomioka and
Suzuki 2013), and had achieved the state-of-the-art re-
sults in many tasks (Guo, Yao, and Kwok 2017; Wang
et al. 2019). Works on variants of LCTD are richly pro-
posed recently (Nimishakavi, Jawanpuria, and Mishra 2018;
Wimalawarne, Yamada, and Mamitsuka 2017), but surpris-
ingly the exact-recovery property of LCTD is not paid much
attention so far. More interestingly, in the first paper propos-
ing LCTD (Tomioka, Hayashi, and Kashima 2010), the au-
thors stated that LCTD might not be able to exactly recover
the components due to its relation with Tucker model.

For the exact-recovery property of tensor decomposition,
the solution of CPD is unique up to permutation under
mild condition, while Tucker and TT decompositions are
not. However, as aforementioned, the numerical problems
of these methods, such as the rank determination, somehow
lead to difficult implementation in practice. On the other
side, many approaches have focused on restricting the model
such that the exact-recovery property is ensured. For exam-
ple, one way to eliminate the ambiguity in Tucker decom-
position is to incorporate additional constraints on the latent
factors, e.g., by forcing them to be independent, sparse, or
smooth (Cichocki et al. 2009). This could work in practice,
but in some cases, these constraints might be too strong for
the data in hand. In contrast, we focus on exactly recovering
the components by only exploiting the low-rank structures
of the tensor. Additional assumptions such as sparsity, inde-
pendence are temporarily out of the scope in our work.

The (un-)folding operation used in TD methods builds a
connection of the low-rank structures between a matrix and
its higher-order form. In the existing TD methods, this oper-
ation is defined by various manipulations (Mu et al. 2014; Yu
et al. 2019), but one basic principal behind them is to keep
more low-rankness of the tensor along the modes. However,
the recent studies on exploiting the low-rank tensor decom-
position under general linear transformations (Li et al. 2019;
Lu, Peng, and Wei 2019) inspire us that the low-rank struc-
tures of a tensor can be explored by more flexible operations
than tensor (un-)folding. In this paper, we therefore gener-
alize the conventional tensor (un-)folding into reshuffling,

which gets rid of the stereotype in the existing definitions
of tensor (un-)folding. In contrast to using arbitrary linear
transformation, the proposed reshuffling operations only re-
locate the entries (without up-sampling) of the data with-
out addition and multiplication, which would result in lower
FLOPS in practice.

Latent Convex Tensor Decomposition

Throughout the paper, we will denote matrices by boldface
capital letters, e.g., X ∈ R

m×n is a matrix of size m × n.
We will denote tensors by X ∈ R

I1×I2×···×IK , where K is
the order of the tensor. Given data in the form of a tensor X ,
in this paper we consider low-rank tensor decomposition as
the sum of multiple components:

X = A1 +A2 + · · ·+AN , (1)

where Ai are low-rank components of the same size as
X . One may argue that the form (1) is not low-rank ten-
sor decomposition as it is not in a multiplication of latent
factors (Kolda and Bader 2009). Analogous to the singular
value decomposition (SVD) of a matrix, note that both the
most popular CPD and Tucker decomposition can be triv-
ially rewritten as (1), and their ranks determine the number
of components (Cichocki et al. 2009).

Latent convex tensor decomposition (LCTD) can be also
formulated as similar as (1). LCTD decomposes a tensor into
the sum of components but incorporating the (un-)folding
operations on each component, i.e.,

X = Φ1(A1) + Φ2(A2) + · · ·+ΦK(AK), (2)

where the matrices Ai are assumed to be low-rank, and
the operations Φi(·) are also called folding or tensoriza-
tion in literature. In contrast to CPD and Tucker decompo-
sition, LCTD explore the low-rank structures of the matri-
cized form of each component, and its algorithm is based on
convex optimization.

The exact-recovery property of LCTD, however, is still a
kind of open problem. The consistency of Ai in (2) was dis-
cussed in (Tomioka and Suzuki 2013), but the reconstruc-
tion bound does not tend to be zero when decreasing the
strength of the noise. It implies that there is still a theoretical
gap between consistency and identiability, a.k.a., the exact-
recovery of components.

In this paper, we will try to fill this gap by imposing
the notion of incoherence as the condition for the exact-
recovery. We find that the different (un-)folding operations
on components could bring us incoherent low-rank struc-
tures, which has been proved as an important characteris-
tic in compressed sensing and matrix completion (Candès
and Recht 2009). Meanwhile, we also find by the numeri-
cal experiments that the unbalance between the number of
rows and columns of the unfolded tensor is probably one
key reason that restricts the capacity for exactly recovering
the components. To this end, we generalize the conventional
tensor (un-)folding into reshuffling, which is able to result in
more balanced and incoherent model.
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Reshuffled Tensor Decomposition

In this section, we introduce a generalization of LCTD,
where low-rank matrices are mapped to tensors by the
reshuffling operations. To be self-contained of the paper, we
also briefly derive an algorithm with stable convergence.

Formulation

We consider the following model similar to (2):

X = R1(A1) +R2(A2) + · · ·+RN (AN ), (3)

where Ai ∈ R
mi×ni , i ∈ [N ] denotes the latent compo-

nents. However, in contrast to (2), we arbitrarily choose the
number of components, and replace the folding operations
Φi(·) with a more general and flexible type for operations
Ri : R

mi×ni → R
I1×I2×···×IK , which are a group of linear

operators called reshuffling and defined as follows:

Definition 1 (Reshuffling) The reshuffling operation, de-
noted by R, is defined as a mapping that maps a ma-
trix A ∈ R

m×n into a real tensor A := R(A) of size
I1 × I2 × · · · × IK , such that the number of elements in
A is equal to the number of elements in A, i.e., mn =
I1I2 . . . IK , and every entry of A correspond to one and
only one entry in A.

The main idea behind our model is to employ a variety of
reshuffling operations for every component, i.e., for each
component Ai, we reshuffle it using a distinct operator Ri to
get a tensor Ai := Ri(Ai). Meanwhile, we assume that the
rank of Ai to be small, and would like to be able to capture
a variety of low-rank structures within the tensor.

We build a convex optimization problem for recovering
the components Ai from Eq. (3). Assuming that the reshuf-
fling operations Ri are known for each component, Ai, i ∈
[N ] are recovered by minimizing the following optimization
problem:

min
A1,...,AN

N∑
i=1

‖Ai‖∗, s.t., X =

N∑
i=1

Ri(Ai), (4)

where ‖ · ‖∗ denotes the matrix nuclear norm, which equals
the sum of the singular values of matrix. It has been proved
that the matrix nuclear norm is the convex envelope of ma-
trix rank (Fazel, Hindi, and Boyd 2001). Hence, we can
roughly say that solving the problem (4) is equivalent to
looking for the most low-rank latent components from the
observed tensor X .

Remark 1: Similarly to the conventional folding opera-
tion, reshuffling maps a matrix into a tensor, and is a lin-
ear and reversible operator. However, reshuffling can operate
more flexibly and handle the matrices of arbitrary size. The
conventional tensor (un-)folding can be therefore obtained
as a special case of reshuffling. The flexibility of reshuffling
could enable recovery of low-rank structures that were pre-
viously unrecoverable by using folding operations.

Remark 2: The reshuffling operations for particular data
could be difficult to find. In some applications, such as
stenography (shown in Experiment Section), the operations
are known beforehand. In general, one could design them

to exploit some specific characteristics of the data. For ex-
ample, the unfolding operation exploits the physical mean-
ing associated with the modes to convert the tensor into a
matrix. Reshuffling operations could be designed in a sim-
ilar fashion to exploit other types of structural information
about the tensor. In this paper, we focus on discussing the
exact-recovery (conditions) of the method and assume the
reshuffling operations to be known in advance.

Algorithm

Below, we derive an algorithm called reshuffled tensor de-
composition (Reshuffled-TD) to solve (4).

Due to the existence of the equality constraints, we apply
the augmented Lagrangian method for solving (4), of which
the Lagrangian function is given by

L (A1, . . . ,AN ,Y, κ) =
N∑
i=1

‖Ai‖∗

+

〈
Y,X −

N∑
i=1

Ri(Ai)

〉
+

κ

2

∥∥∥∥∥X −
N∑
i=1

Ri(Ai)

∥∥∥∥∥
2

F

,

(5)

where the tensor Y denotes the Lagrangian dual and κ > 0
is a positive scalar. In the algorithm, we sequentially update
Ai, i ∈ [N ], Y and κ in each iteration. As the key step of
the algorithm, we update Ai by minimizing the following
sub-problem:

A+
i =argmin

Ai

1

κ
‖Ai‖∗

+
1

2

∥∥∥∥∥∥Ai −R�
i

⎛
⎝X −∑

j �=i

Rj(Aj) + κ−1Y
⎞
⎠
∥∥∥∥∥∥
2

F

,

(6)

where R�
i denotes the adjoint operator of Ri. In contrast to

the renowned Alternating Direction Method of Multipliers
(ADMM) methods, we update the scalar κ in each iteration
by multiplying a constant ρ larger than 1 (for example ρ =
1.01), i.e., κ+ = ρκ, and the work in (Lin, Chen, and Ma
2010) shows that such trick could efficiently accelerate the
convergence compared to ADMM. The complete procedure
of Reshuffled-TD is given in Alg. 1, where Dα( · ) denotes
the soft-thresholding operation on the singular values (Cai,
Candès, and Shen 2010).

Next, we show that the algorithm results in convergence
to the optimal point of (4). For the brevity of the proof, we
only consider the case when N = 2 in the theorem, and from
the experimental results we also find the stable convergence
even in the case with more components (N ≥ 3).
Theorem 1 Using Reshuffled-TD and assuming the number
of the components N = 2, if the sequence {κ(k)} is non-
decreasing, and

∑∞
k=1 κ

(k),−1 = +∞, then (A
(k)
1 ,A

(k)
2 )

converges to an optimal solution of (4).

The proof is given in the supplemental material.
It is worth noting that the convergence of Reshuffled-TD

does not ensure whether the solution is equal to the “true”
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Algorithm 1 Reshuffled-TD

Initialize: The observation X , Y = sgn(X ), Ai =
R�

i (X )/N, ∀i, and ρ > 1, κ0 > 0
Iteration until convergence:
//STEP 1: update every latent component Ai, i ∈ [N ]

for i = 1, . . . , N do
Update Ai by using

Ai ← Dκ−1

⎛
⎝R�

i

⎛
⎝X −∑

j �=i

Rj(Aj) + κ−1Y
⎞
⎠
⎞
⎠

end for
//STEP 2: update the Lagrangian dual Y
Y ← Y + κ

(
X −∑N

i=1 Ri(Ai)
)

//STEP 3: update the scalar κ
κ← ρκ

Output: (Ai, . . . ,AN )

components that give rise to the observed tensor. There-
fore, for the guarantee of the exact-recovery, we need to take
more structural assumptions of the “true” components into
account.

Exact Recovery with Reshuffled-TD

In this section, we derive and prove the exact-recovery con-
ditions when using the Reshuffled-TD method. We start with
a formal statement of the problem.
Problem 1 (Conditions for Exact Recovery) Given a ten-
sor X , suppose there exist low-rank matrices A∗

i with rank
ki such that X =

∑N
i=1 Ri(A

∗
i ). Under what conditions

on A∗
i , Ri and ki, the estimated Âi, obtained by using

Reshuffled-TD, will be equal to A∗
i for all i?

Our solution for the problem is stated in Theorem 2. The
main result relies on an incoherence (defined in Definition 3)
which measures the change in the rank of a component A∗

i
when the operation Ri is replaced by any other operator Rj ,
i.e. from R�

i (A∗
i ) to R�

j (A∗
i ) where A∗

i := Ri(A
∗
i ) and R�

denotes the adjoint of R. To be able to measure this change,
we first need to define a low-rank manifold over tensor for
a given Ri (see Definition 2), and a neighborhood in this
manifold. For the latter, we will show a type of the tangent
space in this manifold (see Proposition 1). We start with the
formal definition of the manifold.

Definition 2 (Tensor manifold under reshuffling) Given
a reshuffling operation Ri, the following set of tensors Y
such that the rank of the matrix Y = R�

i (Y) is equal to ki

Pi :=
{Y ∈ R

I1×···×IK |rank(Y) = ki
}
. (7)

defines a smooth manifold (Hosseini, Luke, and Uschmajew
2019).

We now define a neighborhood in Pi using a type of tangent
space. In the derivation, the tangent space around a tensor
A ∈ Pi is obtained by the truncated singular-value decom-
position of A = R�

i (A) where A ∈ R
mi×ni is a rank-ki

matrix. Truncated SVD of A with first ki leading singular
values is given by UΛV�, where U and V are matrices of
size mi × ki and ni × ki respectively, and Λ is a diagonal
matrix that contains the ki singular values as its diagonal.
By considering all possible real matrices of size mi×ki and
ni × ki, the tangent space of Pi at the point A = Ri(A) is
given by the following proposition.
Proposition 1 (Tangent Space) Given a rank-ki matrix
A ∈ R

mi×ni , which generates a tensor A by Ri, i.e.,
A = Ri(A), the tangent space of the manifold Pi at the
given tensor A is formalized as the following,

Ti(A) := {Y| (8)

R�
i (Y) = UV̄� + ŪV�, Ū ∈ R

mi×ki , V̄ ∈ R
ni×ki

}
.

The proof of the proposition can be trivially achieved
from Eq. (3.2) in (Chandrasekaran et al. 2011). The tangent
space Ti(A) gives us an approximation of the manifold in
a neighborhood of A. Due to the relationship A = Ri(A),
Ti(A) can be used to analyze how perturbation influences
the rank of A. This is captured in the following incoherence
measure, which we define next.
Definition 3 (Reshuffled-low-rank incoherence)
Consider the tangent space Ti(A) in the manifold Pi

of (true) rank ki. Given a different operation Rj , we look at
all the tensors Y ∈ Ti(A), and find the maximum spectral
norm ‖R�

j (Y)‖2 while ‖R�
i (Y)‖2 < 1 for the i’th operator.

The incoherence of a tensor A = Ri(A) is then defined to
be the maximum spectral norm obtained for all operations
Rj 	= Ri. Formally,

μi (A) := max
j �=i

max
Y ∈ Ti(A),
‖R�

i (Y)‖2 ≤ 1

∥∥R�
j (Y)

∥∥
2
.

(9)

The above incoherence measure captures the change in the
rank when the operation is changed from Ri to any other Rj .
This is due to a relationship between the spectral norm and
the rank. The spectral norm is the dual of the nuclear norm
which is a convex surrogate of the matrix rank. Roughly
speaking, when the spectral norm under Ri is constrained, a
small spectral norm obtained under Rj would imply a large
change in the rank of the reshuffled matrices. Therefore, a
small value of the incoherence measurement would imply
an increase in the rank when the true operator is replaced by
a different one.

Our main result is to show that bounding the incoherence
measurement ensures exact recovery.
Theorem 2 (Exact-Recovery Condition) The estimated
Âi, obtained by Reshuffled-TD, are equal to the true A∗

i for
all i, when

max
i=1,...,N

μi(A
∗
i ) <

1

3N − 2
, (10)

where N denotes the number of the components.

The above condition states that if incoherence measurements
are small enough, then exact-recovery is possible. Roughly,
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this implies that, for exact recovery, the rank of compo-
nents must increase drastically whenever we switch its cor-
responding reshuffling operation to other else. From the ge-
ometric view, it implies that the tangent spaces Ti(A

∗
i ), ∀i

need to be well “separated” to each other.
Using Theorem 2 and imposing more constraints on the

reshuffling operation Ri, we can get a more intuitive condi-
tion for the exact recovery:

Corollary 1 Assume that X =
∑N

i=1 Ri(A
∗
i ) is a Kth-

order tensor with the size I× . . .×I , and the the reshuffling
operations Ri : R

n×n → R
I×...×I for each component. In

addition, suppose that (a) the rank of A∗
i equals r; (b) it is

full-rank for all matrices R�
j (Ri(A

∗
i )) , ∀j 	= i; (c) For each

matrix R�
j (Ri(A

∗
i )) , ∀i, j, its non-zero singular values are

equal to each other. Then (A1, . . . ,AN ) = (A∗
1, . . . ,A

∗
N )

is the unique solution of (4) if n > (3N − 2)
2
r.

It implies from Corollary 1 that, the lower bound of the size
n will linearly changed with the rank r, but quadratically
changed with the number of components N for the exact re-
covery. Although assumptions in Corollary 1 is quite strict,
the result still reveals an intuitive fact that the true compo-
nents can be more likely exactly recovered by our method if
the data size n is large enough.

Our proof builds upon some of the techniques used
in (Chandrasekaran et al. 2011) to prove similar results for a
type of matrix decomposition. Our proof extends these tech-
niques to the tensor with multiple reshuffled-low-rank struc-
tures. Compared to the theoretical studies in (Tomioka and
Suzuki 2013), we focus on the conditions for the exact re-
covery while they mainly analyze the statistical performance
influenced by the perturbation like Gaussian noise. Although
the Theorem 2 and 3 in (Tomioka and Suzuki 2013) shows
that the upper bound for the sum of the reconstruction er-
ror of components tends to be tighter with decreasing the
strength of the perturbation, the upper bound is not guaran-
teed to go to zero even though the strength of the perturba-
tion goes to zero. However, we rigorously prove that the de-
composition can exactly recover the latent components, and
explicitly give the incoherence condition on exact recovery
for the first time.

Experimental Results

In the experiments, we specify the reshuffling operations by
uniformly random permutation for simplicity. In practice,
the reshuffling operations can be determined by more prac-
tical rules or prior knowledge.

Validation of Exact-Recovery Conditions

We firstly perform an experiment using synthetic data to
validate the theoretical results in the paper. We generate
data by using N square matrices A∗

i ∈ R
n×n, i ∈ [N ].

Each A∗
i is generated by multiplying two random semi-

orthonormal matrices with rank r, i.e., A∗
i = UiV

�
i in

which Ui,Vi ∈ R
n×r denote the random semi-orthonormal

matrices.

We measure the performance using the total signal-to-
interference ratio (tSIR) defined as follows:

tSIR :=

N∑
i=1

‖A∗
i ‖2F /

N∑
i=1

∥∥∥A∗
i − Âi

∥∥∥2
F

(11)

Fig. 1 shows the phase transition of Reshuffled-TD with dif-
ferent parameters, such as the rank r and size n of the ma-
trices A∗

i and the number of components N . In each plot,
the white blocks indicate tSIR ≥ 25dB which implies very
good recovery, and the black blocks indicate tSIR ≤ 15dB
which implies no recovery. The gray area corresponds the
results in between and indicates the phase transition from
exact recovery to partial or no recovery. This can be com-
pared with the theoretical bound given in Corollary 1 which
is shown with the red line. From Corollary 1 we can find, for
a fix N , the relationship between n and r is linear, and, when
n is fixed, the relationship between N and r is quadratic.
This matches the relationship shown from experimental re-
sults. Our bound is a bit conservative, but correctly captures
a major chunk of the area where exact recovery is possible.

Noise Robustness of Reshuffled-TD. We impose the
Gaussian noise to evaluate the impact on the performance of
Reshuffled-TD. Specifically, we fix the size of the compo-
nents n = 100, the number of the components N = 10 and
set the rank of each component by r = 1, . . . , 4. Then, we
add the zero-mean i.i.d. Gaussian noise to the data, and the
variance of the noise is controlled by the signal to noise ratio
(SNR). Fig. 2 (a) illustrate the performance of Reshuffled-
TD when 5dB ≤ SNR ≤ 35dB.

As shown in 2 (a), four performance curves are split into
2 groups. we know from Fig. 1 (d) that group 1 corresponds
the rank which satisfies the exact-recovery condition (in the
white area), while group 2 corresponds the rank whose val-
ues do not satisfy the conditions (in the back area). Hence,
the two groups have different trend with the variety of SNR.
In addition, we can find that, in group 1, tSIR is larger
than 20dB when SNR ≥ 20dB. It implies that our method
works smoothly with high SNR. Because we do not con-
sider the noise in our model (it can be seen from the equality
constraint), the performance of our method becomes worse
when SNR is low.

Robustness on the Number of the Components. We
consider the case that the proposed method does not exactly
know how many components are contained in the observa-
tion. To simulate this situation, we randomly remove some
components from original 10 components, and the removal
probability for each component satisfies the Bernoulli dis-
tribution (the mean value equals 0.5). As to the proposed
method, we still assume that all 10 components are con-
tained in the data. To estimate the number of components by
Reshuffled-TD, we compare the norm of the recovered com-
ponents with a threshold (we choose η = 0.1 for numerical
consideration). Fig. 2 (b) illustrates the estimation accuracy.
Besides the accuracy, the corresponding tSNR performance
is also shown above the bar-plot in the figure.

As shown in Fig. 2 (b), the proposed method is able to re-
construct the contained components with high performance
even if the the true number of the components is less than ex-
pectation. With high SNR value (SNR≥ 20), the estimation
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Figure 1: Results on synthetic data to validate our exact-recovery results. We vary different experiment parameters, such as
rank r, size n and number of the components N . In each plot, the darker areas denote the worse reconstruction (tSIR ≤ 15dB)
while the white areas denote a good recovery (tSIR ≥ 25dB). The gray boundary shows the phase transition, while the red
line denotes the phase transition predicted by our theoretical bound derived in Corollary 1.
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Figure 2: Illustration on robustness of Reshuffled-TD on
non-ideal experimental conditions. Sub-figure (a) shows the
tSIR performance of the method which is influenced by
Gaussian noise. In the sub-figure, group 1 corresponds the
rank which satisfies the exact-recovery condition, while the
rank in group 2 is not. Sub-figure (b) shows the estima-
tion accuracy of the number of components, and the val-
ues shown above the bars are the corresponding tSIR per-
formance of the proposed method.

accuracy of the number of the components achieves 100%,
and the accuracy decreases when choosing a large rank. The
high accuracy of our method is due to the fact that the exact-
recovery conditions can be still theoretically satisfied as long
as we assign an incoherent reshuffling operation Ri, even if
the norms of some components equal zero.

Image Steganography using Reshuffled-TD

Steganography is about concealing a secret message within
an ordinary message and then extracting it at its destination.
In this experiment, we will use Reshuffled-TD for image
steganography, i.e., to conceal a “secret” image in an ordi-
nary “cover” image.

Image steganography is a classic problem for both com-
puter vision and information security. In the existing meth-
ods, the most popular one is the least-significant-bits (LSB)
method, which uses the least significant bits of the cover
to hide the most significant bits of the image. In addition,
the similar idea is also extended to transform domains like
Fourier and wavelet (Holub, Fridrich, and Denemark 2014).

Table 1: Performance comparison of image steganography.
In the experiment, we use SIR (dB) to quantify the distortion
of both cover(C) and secret(S) images, where larger value
of SIR indicates better performance. For each row, the SIR
value will be highlighted if it outperforms other methods un-
der a given parameter.

Datasets

LSB DWT

DPS Ours1 bit/ 2 bits/ 2 bits/ 3 bits/
chn chn chn chn

DTD(C)
CART.(S)

26.70 9.66 25.17 23.45 — 20.40
6.92 14.42 12.90 17.81 14.04 21.64

DTD(C)
DTD(S)

23.77 7.53 22.81 19.40 — 23.69
3.38 7.84 5.27 9.05 3.43 11.36

DTD(C)
FIVEK(S)

24.05 7.76 24.70 22.27 — 23.36
1.12 6.00 4.69 8.48 8.97 10.87

FIVEK(C)
FIVEK(S)

23.02 6.56 21.54 18.57 — 21.86
3.37 7.52 5.48 8.74 8.96 6.67

FVC(C)
FIVEK(S)

18.19 3.27 24.47 19.95 — 20.25
3.32 6.42 4.84 8.30 8.90 12.80

LIVE(C)
FIVEK(S)

24.50 7.66 24.49 20.93 — 24.71
4.08 7.58 5.32 9.46 9.50 11.49

Some recent approaches have used deep neural networks
to hide and recover images (Baluja 2017), but these methods
require lots of training data, and they are generally sensitive
to the images not present in the training data. The computa-
tional requirement is also heavy. In contrast, our method is
much simpler. It does not require any training, and therefore
does not have any such sensitivity issues.

We tried various ways to make the problem challenging
for the methods. We try to conceal a full-size RGB image
(8 × 3 bits per pixel) into a grayscale image (8 bits per
pixel). Meanwhile, we choose different types of images for
steganography, e.g., natural, cartoon and fingerprint.

The datasets we used in the experiment include tex-
ture (DTD), natural (LIVE and FIVEK (Bychkovsky et al.
2011)), cartoon (CART. (Royer et al. 2017)) and fingerprint
(FVC (Maltoni et al. 2009)) datasets. For different datasets,
we unify the shape of all images to 2000×2000, and convert
the image to grayscale when the cover image is colored.
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Figure 3: An example to illustrate the performance of image steganography by different methods. In the figure, the first row
shows the original cover images (the first column) and the container images generated by different methods; The second row
shows the original secret images (the first column) and its recovery by different methods.

A sketch of our Reshuffled-TD method is shown in sup-
plemental materials. During the concealing phase, we con-
sider each channel of the secret image as one compo-
nent, and they are randomly reshuffled. Then, we added the
reshuffled “components” to the cover image to obtain the a
grayscale “container” image (a.k.a. observation). The differ-
ence between the container and cover images will tend to
zero as we decrease the strength of the secret components
by multiplying a scalar. Therefore, we expect that the secret
image can be hidden well if we choose a appropriate value
of this “strength” scalar. In the recovery phase, we use the
reshuffling operations as key, and recover the RGB compo-
nents of the secret image by Reshuffled-TD.

Experimental results are shown in Table 1 as measured
by the signal to interference ratio (SIR). A higher value
of SIR indicate better performance. The experiment is con-
ducted on 10 randomly chosen image pairs. We compare to
three existing methods: (a) the LSB method (b) the discrete
wavelet transform based method (DWT), and deep stego
(DPS) (Baluja 2017). Because DPS converts the grayscale
cover image into a RGB image as the container, we just show
the SIR for secret image in the table.

As shown in Table 1, Reshuffled-TD significantly outper-
forms all the state-of-the-art methods in the experiment. For
example, in FVC+FIVEK dataset, Reshuffled-TD achieves
20.25dB on the cover images and 12.80dB on the secret im-
ages. With the similar SIR on the cover image, LSB only
achieves 3.32dB. Meanwhile, DWT and DPS achieve 8.30
and 8.90dB, respectively. As the worst performance, the
FIVEK+FIVEK dataset shows an exception in the experi-
ment. This is because FIVEK is a dataset of natural images,
which contains full of detail information. Hence, there is less
room in the cover images to hide additional information. Fig.
3 shows two examples of reconstructed images obtained in
the experiment. More examples for visual comparison are
shown in the supplementary material.

Conclusion

By leveraging the (generalized) latent convex tensor decom-
position, a.k.a. Reshuffled-TD, we rigorously proved that
the low-rank components an be exactly recovered when the
incoherence is sufficiently upper-bounded. In addition, we
applied the generalized model to a totally novel task, i.e.

image steganography. Experimental results on various real-
world datasets demonstrate that Reshuffled-TD outperforms
both the classic state-of-the-arts but also deep-learning-
based methods.

As potential works in the future, first we consider to take
the low-tensor-rank assumption into the model instead of the
current multi-linear rank. Second, it would be an interest-
ing topic to seek for the “optimal” reshuffling operations if
there exist training data. If such operations are learnable, it
implies hat we might find lower-rank representation for the
data, such that the well-developed low-rank-based methods
can be employed on the transformed data.
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