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Abstract

Metric learning based methods have attracted extensive in-
terests in recommender systems. Current methods take the
user-centric way in metric space to ensure the distance be-
tween user and negative item to be larger than that between
the current user and positive item by a fixed margin. While
they ignore the relations among positive item and negative
item. As a result, these two items might be positioned closely,
leading to incorrect results. Meanwhile, different users usu-
ally have different preferences, the fixed margin used in those
methods can not be adaptive to various user biases, and thus
decreases the performance as well. To address these two
problems, a novel Symmetic Metric Learning with adaptive
margin (SML) is proposed. In addition to the current user-
centric metric, it symmetically introduces a positive item-
centric metric which maintains closer distance from positive
items to user, and push the negative items away from the
positive items at the same time. Moreover, the dynamically
adaptive margins are well trained to mitigate the impact of
bias. Experimental results on three public recommendation
datasets demonstrate that SML produces a competitive per-
formance compared with several state-of-the-art methods.

Introduction

Recommender systems have been widely deployed in web
applications to address the information overload issue. The
goal is to help users target their interests and provide person-
alized recommendations. Among various recommendation
methods for implicit feedback, BPR (Rendle et al. 2009) has
been proved to be most successful, which learns the discrim-
inative latent factors for users and items by factorizing user-
item interaction matrix. Nevertheless, BPR suffers from a
crucial drawback stemmed from the inner product that vio-
lates the triangle inequality (Ram and Gray 2012).

To this end, several metric learning based recommenda-
tion methods (Feng et al. 2015; Khoshneshin and Street
2010; Chen et al. 2012; Hsieh et al. 2017; Zhang et al.
2018) have been proposed to measure the similarity of user-
item with Euclidean distance for satisfying the triangle in-
equality. Specifically, CML (Hsieh et al. 2017), one of the
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most representative work, adopts the triple loss (Weinberger
and Saul 2009; Song et al. 2017; Do et al. 2019) to ensure
the distance between user and negative item (user dislikes
) is larger than that between the current user and positive
item (user likes) by a fixed margin of m > 0. That is,
d(u, v) + m ≤ d(u, v−)1. The principle assumption be-
hind above operation is that a user might be closer to the
items she likes than to those she does not. It is worth noting
that other variants of CML, such as relational metric learning
based methods (Tay, Tuan, and Hui 2018; Park et al. 2018;
Zhou et al. 2019), are also optimized in this triple loss
paradigm.

Despite the effectiveness of existing metric learning rec-
ommendation approaches, we argue that they have two in-
herent limitations:

Firstly, from a geometric perspective, above triple loss
constraint can be regarded as a user-centric metric. In other
words, they only consider the relationship of two edges, i.e.,
uv (positive pair) and uv− (negative pair), while ignoring
the impact of the third edge of vv−. As a result, the posi-
tion of positive item may be close with the negative item,
i.e., d(u, v) > d(v, v−). It violates the basic assumption of
metric learning, compromising the performance of the rec-
ommender systems seriously. In the metric space, the ba-
sic assumption is that the distance measures the similar-
ity. More concretely, short distance between a user and an
item indicates that the user likes the item, and short dis-
tance between items means that they tend to co-occurr. As
such, d(v, v−) should not be smaller than d(u, v), otherwise
it will mislead the prediction of this item to other users.
As shown in Figure 1(left), given a triple (u1, v1, v

−
2 ), u1

and u2 have same preferences. In accordance with the con-
straint of CML, the learning process will be stopped when
d(u1, v1) + m ≤ d(u1, v

−
2 ). We can observe that the rel-

ative distance between positive item and negative item is
too smaller. Thus, these two items are indistinguishable in
the metric space. The learned model might make an incor-
rect prediction that u2 likes the v2 since u2 likes v1 and
d(u2, v1) ≈ d(u2, v2).

Secondly, the above triple loss paradigm relies on a fix

1d(u, v) denotes the distance of u and v.
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Figure 1: An illustration of metric learning. The left is CML, and the right is our proposed method SML. Item v1 has been liked
by both user u1 and user u2.

margin m for all users, which may not perform well in real-
world applications, especially when data distributions are
complex. In recommendation scenarios, the number of inter-
acted items varies widely for each user, and different users
may also have different selection criteria called user bias.
Therefore, the fixed margin setting limits the expressiveness
of the model.

To circumvent above two issues, we propose a novel
method called symmetric metric learning with adaptive mar-
gin (SML) for recommender systems. The illustration of
SML is shown in Figure 1(right). The main idea is to mea-
sure the relationships of three edges (i.e., uv, uv−, and vv−)
from a symmetrical perspective, meanwhile taking into ac-
count the effects of user/item bias. The user-centric metric
has considered the relationship of uv and uv−, then we fur-
ther present an item-centric metric that is symmetric with
user-centric, to consider the relationship of vu and vv−. The
goal of the proposed symmetric metric learning is to guar-
antee the shortest edge is uv so that we have d(u, v) <
d(v, v−). Moreover, an adaptive margin strategy is designed
to dynamically adjust the margins of users and items, in
order to enhance the expressiveness of the model. Impor-
tantly, our paradigm could provide a novel angle for other
communities, such as knowledge graph (Bordes et al. 2013;
Wang et al. 2014). To summarize, this work makes the key
contributions as follows:
• We present a novel symmetric metric learning method,

which measures the trilateral relationship from the per-
spectives of both user-centric and item-centric effects.
• An adaptive margin mechanism is designed to dynami-

cally adjust the margin to remit the problem of user/item
bias.
• Extensive experiments are conducted on public datasets,

demonstrating that the proposed method achieves com-
petitive performances compared with state-of-the-arts.

Related Work

Metric learning (Weinberger and Saul 2009; Kulis and oth-
ers 2013; Zadeh, Hosseini, and Sra 2016; Song et al. 2017)
seeks an appropriate distance function for input points, such

as discrete distance, Euclidean distance, and Graph dis-
tance. They have been widely used in various fields, such
as computer version (Liu et al. 2017; Wang et al. 2017;
Zhang et al. 2019), recommender systems (Feng et al. 2015;
Hsieh et al. 2017; Zhang et al. 2018), and knowledge graph
(Bordes et al. 2013; Ji et al. 2015; Wang et al. 2014). Among
them, triplet loss paradigm (Weinberger and Saul 2009) is
one of the most competitive ways for ranking tasks, which
makes up triplets to separate the positive pair from the neg-
ative pair by a distance margin.

In recommender systems, previous researchers focus on
measuring the distance of user and item by Euclidean dis-
tance, which satisfies the conditions of non-negative, sym-
metry, and triangle inequality. For example, CML (Hsieh et
al. 2017) illustrates the limitation of inner product similarity
(Rendle et al. 2009) that only considers user-item relations.
Moreover, it presents a push mechanism by using triplet loss.
FML(Zhang et al. 2018) first converts the preference into
distance, and then replaces the inner product with Euclidean
distance. In essence, these methods aim at measuring the po-
sition of user and item in a metric vector space, and mak-
ing the user’s clicked items close to this user. Inspired by
the success of relational metric learning in knowledge graph
(Wang et al. 2014), latent relational metric learning meth-
ods are also proposed for recommender systems. For exam-
ple, TransCF (Park et al. 2018) constructs the user-item spe-
cific translation vectors by employing the neighborhood in-
formation of users and items, and then translates each user
toward items according to the user’s relationships with these
items. LRML (Tay, Tuan, and Hui 2018) is proposed to in-
duce the latent relations by the memory-based attentive net-
work. Compared with pure metric learning (CML), the la-
tent relational metric learning methods improve the distance
metric of user-item. Nevertheless, they still adopt the triple
loss paradigm to measure the relative distance for a given
triple (u, v, v−), facing the similar limitations mentioned in
the previous section.

Proposed Method

In this section, we first describe the problem definition.
Then, a brief review of CML is described to show what
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problem it brings. After that, we discuss how to alleviate
the above problem via the heuristic viewpoint. At last, we
present a specific method named symmetric metric learning
with adaptive margin (SML).

Problem Definition

In this paper, the top-K recommendation problem can be
formulated as follows. There is a set of users U and a set
of items V , and all user-item interactions are denoted as
I = {(u, v) |u ∈ U , v ∈ V}. Nu ⊆ V denotes the set of
items that user u has previously interacted with. Given above
interaction information, we aim to predict whether user u
has potential interest in items v ∈ V \Nu with which he has
interaction before.

Limitation of CML

We first review the framework of CML (Hsieh et al. 2017)
and then analyze its weakness. The key intuition of CML is
that users and items could be placed in a low dimensional
space and their explicit closeness could be measured by us-
ing Euclidean distance to satisfy the inequality property. For
CML, the distance function for each user-item interaction
can be defined as:

d(u, v) = ||αu − βv||22, (1)
where || ∗ ||2 denotes the L2− norm; αu and βv are the rep-
resentation of user u and item v in the metric vector space,
respectively.

Given a triple (u, v, v−), (u, v) ∈ I indicates the posi-
tive sample, while (u, v−) /∈ I denotes the negative sam-
ple. CML adopts the triple loss (Weinberger and Saul 2009;
Song et al. 2017) that guarantees the distance between user u
and negative item v− is larger than that between the current
user u and positive item v by a given margin of m > 0:

d(u, v) +m ≤ d(u, v−). (2)
Thus, the final objective function could be formulated as fol-
lows:

L =
∑

(u,v)∈I

∑
(u,v−)/∈I

wu,v

[
d (u, v)− d

(
u, v−

)
+m

]
+
,

(3)
where [x]+ = max (x, 0) denotes the standard hinge loss,
wu,v is the loss weight. For fair comparison, we set wu,v be
equal to one for all samples in this paper (Zhang et al. 2018;
Tay, Tuan, and Hui 2018). To optimize the Equation 3, we
can calculate its gradient respectively. if d(u, v) + m ≤
d(u, v−), their gradients are equal to zero; otherwise, as fol-
lows: ∂L

∂αu
= 2 (βv− − βv) ,

∂L
∂βv

= 2 (βv −αu) ,
∂L

∂βv−
=

2 (αu − βv−) . As shown in Figure 2, according to the
framework of stochastic gradient, e.g., û ← u − η ∂L

∂αu
,

η denotes the step size, CML could achieve the goal that
d(û, v̂) +m ≤ d(û, v̂−).

However, we find an unexpected problem that the posi-
tion of positive item may be close with the negative item,
leading to d(v̂, v̂−) < d(v̂, û). Especially, it becomes more
severe when three points u, v, and v− are all in a straight

Figure 2: An illustration of the gradient update process of
CML.

line, d (v, v−) ≈ m. This phenomenon is counterintuitive in
recommendation scenario. For example, user u likes item v1
and dislikes item v2, it means that v1 and v2 are dissimilar or
different. So, in the Euclidean space, v1 and v2 should be far
apart from each other. Essentially, the triple loss paradigm
CML adopted can be seen as the user-centric metric, which
only considers the relationship of two edges, i.e., uv and
uv−, ignoring the impact of the third edge of vv−.

Symmetric Metric Learning with Adaptive Margin

To remit the above problem, we need to push the posi-
tive items away from the negative items for the target user.
A heuristic yet inflexible strategy is to increase the mar-
gin m, or append the additional condition max d(v, v−) =
max ||βv − βv− ||22.

To design a more effective solution, the following two
charatersictics shall be taken into consideration: Firstly, it is
worth noting that the label (positive/negative) of each item
is subject to change for different users. This is significantly
different from the traditional classification task (Zadeh, Hos-
seini, and Sra 2016; Song et al. 2017) where the label is
objective and fixed. For example, an item may be positive
for user u1, while negative for user u2. In this case, when
its margin m is widened uniformly, positive items will be
tightly gathered around the user, which is equivalent to the
pull model. As a result, the solution space becomes smaller,
and the items and users are indistinguishable. Secondly, the
item that should be recommended to a user might fall on the
boundary with a high probability due to the wide margin, so
it would be predicted as a negative sample, reducing the re-
call rate of the recommender systems. Besides, if we adopt
the additional condition max d(v, v−), the training cost is
too high. While the goal is only to get a relatively large dis-
tance, not the maximum.

As such, we propose a novel method, symmetric metric
learning with adaptive margin for recommender systems, to
model the complex user-item interactions.

Symmetric Metric Learning As shown in Figure 3, we
assume that the condition of user-centric metric has been
satisfied, i.e., d(u, v) + m ≤ d(u, v−). From a geometric
perspective, we can find that the positive item v is inside of a
ball where u is the center and ru is the radius. While negative
item v− is outside of a larger ball where u is the center and
ru + m is the radius. In the same vector space, users and
items share the same metric. Consequently, we can analyze
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Figure 3: An illustration of symmetric metric learning in 2-
dimensional space, ru = rv = d (u, v).

their relationship from the item viewpoint: v and v− are not
similar, implying that their distance should be greater than
the d (v, u). Therefore, similar to the user-centric model, we
also adopts the margin loss to keep positive item v closer to
user u than negative item v− by the margin of n:

d (v, u) + n ≤ d
(
v, v−

) ⇐⇒ d (u, v) + n ≤ d
(
v, v−

)
.

(4)
Here d (v, u) = d (u, v) due to the symmetry of Euclidean
distance. Analogously, the negative item v− should be out-
side of the ball with rv + n radius and v as the center. It is
obvious that the Equation 4 can be seen as the item-centric
metric, which is symmetric with the user-centric metric. Ac-
cording to the context, we can make ru = rv = d (u, v).
Combined with the condition of Equation 2 and Equation
4, we know that negative items for the target user should
be outside of the union of the two balls. In summary, our
goal is to guarantee uv to be the shortest edge of the triangle

u,v,v− .

Adaptive Margin Based on the fact that different users
have different criteria, the margin m should be personalized
for each user. Similarly, for the symmetric constraint, the
margin n should be also changed with items. In this paper,
we use the adaptive margin mu and nv to replace the origin
margin m and n respectively. Intuitively, we prefer to use
larger adaptive margin to reduce the variations. Thus, the
adaptive margins could be formulated as:

LAM = −
(

1

|U|
∑
u

mu +
1

|I|
∑
v

nv

)
. (5)

Loss function In summary, the final loss function of SML
is as follows:

∑
(u,v)∈I

∑
(u,v−)/∈I

([
d (u, v)− d

(
u, v−

)
+mu

]
+

+ λ
[
d (u, v)− d

(
v, v−

)
+ nv

]
+

)
+ γLAM (6)

s.t., mu ∈ (0, l] , nv ∈ (0, l] ;

Table 1: Statistics of three datasets.

Datasets #users #items #interactions sparsity

Instant Video 4,902 1,683 36,486 0.9956
IMDB 1,310 1,635 84,919 0.9604
Yelp 1,631 1,633 78,966 0.9704

where l is bound to prevent the margin from being too
large. Furthermore, we apply regularization by normaliz-
ing all user embeddings and item embeddings to be con-
strained within the Euclidean ball, mitigating the issue of
’curse of dimensionality’ (Zhang et al. 2018; Tay, Tuan, and
Hui 2018; Park et al. 2018). Finally, we apply a constraint of
‖α∗

u ‖2 ≤ l and ‖β∗
v‖2 ≤ l for regularization at the end of

each mini-batch.

Experiments

In this section, we first describe the experimental settings,
including datasets, evaluation protocols, baselines, and im-
plementation details. Subsequently, we conduct extensive
experiments to respond the following research questions:

RQ1 How is the effectiveness of SML? Can it provide a
competitive performance compared with baselines and the
tweaked state-of-the-art metric learning methods?

RQ2 How do the hyper-parameters λ and γ affect the per-
formance and how to choose optimal values?

RQ3 What benefits do the symmetric perspective of items
and adaptive margins bring to the top-K recommendation?

RQ4 What are the optimal values of user margins and
item margins?

Experimental Settings

Datasets We perform extensive experiments on three pub-
licly accessible datasets: Amazon Instant Video2, Yelp
Dataset Challenge (Yelp)3, and IMDB4, of which the statis-
tics are summarized in Table 1. These datasets have been
widely adopted in previous literatures (Chin et al. 2018;
Tay, Luu, and Hui 2018). For Amazon Instant Video, the
datasets are pre-processed in a 5-core fashion. For Yelp, we
use a 10-core setting, providing a comparison on a denser
dataset as (Tang et al. 2015; Chen et al. 2016).

Evaluation protocols To evaluate the recommendation
performance, we randomly divide the training set and test-
ing set following the ratio 9: 1 for each dataset. Moreover,
10% records in the training set are selected as the vali-
dation set randomly for hyper-parameters selection. Note:
for each user/item, at least one interaction is included in
the training set. Due to the enormous time cost of rank-
ing all items for each user, we sample 499 items which
have no interaction with the target user, following previ-
ous work (Park et al. 2018; Tay, Tuan, and Hui 2018;
He et al. 2018). To evaluate the ranking accuracy and qual-
ity, we adopt three widely-used metrics (Zhang et al. 2018;

2http://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset/challenge
4http://ir.hit.edu.cn/ dytang/paper/acl2015/dataset.7z
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Table 2: Distance measurement and loss function comparison with baselines. f∗ indicates an aggregate function, such as a
neural network. unbr and vnbr denote the neighbors of user and item, respectively. yu,v is the binary label, and σ denotes the
activation function.

Methods Distance Loss

BPR(Rendle et al. 2009) d (u, v) = αuβ
T
v −∑

(u,v)∈I
∑

(u,v−)/∈I
1

1+exp(−d(u,v)+d(u,v−))

MLP/NCF (He et al. 2017) d (u, v) = σ (f∗ (αu,βv)) -
∑

(u,v) yu,v log d (u, v) + (1 − yu,v) log (1 − d (u, v))

FML (Zhang et al. 2018) d(u, v) = ||αu − βv||22
∑

(u,v) wu,v ‖yu,v − d (u, v)‖2

TransCF (Park et al. 2018) d(u, v) = ||αu + r
unbr,vnbr − βv||22 ∑

(u,v)∈I
∑

(u,v−)/∈I
[
d (u, v) − d

(
u, v−)

+ m
]
+LRML (Tay, Tuan, and Hui 2018) d(u, v) = ||αu + ru,v − βv||22

CML (Hsieh et al. 2017) d(u, v) = ||αu − βv||22

SML d(u, v) = ||αu − βv||22
∑

(u,v)∈I
∑

(u,v−)/∈I
([

d (u, v) − d
(
u, v−)

+ mu

]
+

+

λ
[
d (u, v) − d

(
v, v−)

+ nv

]
+

)
+ γLAM

Wang et al. 2019): Precision (P@K), Hit Ratio (HR@K),
and Normalized Discounted Cumulative Gain (NDCG@K).

Baselines We evaluate SML comparing with the follow-
ing baselines. Table 2 summarizes the similarities and differ-
ences of the distance measurements and loss functions used
in the all methods.

• BPR (Rendle et al. 2009) is a classical pair-wise learning-
to-rank method, whose optimization criterion aims to
maximize the differences between negative and positive
samples.

• MLP (He et al. 2017) is a module of neural collabora-
tive filtering method, which only uses the multi-layered
preceptron (MLP) to learn the feature representations.

• NCF (He et al. 2017) is a competitive neural collaborative
filtering method, which combines multi-layered precep-
tron (MLP) with generalized matrix factorization (GML).

• FML (Zhang et al. 2018) is a metric learning method,
which first converts preferences into distances and then
replaces the inner product with Euclidean distance.

• TransCF (Park et al. 2018) is a collaborative translational
metric learning method, which constructs user-item spe-
cific translation vectors by employing the neighborhood
information. Each user are translated toward items using
above translation vectors.

• LRML (Tay, Tuan, and Hui 2018) is a latent relational
metric learning method inspired by TransE (Bordes et al.
2013), which employs an augmented memory module to
induce a latent relation for each user-item interaction.

• CML (Hsieh et al. 2017) is a collaborative metric learn-
ing method, which assumes that users and items could be
placed in a low dimensional space, and the explicit close-
ness between users and items could be measured by Eu-
clidean distance.

Note that CML is our stable baseline. LRML and TransCF
are the latest methods based on the CML paradigm.

Implementation Details We implement our model in Ten-
sorflow. The implementation of the comparison methods are
from the public codes that the authors provided in their pa-
pers or open source project (BPR/FML/CML 5, MLP/NCF6,
TransCF7, and LRML8). We optimize the proposed SML
with the Adam optimizer and tune the learning rate in {0.10,
0.05, 0.01} for different datasets. The embedding size is
fixed to 100. The batch size is 512. In terms of variable, all
weight variables are randomly initialized with uniform dis-
tributions of [−0.01, 0.01], and all latent vectors (such as αu

and βv) are randomly initialized with normal distributions
(mean: 0.1,variance: 0.03). Without specification, we show
the results of all datasets with l=1.0. The code is released at
Github9.

Performance Comparison (RQ1)

Table 3 shows the overall performances of our proposed
method as well as the baseline methods. We can make the
following observations.

First, we can observe that CML outperforms BPR, MLP,
and NCF. This is consistent with the previous work (Tay,
Tuan, and Hui 2018; Zhang et al. 2018), indicating that dis-
tance metric is useful and overcomes the inherent limitation
of the inner product.

Second, our proposed method significantly outperforms
all the baseline methods on three datasets in terms of dif-
ferent metrics. Particularly, SML performs competitively to
CML, which is the most relevant method with us. These re-
sults explain that the item/user-centric and adaptive margin
are helpful and improve the expressive ability of the model.

Third, compared with the relational metric learning based
TransCF and LRML, which are also based on the user-
centric metric, we can see that SML still achieves a signifi-
cant improvement. This conclusion shows that the improve-

5https://github.com/cheungdaven/DeepRec
6https://github.com/hexiangnan/neural collaborative filtering
7https://github.com/pcy1302/TransCF
8https://github.com/vanzytay/WWW2018 LRML
9https://github.com/MingmingLie/SML
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Table 3: Performance comparisons on item ranking task in terms of P@K, HR@K, and NDCG@K on three datasets. The best
performance is denoted in boldface.

K=5 Instant Video IMDB Yelp

P@5 HR@5 NDCG@5 P@5 HR@5 NDCG@5 P@5 HR@5 NDCG@5

BPR 0.1999 0.6918 0.7196 0.6202 0.4331 0.8115 0.5669 0.5316 0.8005
MLP 0.1887 0.6367 0.6924 0.4371 0.3132 0.5867 0.4935 0.4638 0.6708
NCF 0.2045 0.6903 0.7322 0.6208 0.4449 0.8214 0.5778 0.5431 0.8004
FML 0.1994 0.6728 0.6713 0.6032 0.4323 0.8029 0.5847 0.5495 0.8094

TransCF 0.2113 0.7059 0.7497 0.6387 0.4577 0.8390 0.6038 0.5675 0.8215
LRML 0.2047 0.6908 0.7364 0.6424 0.4604 0.8440 0.5990 0.5630 0.8196
CML 0.2048 0.6911 0.7358 0.6409 0.4593 0.8408 0.6029 0.5667 0.8237
SML 0.2166 0.7309 0.7698 0.6735 0.4827 0.8755 0.6277 0.5900 0.8518

K=10 Instant Video IMDB Yelp

P@10 HR@10 NDCG@10 P@10 HR@10 NDCG@10 P@10 HR@10 NDCG@10

BPR 0.1011 0.7198 0.7396 0.3529 0.5561 0.8111 0.3322 0.6433 0.7793
MLP 0.0950 0.6426 0.6931 0.2850 0.4087 0.5758 0.3010 0.5678 0.6828
NCF 0.1065 0.7188 0.7405 0.3858 0.5529 0.8214 0.3328 0.6255 0.7752
FML 0.1071 0.7229 0.6874 0.3758 0.5386 0.8209 0.3366 0.6327 0.7872

TransCF 0.1097 0.7406 0.7570 0.4096 0.5871 0.8199 0.3563 0.6697 0.8083
LRML 0.1057 0.7132 0.7420 0.4119 0.5903 0.8262 0.3531 0.6638 0.8001
CML 0.1055 0.7118 0.7408 0.4100 0.5876 0.8205 0.3539 0.6653 0.8133
SML 0.1118 0.7546 0.7759 0.4312 0.6180 0.8553 0.3701 0.6958 0.8324

ment of the symmetric metric is remarkable and could pro-
vide important potentials for recommendation.

Hyper-parameter Studies (RQ2)

SML introduces two additional hyper-parameters λ and γ
to control the learning of symmetric view on item (item-
centric) and the strength of adaptive margin respectively.
Here we show how the two hyper-parameters impact the per-
formance and also shed lights on how to set them. We only
show the results on Amazon Instant Video and IMDB due to
the limitation of space.

(a) Instant Video (b) IMDB

Figure 4: Performance of SML with respect to different val-
ues of λ on two datasets.

First, we fix γ to 10 for Instant Video and 0.1 for IMDB,
and vary λ. As shown in from Figure 4, the optimal value
is around 0.01 for two datasets. Besides, we also observe
that increasing λ leads to the performance gradual declines
on both datasets. Thus, too larger value of λ will destroy

(a) Instant Video (b) IMDB

Figure 5: Performance of SML with respect to different val-
ues of γ on two datasets.

the learning process of user’s metric. As such, we suggest
setting λ to 0.01.

Second, we fix λ to the default value of 0.01 and vary γ.
The results in term of HR@K are shown in Figure 5, we
find that the optimal values are around 10 and 0.1 for Instant
Video and IMDB respectively. When γ is too smaller (e.g.,
less than 0.01) on Instant Video, SML behaves minor im-
provements, which shows the adaptive margin module has
not been given an important attention. Moreover, when γ is
too large (e.g., larger than 100), the performance also drops
dramatically. These results are also consistent with our pre-
vious discussion that margin cannot be increase infinitely.

Ablation Studies (RQ3)

We evaluate the contribution of each of SML’s components,
the symmetric metric learning on the perspective of item
(denoted as s ), the user specific margin (denoted as u), and
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Table 4: Performances on three datasets by different components.

K=5 Instant Video IMDB Yelp

P@5 HR@5 NDCG@5 P@5 HR@5 NDCG@5 P@5 HR@5 NDCG@5

base 0.2048 0.6911 0.7258 0.6409 0.4593 0.8408 0.6029 0.5667 0.8237
base+u 0.2130 0.7256 0.7558 0.6521 0.4617 0.8542 0.6107 0.5709 0.8354
base+s 0.2141 0.7326 0.7618 0.6279 0.4500 0.8226 0.6073 0.5680 0.8284

base+s+p 0.2150 0.7256 0.7605 0.6355 0.4554 0.8301 0.6036 0.5673 0.8278
base+s+u 0.2169 0.7347 0.7627 0.6430 0.4608 0.8400 0.6117 0.5749 0.8321

base+s+u+p(all) 0.2166 0.7309 0.7698 0.6735 0.4827 0.8755 0.6277 0.5900 0.8518

K=10 Instant Video IMDB Yelp

P@10 HR@10 NDCG@10 P@10 HR@10 NDCG@10 P@10 HR@10 NDCG@10

base 0.1055 0.7118 0.7308 0.4100 0.5876 0.8205 0.3539 0.6653 0.8133
base+u 0.1112 0.7506 0.7724 0.4209 0.6075 0.8342 0.3603 0.6761 0.8178
base+s 0.1126 0.7600 0.7708 0.4025 0.5768 0.7998 0.3570 0.6711 0.8153

base+s+p 0.1121 0.7568 0.7686 0.4063 0.5823 0.8061 0.3575 0.6721 0.8117
base+s+u 0.1128 0.7614 0.7713 0.4158 0.5960 0.8229 0.3598 0.6761 0.8164

base+s+p+u(all) 0.1118 0.7546 0.7759 0.4312 0.6180 0.8553 0.3701 0.6958 0.8324

Figure 6: Visualization of the margins of users and items on
Instant Video and IMDB datasets respectively.

the item specific (denoted as p), to the overall performance
while keeping all hyperparameters at their optimal settings.
The results on three datasets are shown in Table 4. The base
model is similar to CML, denoted as ’base’; base+x denotes
base model with the components x ∈ {s, u, p} used, e.g.,
base+s + u denotes both the item-centric and user specific
margin are used. We can see that the base model performs
the worst for yelp, whereas others improve the performance
significantly. Compared with base model, base+u makes a
great improvement on three datasets, it indicates that the
adaptive user margins are beneficial for the performance of
recommender systems. What’s more, there are several inter-
esting results. For Instant Video, item margins make little
rule for performance, and the following visualization sub-
section also illustrates this problem. For IMDB, user mar-
gins and item margins are useful and bring importantly im-
provement in performance, which also indicates that the bi-
ases of users and items are different in this data distribution.
Thus, we suggest that the most effective components should
get through ablation testing.

Margin Visualization (RQ4)

To provide a more intuitive understanding of the adap-
tive margins of users and items, we visualize them on two
datasets (Instant Video and IMDB) shown in Figure 6. It is
obvious that given a fixed margin for all users is inapposite.

For Instant Video, the user margins are in the range of 0.6 to
1.0, and item margins are all integrated into the scope of 1.0.
These results show that there are huge biases on different
users on Instant Video, while little bias on items. Similarly,
the user margins and items margins are in the range of 0.1 to
0.5 and 0.1 to 0.3 on IMDB, respectively. Impressively, the
adaptive margin could eliminate the impact of the user/item
bias to benefit the performance of recommender systems.

Conclusion

In this paper, we focus on the application of metric learning
based methods for implicit feedback in recommender sys-
tems. First, we analyze the problem of exiting paradigm,
which only uses the user-centric metric with a fixed mar-
gin, while ignores the impact of item-centric metric and
user/item bias. To address these issues, we propose a novel
paradigm named symmetric metric learning with adaptive
margin (SML). SML measures the trilateral relationship of
given triple (u, v, v−) from the perspective of both user-
centric and item-centric to improve performance. What’s
more, the adaptive margin strategy helps the model to select
the appropriate margins for different users and items. Exten-
sive experiments demonstrate that SML produces competi-
tive performances compared with state-of-the-art methods.
We believe that our symmetric paradigm with adaptive mar-
gin would shed a new angle for other research areas.
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