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Abstract

We consider a problem of stochastic online learning with gen-
eral probabilistic graph feedback, where each directed edge
in the feedback graph has probability pij . Two cases are cov-
ered. (a) The one-step case, where after playing arm i the
learner observes a sample reward feedback of arm j with in-
dependent probability pij . (b) The cascade case where af-
ter playing arm i the learner observes feedback of all arms
j in a probabilistic cascade starting from i – for each (i, j)
with probability pij , if arm i is played or observed, then a
reward sample of arm j would be observed with independent
probability pij . Previous works mainly focus on deterministic
graphs which corresponds to one-step case with pij ∈ {0, 1},
an adversarial sequence of graphs with certain topology guar-
antees, or a specific type of random graphs. We analyze the
asymptotic lower bounds and design algorithms in both cases.
The regret upper bounds of the algorithms match the lower
bounds with high probability.

1 Introduction
Stochastic online learning is a general framework of sequen-
tial decision problem. At each time, the learner selects (or
plays) an action from a given finite action set, receives some
random reward and observes some random feedback. One
simplest, though often unrealistic, feedback model is full-
information feedback where the learning agent can observe
the random rewards of all actions no matter which action
is selected. Another popular feedback model is bandit feed-
back where only the random reward of the selected action
is revealed to the learner (Auer, Cesa-Bianchi, and Fischer
2002). Recent studies further generalize them to graph feed-
back where the feedback model is characterized by a (di-
rected) graph (Mannor and Shamir 2011). Each edge (i, j)
means the learner will observe the random reward of action
j if playing action i. This problem is motivated by advertise-
ments where the response for a vacation advertisement could
provide side-information for a similar vacation place and so-
cial networks where the response from a user to a promotion
could infer her neighbors to similar offers.

The problem of online learning with graph feedback
has been extensively studied in both adversarial (Mannor
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and Shamir 2011; Alon et al. 2015a; Kocák et al. 2014;
Cohen, Hazan, and Koren 2016; Kocák, Neu, and Valko
2016b) and stochastic settings (Caron et al. 2012; Buccapat-
nam, Eryilmaz, and Shroff 2014; Tossou, Dimitrakakis, and
Dubhashi 2017; Wu, György, and Szepesvári 2015). While
many of them assume self-loops on the feedback graphs,
some succeed to remove this assumption (Alon et al. 2015a;
Wu, György, and Szepesvári 2015) where the reward of
the selected action might be invisible. This general setting
would fit into the partial monitoring framework (Bartók et
al. 2014; Komiyama, Honda, and Nakagawa 2015), but the
literature on the latter mainly focus on finite case where the
possible outcomes are finite. We also consider general feed-
back graphs that do not assume self-loops.

Though some studies assume feedback graphs could vary
over time or even invisible to the learner before selecting
actions (Kocák et al. 2014; Tossou, Dimitrakakis, and Dub-
hashi 2017), most works focus on deterministic graphs or
an adversarial list of graphs with certain topology guaran-
tees. To the best of our knowledge, only a few of them work
on probabilistic graphs with (Kocák, Neu, and Valko 2016a;
Alon et al. 2017) on adversarial case and (Liu, Buccapat-
nam, and Shroff 2018) on stochastic case and they only dis-
cuss about Erdös-Rényi random graphs (Erdős and Rényi
1960). Recall that an Erdös-Rényi graph with parameter p
is by random sampling the edge of every pair of nodes with
probability p independently.

We consider general probabilistic feedback graphs in both
the one-step case and the cascade case. The one-step case is
the usual one where the learner observes reward of j if edge
(i, j) exists in the random graph and i is selected. The cas-
cade case assumes the learner observes reward of j if there
is a (directed) path from i to j in the random graph and i
is selected. The observations of the cascade case, in other
words, follow a probabilistic cascading starting from the se-
lected action — for each edge (i, j) with probability pij , if
action i is either played or observed, then with an indepen-
dent probability pij a random reward sample of action j will
be observed. As a motivating example, consider the infor-
mation propagation in social networks. If selecting a user in
a social network causes an information cascade in the social
network, one may be able to observe further feedback from
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the cascade users.
This paper makes three major contributions.

1. We formalize the setting of stochastic online learning
with general probabilistic graph feedback and consider
both the one-step and the cascade cases.

2. We derive asymptotic lower bounds for both the one-step
and the cascade cases.

3. We design algorithms for both the one-step and the cas-
cade cases and analyze their regrets. Their asymptotic
upper regret bounds match the asymptotic lower bounds
with high probability.

Related work The studies on online learning with graph
feedback started from adversarial online learning with side
observations where a decision maker can observe rewards
of other actions as well as observe the reward of the se-
lected action (Mannor and Shamir 2011). The observation
structure can be encoded as a directed graph where there is
an edge (i, j) if the reward of action j is observed when
i is selected. Their setting assumes that self-loops exist on
every node. Alon et al. (2015a) then generalize to arbitrary
directed graphs as long as each action is observable by se-
lecting some action. They show the structure of feedback
graph controls the inherent difficulty of the learning prob-
lem and present a classification over graphs. These works
assume the feedback graph is fixed over time and known
to the learner. A follow-up (Alon et al. 2015b) extends to
time-varying feedback graphs where the graphs are revealed
either at the beginning of the round or at the end of the round
but assumes good topology properties on the graphs. Kocak
et al. (2014) also allow the feedback graph to vary over time
and can be revealed to the learner at the end of the round.
The results of (Kocák, Neu, and Valko 2016b) depend on the
topological properties of the feedback graphs. Cohen et al.
(2016) assume the graph is not revealed in both adversarial
and stochastic cases. All these works focus on the adversar-
ial case.

Besides (Cohen, Hazan, and Koren 2016), there are also
other works on the stochastic case with deterministic feed-
back graphs. Caron et al. (2012) first study the stochastic
case with side observations and design UCB-like algorithms
with improved regret bound over the standard UCB with-
out additional feedback. Buccapatnam et al. (2014) derive
an asymptotic lower bound and design two algorithms that
are near-optimal. Tossou et al. (2017) apply Thompson sam-
pling and allow the feedback graph to be unknown and/or
changing. They bound the Bayesian regret in terms of the
size of minimum clique covering. Wu et al. (2015) con-
sider general feedback graphs but assume different observa-
tion variance from different choices of actions. They provide
non-asymptotic problem-dependent regret lower bound and
also design algorithms that achieve the problem-dependent
lower bound and the minimax lower bounds. They are the
first to remove the self-loop assumption in stochastic case.

There are several works on specific Erdös-Rényi random
feedback graphs where the feedback graph at each time is
randomly generated by Erdös-Rényi model. Kocak et al.

(2016a) consider adversarial case with the unknown generat-
ing probability of the feedback graphs. Liu et al. (2018) con-
sider stochastic case and design a randomized policy with
Bayesian regret guarantee. Also both of them assume self-
observability. An updated version (Alon et al. 2017) of Alon
et al. (2015b) extends one result to Erdös-Rényi model in the
adversarial case. We consider general probabilistic feedback
graphs and provide gap-dependent regret bounds, which are
also new in the setting of Erdös-Rényi random feedback
graphs.

The setting of graph feedback can be fit into a more gen-
eral setting of partial monitoring (Rustichini 1999; Cesa-
Bianchi and Lugosi 2006) where feedback matrix and re-
ward matrix are given for each pair of the chosen action
and the environment. Bartok et al. (2014) make a significant
progress on classifying finite adversarial partial monitor-
ing games which is completed by Lattimore and Szepesvari
(2019). Komiyama et al. (2015) derive a problem-dependent
regret lower bound and design an algorithm with asymptoti-
cally optimal regret upper bound in the stochastic case. Most
studies on general partial monitoring framework focus on
finite case where the number of actions and possible out-
comes are finite. The algorithms for general partial monitor-
ing games are not efficient in our case since the feedback
matrix might be infinite or exponentially large.

The cascade observation feedback resembles the inde-
pendent cascade model in the context of influence max-
imization studies (Kempe, Kleinberg, and Tardos 2003;
Chen, Lakshmanan, and Castillo 2013), but the goal is dif-
ferent: influence maximization aims at finding a set of k
seeds that generates the largest expected cascade size, while
our goal is to find the best action (arm) utilizing the cas-
cade feedback. Influence maximization has been combined
with online learning in several studies (Vaswani et al. 2015;
Chen et al. 2016; Wen et al. 2017; Wang and Chen 2017;
Saritaç and Tekin 2017), but again their goal is to maximize
influence cascade size while using online learning to gradu-
ally learn edge probabilities.

2 Settings
Our considered problem is characterized by a quadruple
(V,E, p, μ), where V = [K] is a set of K actions, E ⊆
V × V is a set of directed edges between actions, p :
E → (0, 1] maps edges to their triggering probabilities,
and μ = {μi}i∈V encodes the reward distributions of all
actions. The set of all possible reward distributions is de-
noted as C. Without loss of generality, we assume that each
distribution candidate is 1-sub-Gaussian. The set of all fea-
sible vectors of reward distributions is denoted as S . The
(directed) probabilistic feedback graph is also denoted as
G = (V,E, p). We assume that the learner knows G and the
fact that μi’s have 1-sub-Gaussian tail, but does not know
the reward mean θi’s.

At each time step t = 1, 2, . . ., the environment first draws
a reward vector rt = (rt(i) : i ∈ V ) by independently sam-
pling rt(i) ∼ μi, and a random graph Gt = (V,Et) based
on G. Specifically, Et = {(i, j) ∈ E : otij = 1} ⊆ E,
where otij is an independent Bernoulli random variable with
mean pij . Simultaneously, the learner adaptively chooses an
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action it ∈ V based on its past observations, without observ-
ing rt or Gt. Then, the learner receives an instantaneous re-
ward rt(it), and depending on the specific feedback model,
it might also observe part of rt. In this paper, we consider
the following two feedback models:

One-Step Triggering The learner will receive feedback
(j, rt(j)) if and only if (it, j) ∈ Et.

Cascade Triggering The learner will receive feedback
(j, rt(j)) if and only if there is a directed path from it to
j in Gt.

It is worth pointing out that though the learner receives
the reward rt(it), however, if (it, it) is not in Gt in the one-
step triggering case, or there is no directed circle from it
to it in the cascade triggering case, (it, rt(it)) is not ob-
served. In other words, the learner might not observe the re-
ward of its chosen action. Also note that existing works with
graph feedback (Caron et al. 2012; Buccapatnam, Eryilmaz,
and Shroff 2014; Tossou, Dimitrakakis, and Dubhashi 2017;
Alon et al. 2015a; Wu, György, and Szepesvári 2015)
are special cases of the one-step triggering case discussed
above, with pij = 1 for all (i, j) ∈ E. The work (Liu, Buc-
capatnam, and Shroff 2018) is also a special case of the one-
step triggering case but with pij having the same value.

We assume the feedback graph is observable, that is each
action has the chance to be observed by pulling some action.

Assumption 1 (observability) For each action j, there is
an edge (i, j) ∈ E for some i.

Next assumption states each feasible distribution vector
is composed of distributions of “same type”. For example,
distributions over a bounded interval will not be put together
with Gaussian distributions.

Assumption 2 (same type) For each μ ∈ S , KL(μi, μj)
is well-defined for any i, j ∈ V . For each μ ∈ CV , if
KL(μi, μj) is well-defined for any i, j ∈ V , then μ ∈ S .

The last assumption says the KL divergence of the reward
distributions is continuous with respect to the their means.

Assumption 3 (continuity) There exists some universal
constant B > 0 such that for each μi, μj ∈ C and any
ε ∈ (0, 1), there exists μ′

i ∈ C satisfying KL(μj , μ
′
i)

is well-defined, θ(μi) + ε ≤ θ(μ′
i) < θ(μi) + 2ε and

|KL(μj , μ
′
i)−KL(μj , μi)| ≤ Bε.

The learner’s objective is to maximize its expected cu-
mulative reward, or equivalently, to minimize its expected
cumulative regret

Rμ(T ;G) = T max
i∈V

θ(μi)− E

[∑T
t=1 θ(μit)

]
,

where the expectation is over the randomness of rt and Gt.
Here θ : C → R is the mapping from the distributions to
their means.

We will omit G in the regret expression and write θ(μi)
as θi if the context is clear. For simplicity, we assume there
is only one best action and θ1 > θ2 ≥ θ3 ≥ · · · ≥ θK .
Denote θ = (θi : i ∈ V ). Let Δi(μ) = θ1−θi be the reward

gap between the best action and action i. Denote Δ(μ) =
(Δi(μ) : i ∈ V ). We will omit μ in the above notations if
the context is clear.

Let V in(j) = {i ∈ [K] : (i, j) ∈ E} be the set of incom-
ing neighbors of action j. Let Ni(t) be the number of times
the learner selects an action i and N(t) = (Ni(t) : i ∈ V )
by the end of time t.

For general μ, let ik(μ) be the k-th best action index for
the distributions μ, which has the k-th largest mean. We
will write ik for simplicity when the context is clear. Then
θi1(μ) > θi, ∀i 	= i1(μ).

3 Asymptotic Lower Bounds

3.1 Lower Bound for One-Step Triggering

Define

C(μ) =

{
c ∈ [0,∞)V :

∑
i∈V in(1)

pi1ci ≥ 1

KL(μ2, μ1)

∑
i∈V in(j)

pijci ≥ 1

KL(μj , μ1)
, ∀j 	= 1;

}
.

(1)

Each element in the set represents an asymptotic pulling
“fraction” of arms that can be used to distinguish these arms
from the best arm.

Recall that an algorithm is consistent if Rμ(T ) = o(T a)
for any a > 0 and any feasible μ ∈ S . Then the asymptotic
lower bound for any consistent algorithm is provided in the
following theorem.

Theorem 1 For any consistent algorithm, the regret satis-
fies

lim inf
T→∞

Rμ(T )

log T
≥ inf

c∈C(μ)
〈c,Δ(μ)〉 . (2)

Note this lower bound can easily recover the lower bound
in (Wang and Chen 2017, Theorem 3) where they only con-
sider a special probabilistic graph G.
Proof. Fix any consistent algorithm and any distribution
vector μ.

For any j 	= 1 and n ≥ 1, by Assumption 3, there exists
a μ

(n)
j ∈ C such that θ1 + 1

2n ≤ θ
(
μ
(n)
j

)
< θ1 + 1

2n−1

and
∣∣∣KL

(
μj , μ

(n)
j

)
−KL(μj , μ1)

∣∣∣ ≤ B
2n . Define μ(n) = μ

by setting μ
(n)
i = μi for any i 	= j. Then by Assumption 2,

μ(n) ∈ S .
Let

H = {i1, {r1(j) : (i1, j) ∈ E1};
i2, {r2(j) : (i2, j) ∈ E2}; . . .}

be the random variable of all outcomes, which is based on
μ, the algorithm and the graph realizations. Let P and P

(n)

be the probability distribution over all possible realisations
of outcomes when the distribution vector is μ and μ(n) re-
spectively.
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By high-dimensional Pinsker’s inequality (Lattimore and
Szepesvari 2017, Lemma 5),

P [N1(T ) < T/2] + P
(n)[N1(T ) ≥ T/2]

≥ 1

2
exp

(
−KL

(
P,P(n)

))
.

Note that

KL
(
P,P(n)

)
=

∑
i∈V in(j)

pijE [Ni(T )] KL
(
μj , μ

(n)
j

)
(3)

≤ KL
(
μj , μ

(n)
j

) ∑
i∈V in(j)

pijE [Ni(T )] .

Then∑
i∈V in(j)

pijE [Ni(T )]

≥ 1

KL
(
μj , μ

(n)
j

)
· log 1/2

P [N1(T ) < T/2] + P(n)[N1(T ) ≥ T/2]

≥ 1

KL
(
μj , μ

(n)
j

)
· log 1/2

Rμ(T )/(Δ2 · T/2) +Rμ(n)(T )/
(

1
2n · T/2)

=
1

KL
(
μj , μ

(n)
j

) log
T/4

Rμ(T )/Δ2 +Rμ(n)(T )/ 1
2n

,

where the second inequality is due to

Rμ(T ) ≥ P [N1(T ) < T/2]Δ2 · T/2 ,
Rμε(T ) ≥ P [N1(T ) ≥ T/2]

(
θ
(
μ
(n)
j

)
− θ1

)
T/2 .

Since the algorithm is consistent, Rμ(T ) = o(T a) and
Rμ(n)(T ) = o(T a) for any a > 0, or equivalently

lim sup
T→∞

logRμ(T )

log T
= 0 , lim sup

T→∞

logRμ(n)(T )

log T
= 0 .

Thus ∑
i∈V in(j)

pij lim inf
T→∞

E [Ni(T )]

log T
≥ 1

KL
(
μj , μ

(n)
j

) .

Next take n → ∞,∑
i∈V in(j)

pij lim inf
T→∞

E [Ni(T )]

log T
≥ 1

KL(μj , μ1)
.

For j = 1 and n ≥ 1, take μ(n) = μ except
μ
(n)
2 	= μ2 with θ1 + 1

2n ≤ θ
(
μ
(n)
2

)
< θ1 + 1

2n−1 and∣∣∣KL
(
μ2, μ

(n)
2

)
−KL(μ2, μ1)

∣∣∣ ≤ B
2n . Similar result fol-

lows ∑
i∈V in(1)

pi1 lim inf
T→∞

E [Ni(T )]

log T
≥ 1

KL(μ2, μ1)
.

Thus the vector lim infT→∞
E[N(T )]
log T ∈ C(μ). Recall the

regret is Rμ(T ) =
∑K

i=1 E [Ni(T )]Δi(μ). The result fol-
lows. �

3.2 Lower Bound for Cascade Triggering

Let p′ij be the probability that there is a directed path from i
to j in a random realization of G. Define

C ′(μ) =

{
c ∈ [0,∞)V :

∑
i

p′i1ci ≥
1

KL(μ2, μ1)

∑
i

p′ijci ≥
1

KL(μj , μ1)
, ∀j 	= 1

}
.

Theorem 2 For any consistent algorithm, the regret satis-
fies

lim inf
T→∞

Rμ(T )

log T
≥ inf

c∈C′(μ)
〈c,Δ(μ)〉 .

This proof is similar to the above one by replacing (3)
with the following formula

KL
(
P,P(n)

)
=
∑
i

p′ijE [Ni(T )] KL
(
μj , μ

(n)
j

)
.

Note that the computation of p′ij is #P-hard for general
graphs (Valiant 1979; Wang, Chen, and Wang 2012). Thus
the lower bound is not efficiently computable even when μ
is known.

4 Algorithm and Analysis

In this section, we design algorithms that can match the
lower bounds with high probability asymptotically. The
lower bounds in the last section are stated in terms of
KL-divergence of distributions. Since the KL-divergence of
a real distribution and its estimated empirical distribution
might be undefined, we assume the KL-divergence of distri-
butions could be represented by their corresponding means
and is also continuous in means, which is also a tradition
in bandit area. For example, a previous work (Wu, György,
and Szepesvári 2015) assumes distributions to be Gaussian
to make statement simpler. We will give more discussions
in Section 4.4. In the following, we use mean vector θ to
represent the vector of distributions μ for simplicity.

Let θ̂t be the sample-mean estimates of θ by the end of
time t. Let nij(t) be the number of times that action i is
selected and reward for action j is observed by the end of
time t. Then E [nij(t) | Ni(t)] = Ni(t)pij . Let mj(t) =∑

i nij(t) be the number of observations for action j by the
end of time t.

4.1 One-Step Uniform Case

The uniform case in which all pij’s have the same value p
is first considered in this section. When E contains edges
between every pair of actions, this graph reduces to Erdös-
Rényi random graph with parameter p.

Let Mj(t) =
∑

i∈V in(j) Ni(t)p be the expected num-
ber of observations for action j at the end of time t. Then
E [mj(t) | Mj(t)] = Mj(t).
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Algorithm 1 One-Step Uniform Case

1: Set Ne(0) = 0 and θ̂0 = (1, 1, ..., 1).
2: for t = 1, 2, . . . do
3: if mj(t− 1) < Mj(t− 1)/2 for some j then

4: Play it ∈ V in(j);
5: Ne(t) = Ne(t− 1);
6: else if

N(t−1)
16 log(t−1) ∈ C(θ̂t−1) then

7: Play it = i1(θ̂t−1);
8: Ne(t) = Ne(t− 1)
9: else if Mj(t − 1) < 2β (Ne(t− 1)) /K for some j

then
10: Play it ∈ V in(j);
11: Ne(t) = Ne(t− 1) + 1;
12: else
13: Play it such that Ni(t−1) < 16 ci(θ̂t−1) log(t−1);
14: Ne(t) = Ne(t− 1) + 1;
15: end if
16: end for

The pseudocode of the algorithm is provided in Algorithm
1. It starts with the initialization of Ne and the estimates of
θ (line 1). Here Ne is the number of exploration rounds for
the learner to know more about unknown θ which will be
clearer later. At each time t, if for some j the real observa-
tion times of action j is less than half the expected observa-
tion times (line 3), then the learner selects a parent of j to
try to observe reward of j once more (line 4) and keeps Ne

unchanged (line 5). Note that E [mj(t) | Mj(t) = m] = m
and mj(t) will concentrate at m as m goes to infinity. The
condition mj(t) < Mj(t)/2 means part of the realizations
of graph G is far from the expectation and 2 can be changed
to other larger-than-1 constant. This is one of the key differ-
ences from deterministic graph feedback (Wu, György, and
Szepesvári 2015) where the number of observations is well
controlled by just selecting actions. While under the proba-
bilistic graph feedback, there is a gap between the number
of real observations and expected number of observations.

When mj(t) ≥ Mj(t)/2 for all j, then the realizations of
G are good enough and the learner can rely on the quanti-
ties of selections to control the accuracy of the estimates. If
the selection vector is good enough for current θ̂ under cur-
rent accuracy level (line 6), then the learner will exploit the
current best action (line 7) and keep Ne unchanged. Here
C(·) is defined as in (1) and represents the set of good se-
lected “fractions” of actions that are able to identify the re-
ward gaps between actions.

If the current selection vector N is not good enough, then
the learner will first check if θ̂ is close enough to θ (line 9-
11) and if yes, will explore according to current θ̂. The num-
ber Ne of exploration rounds for the learner to know more
about θ will increase in this part (line 11&14). The condition
of line 9 has an auxiliary function β : N → [0,∞) to guide
the exploration such that θ̂ will be close to θ in the long run.
This auxiliary function is also crucial in previous work (Wu,
György, and Szepesvári 2015) to control the regret bound in
the asymptotic sense. The auxiliary function β can be any

non-decreasing function satisfying 0 ≤ β(n) ≤ n/2 and the
subadditivity β(m+n) ≤ β(m)+β(n). If some component
of θ̂ has not been explored enough (line 9), then the learner
selects a parent to try to get one more observation (line 10)
and increases Ne (line 11).

When all components of θ̂ are close to θ, the learner se-
lects an action according to the current θ̂ with minimal cost
on the regret instructed by the asymptotic lower bound (2).
Here ci(θ

′) denotes any optimal solution of the linear pro-
gramming problem that minimizes 〈c, θ′〉 among all c ∈
C(θ′). Since θ̂ is close enough to θ under current accuracy
level, the vector ci(θ̂t−1) is close enough to ci(θ) (which is
part of the proof for the following theorem). There must be
at least an i such that Ni(t− 1) < 16 ci(θ̂t−1) log(t− 1) or
else the condition of line 6 holds.

The regret bound for the algorithm is stated as follows.
Theorem 3 The regret of Algorithm 1 for one-step uniform
case satisfies for any ε > 0,

Rθ(T ) ≤ 4 log(T )

K∑
i=1

ci(θ, ε)Δi(θ)

+ 10 log(KT 2)

K∑
i=1

Δi(θ)

p
+ 4

T∑
s=0

exp

(
−β(s)ε2

2K

)

+ 2β

(
4

K∑
i=1

ci(θ, ε) log(T ) +K

)
+ 15K ,

(4)

where ci(θ, ε) = sup{ci(θ′) :
∣∣θ′j − θj

∣∣ ≤ ε, ∀j ∈ [K]}.

Assume β(n) = o(n) and
∑∞

s=0 exp
(
−β(s)ε2

2K

)
< ∞ for

any ε > 0. Then for any θ such that c(θ) is unique,

lim sup
T→∞

Rθ(T )/ log(T ) ≤ 4 inf
c∈C(θ)

〈c,Δ(θ)〉 (5)

holds with probability at least 1− δ for any δ > 0.

Note that any β(n) = anb with a ∈ (0, 1
2

]
, b ∈ (0, 1) meets

the requirements. The proof is by bounding the forced ex-
ploration (line 9-11), the exploration by LP solutions (line
13-14) and the exploitation (line 6-8). The main difference
with previous works is to bound the difference of realized
random graphs and the expected graph (line 3-5). The de-
tailed proof is provided in (Li et al. 2019).

4.2 One-Step General Case

In the general case where pij can be different, Mj(t) =∑
i∈V in(j) Ni(t)pij . The algorithm follows as in Algorithm

1 by only replacing line 4 with
(4’) Play it ∈ argmaxi∈V in(j)pij .

Let

V e =
{
i ∈ [K] : i ∈ argmaxi′∈V in(j)pi′j for some j

}
(6)

be the set of exploration nodes that have the largest live prob-
ability among all incoming edges to some j. Let

pei = min
{
pij : i ∈ argmaxi′∈V in(j)pi′j for some j

}
(7)
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be the minimal exploration probability for any i ∈ V e. With
a modified proof to the uniform case, the theoretical guaran-
tee for the general case follows.
Theorem 4 The regret of the modified Algorithm 1’ for one-
step general case satisfies for any ε > 0,

Rθ(T ) ≤ 4 log(T )

K∑
i=1

ci(θ, ε)Δi(θ)

+ 10 log(KT 2)
∑
i∈V e

Δi(θ)

pei

+ 4

T∑
s=0

exp

(
−β(s)ε2

2K

)

+ 2β

(
4

K∑
i=1

ci(θ, ε) log(T )

)
+ 15K .

(8)

Assume β(n) = o(n) and
∑∞

s=0 exp
(
−β(s)ε2

2K

)
< ∞ for

any ε > 0. Then for any θ such that c(θ) is unique,

lim sup
T→∞

Rθ(T )/ log(T ) ≤ 4 inf
c∈C(θ)

〈c,Δ(θ)〉 (9)

holds with probability at least 1− δ for any δ > 0.

4.3 Cascade Case

Algorithm 2 Cascade Case

1: Set Ne(0) = 0 and θ̂0 = (1, 1, ..., 1). η : N+ → [0, 1).
2: for t = 1, 2, . . . do
3: if mj(t− 1) < M ′

j(t− 1) /2 for some j then

4: Play it = i if (Pt)ij ≥ 1
2 maxi′(Pt)i′j ;

5: Ne(t) = Ne(t− 1);
6: else if

N(t−1)
16 log(t−1) ∈ Sfeas(LPt) then

7: Play it = i1(θ̂t−1);
8: Ne(t) = Ne(t− 1)
9: else if M ′

j(t − 1) < 2β(Ne(t − 1))/K for some j
then

10: Play it ∈ V in(j);
11: Ne(t) = Ne(t− 1) + 1;
12: else
13: Play it = i such that Ni(t−1) < 16 ct,i log(t−1)

where ct ∈ Sopt(LPt);
14: Ne(t) = Ne(t− 1) + 1;
15: end if
16: end for

For the deterministic graphs, there is no essential differ-
ence between one-step case and cascade case — the cas-
cade case on a deterministic graph would be equivalent to
constructing a new graph where an edge exists if and only
if there is a path on the original graph. For a probabilis-
tic graph, one might try a similar solution for the cascade
case by constructing a new graph G′ where the probability
of an edge (i, j) is just the probability p′ij of i connecting
to j in a random realization of the original graph. However

the computation of p′ij is #P-hard for general graphs, and
thus the accurate graph G′ is unattainable, though it can be
approximated within any accuracy by Monte Carlo simula-
tions. Therefore, during the running of the algorithm, a rea-
sonable approximation of G′ is needed.

Define V e′ and pei
′ similarly with (6) and (7) by replacing

pij with p′ij . Since the computation of p′ij is #P-hard, we
define an estimated version of V e′ and pei

′ respectively:

V̂ e =

{
i ∈ [K] : p′ij ≥

1

2
max
i′

p′i′j for some j

}

p̂ei = min

{
p′ij : p

′
ij ≥

1

2
max
i′

p′i′j for some j

}

for any i ∈ V̂ e. Then p̂ei ≥ pei′
′/2 for some i′.

To overcome the stated challenge, we need an auxiliary
functions η : N+ → [0, 1) to set up the tolerance of the ap-
proximation. At each time t, the path from i to j with prob-
ability p′ij ≤ η(t) can be treated as nonexistent (with prob-
ability 0) and the estimation of p′ij has noise at most η(t)/2
if the real value p′ij > η(t). Any non-increasing function
with limit 0 can be chosen as η. The choice of η is to control
the complexity of the graph with only focusing the path of a
reasonable length.

Let LP(θ′, η) be the following linear programming prob-
lem

min〈Δ(θ′), c〉
over all c ∈ R

K satisfying P�c ≥ b(θ′) and c ≥ 0
(10)

where P ∈ [0, 1]K×K satisfies Pij = 0 if p′ij ≤ η and∣∣Pij − p′ij
∣∣ ≤ η/2 if p′ij > η and bi(θ

′) = 1
Δ2

i (θ
′) for i 	=

i1(θ
′) and bi1(θ′)(θ

′) = 1
Δ2

i2(θ′)(θ
′) .

With the approximation Gt and the estimated value for re-
ward vector θ̂t−1, the linear programming problem consid-
ered in time t is LPt = LP(θ̂t−1, η(t)) and the correspond-
ing P in (10) is denoted as Pt. Then the algorithm runs with
LPt accordingly. The complete pseudocode is presented in
Algorithm 2. In particular, the examination on the realiza-
tion is performed on approximated graph Gt with probabil-
ity matrix Pt (line 3). The exploitation condition is on the
LPt (line 6). Here Sfeas(LPt) is the feasible solution set of
the linear programming problem LPt which is the set of all
c ∈ R

K satisfying P�
t c ≥ b, c ≥ 0. The exploration when

all components of estimated θ̂ are accurate enough with min-
imal cost instructed by linear programming solutions is also
related to LPt (line 13). Here Sopt(LPt) is the optimal so-
lution set of LPt.

Also M ′
j(t) =

∑
i Ni(t)(Pt)ij is changed accordingly.

The regret of the Algorithm 2 is upper bounded in the
following theorem.

Theorem 5 The regret of the Algorithm 2 for cascade case
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satisfies for any ε > 0,

Rθ(T ) ≤4

K∑
i=1

Δi(θ)max
t∈[T ]

{ci(θ, ε, η(t)) log(t)}

+ 10 log(KT 2)
∑
i∈V̂ e

Δi(θ)

p̂ei

+ 2β

(
4

K∑
i=1

max
t∈[T ]

{ci(θ, ε, η(t)) log(t)}+K

)

+ 4
T∑

s=0

exp

(
−β(s)ε2

2K

)
+ 15K ,

(11)

where

ci(θ, ε, η) =

sup
{
ci : c ∈ Sopt(LP(θ

′, η)) and
∣∣θ′j − θj

∣∣ ≤ ε, ∀j ∈ [K]
}
.

Assume β(n) = o(n) and
∑∞

s=0 exp
(
−β(s)ε2

2K

)
< ∞ for

any ε > 0. Then for any θ such that c(θ) is unique,

lim sup
T→∞

Rθ(T )/ log(T ) ≤ 4 inf
c∈C′(θ)

〈c,Δ(θ)〉 (12)

holds with probability at least 1− δ for any δ > 0.
The result depends on the robustness of the linear pro-

gramming problems. The P matrix in the LP problem (10)
is noisy, which is much different from one-step case and the
case of deterministic graphs where the noise is only on θ′.
See discussions in the next section. The full proof is put in
(Li et al. 2019).

4.4 Discussions

The assumptions on the reward distributions are mainly used
to ensure that the learning algorithms are able to differen-
tiate them in the worst case (or the regret lower bound).
The Gaussian distribution, Bernoulli distribution and com-
mon continuous random distribution on a common bounded
interval like Beta distribution all satisfy the requirements.

The assumption that the reward distribution can be repre-
sented by its mean is commonly adopted in bandit literature.
Since there is always gap between a continuous distribution
with its discrete empirical estimate and the reward only cares
about the mean, previous works hardly choose to estimate
the real distribution but mainly choose to estimate the mean.
The real mean can be well analysed by constructing a confi-
dence interval around the sample mean.

The term O
(
log(T )

∑K
i=1

Δi(θ)
p

)
in the regret bound for

one-step uniform case (same for other two cases) is due to
the gap between the realizations and the expectations of the
probabilistic graphs. Such a term can be removed in the
asymptotic sense with high probability based on a different
proof. With high probability, the connection between the re-
alizations and the expectations of the probabilistic graphs
can be guaranteed for large enough T , so the realizations
of the probabilistic graphs are good enough and no regret
would be caused from line 3 - 5 of Algorithm 1 for large

enough T . If we remove the high probability condition, such
a 1/p term remains in the asymptotic sense. Such 1/p term
also appears in the regret O(

√
T/p) of (Kocák, Neu, and

Valko 2016a) on Erdös-Rényi random graphs in adversarial
setting, as compared with adversarial case on deterministic
graphs. It is not clear whether this 1/p term represents hind-
sight difficulty between the probabilistic graphs and deter-
ministic graphs. This would be an interesting future direc-
tion.

The terms {pei : i ∈ [K]} in the one-step general case
describes the minimal exploration probabilities to observe
every action. For each i ∈ [K], pei = maxi′ pi′j for some j,
that is pij is the largest live probabilities among all incoming
edges for some j. These terms represent the problem com-
plexities for the underlying probabilistic graph. When all pij
are equal to p, pei = p.

The term pei
′ in the cascade case is usually larger than pei

since it takes the same operations on the connection prob-
abilities of incoming paths which are larger than live prob-
abilities of incoming edges. The term p̂ei is an estimation
satisfying p̂ei ≥ pei′

′/2 for some i′.
Next we discuss the difference in proof of the cascade

case. If the noise of the linear programming problems is on
the b vector in (10), then by the standard results in statis-
tics (Dontchev and Rockafellar 2009, §3C.5), the resulting
optimal solution sets are Lipschitz continuous. The property
of Lipschitz continuity is essential since actions are selected
according to the optimal solution of a noisy LP problem (line
13) and we need to guarantee this kind of selections is safe.
The noise on Δ vector in (10) is also easy to deal with by
considering the dual problem. However, it is much different
if the noise is on the P matrix. For example, consider the
LP problem that minimizes x over all ax ≥ 1 and x ≥ 0
with parameter a > 0. The optimal solution x∗ = 1/a is
not Lipschitz continuous with respect to a. So the standard
statistical tools could not apply here. We derive a novel prop-
erty of the Lipschitz continuity when there is noise on P for
our specific P matrix.

Last we would like to stress that our regret bounds are the
first gap-dependent bounds even under the one-step uniform
case, which contains the simple case of Erdös-Rényi random
graph feedback. The previous works on Erdös-Rényi ran-
dom graphs study gap free bound, no matter in the stochastic
setting or the adversarial setting.

5 Conclusion and Future Work

We are the first to formalize the setting of stochastic on-
line learning with probabilistic feedback graph. We derive
asymptotic lower bounds for both one-step and cascade
cases. The regret bounds of our designed algorithms match
the lower bounds with high probability.

This framework is new and we only provide asymp-
totic lower bounds and finite-time problem-dependent up-
per bounds. Finite-time lower bounds and minimax up-
per/lower bounds are all interesting future directions. De-
riving Bayesian regret bounds is also an interesting topic.
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