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Abstract

Smart Building Technologies hold promise for better livabil-
ity for residents and lower energy footprints. Yet, the rollout
of these technologies, from demand response controls to fault
detection and diagnosis, significantly lags behind and is im-
peded by the current practice of manual identification of sens-
ing point relationships, e.g., how equipment is connected or
which sensors are co-located in the same space. This manual
process is still error-prone, albeit costly and laborious.
We study relation inference among sensor time series. Our
key insight is that, as equipment is connected or sensors co-
locate in the same physical environment, they are affected by
the same real-world events, e.g., a fan turning on or a per-
son entering the room, thus exhibiting correlated changes in
their time series data. To this end, we develop a deep metric
learning solution that first converts the primitive sensor time
series to the frequency domain, and then optimizes a repre-
sentation of sensors that encodes their relations. Built upon
the learned representation, our solution pinpoints the relation-
ships among sensors via solving a combinatorial optimiza-
tion problem. Extensive experiments on real-world buildings
demonstrate the effectiveness of our solution.

Introduction

Smart Building Technologies hold great potential for im-
proving residents’ comfort while reducing energy foot-
prints (Schumann, Ploennigs, and Gorman 2014). These
technologies, from demand response controls (Palensky and
Dietrich 2011) to fault detection and diagnosis (Katipamula
and Brambley 2005), require the knowledge about the sens-
ing and control points in a building, including what they
measure, where they are located, how they are connected,
and more. However, this contextual information about each
point is represented as metadata (as shown in Fig. 1) fol-
lowing vendor-specific naming conventions, and therefore
varies significantly in vocabulary and structure from one
building to another. Consequently, a necessary first step in
deploying any smart building application would be to obtain
the contextual information about the points in the building.

However, currently, obtaining this information is a costly,
laborious process that often involves domain experts or

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of building metadata and the corre-
sponding encoded contextual information.
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Figure 2: A typical building contains multiple air handling
units (AHUs), each heating/cooling the air and circulating
it to dozens of variable air volume (VAV) boxes. Each VAV
fine tunes the airflow for a single room, where multiple sen-
sors are instrumented to monitor its temperature, humid-
ity, CO2 level, etc. Building analytics require the relations
among the vast amounts of data streams (e.g., which VAV
connects to which AHU, and which sensors are in the same
space), which are currently acquired via a costly, laborious,
yet still error-prone manual process.

technicians visiting the site and manually inspecting the
points (Dong and Lam 2014). This process can take weeks
to complete, and the need for repeating is not necessarily
eliminated, as buildings are often retrofitted or renovated.
Because new equipment can be installed or new walls can be
set up, the context of points will change and thus the meta-
data requires updates. Simply investing more man-hours is
neither scalable nor economical; we need an automated so-
lution to obtain the sensor context.
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In this study, we are particularly interested in two kinds of
fundamental relationships as illustrated in Fig. 2: (1) func-
tional relationship — which Variable Air Volume (VAV)
Box is connected to which Air Handling Unit (AHU), and
(2) spatial relationship — which sensors are co-located in
the same physical space. These relationships provide key
context for many analyses. For example, to detect over-
heated rooms for energy savings, one needs to know the
room in which a temperature sensor is located and the cor-
responding temperature setpoint.

Recent advances have been made in sensor context in-
ference, including the type (Balaji et al. 2015; Gao, Ploen-
nigs, and Berges 2015; Hong et al. 2015), location (Hong et
al. 2013; Koc, Akinci, and Bergés 2014; Koh et al. 2016),
as well as relationships between sensors (Smith, Sookoor,
and Whitehouse 2012; Pritoni et al. 2015). However, these
works either build upon problem-specific knowledge that
does not generalize (Smith, Sookoor, and Whitehouse 2012;
Hong et al. 2013), or still involve a human in the loop,
thus error-prone and not scalable (Bhattacharya et al. 2015;
Pritoni et al. 2015; Koh et al. 2016). By contrast, the method
proposed in this paper will determine the functional and spa-
tial relationships between points with minimal manual setup
and configuration effort, and thus scale much better.

The key insight behind our solution is that, as two pieces
of equipment are connected or a group of sensors is co-
located, they are exposed to the same real-world events, e.g.,
a fan turning on or a person entering the room, thus exhibit-
ing correlated changes in their sensor reading time series.
These correlated changes in turn reflect the relation between
the sensor time series. However, it is highly non-trivial to
realize a solution following this intuition, due to two ma-
jor technical challenges. First, the event-triggered patterns in
sensor data are not necessarily synchronous, e.g., a change in
an AHU would take a longer time to affect VAVs afar than a
nearby one, and the resulting changes are distinct, e.g., room
temperature changes much faster than CO2 concentration.
Consequently, to explicitly correlate events from these sen-
sor readings involves solving a complex segmentation and
matching problem — an event can span over an indetermi-
nate number of readings starting at an arbitrary timestamp in
different sensor streams. To circumvent this complexity of
explicitly finding and correlating events, we convert the raw
time series readings to the frequency domain, where event-
triggered changes are characterized by different frequency
bands, mitigating the effect of misalignment or shifts in time
series. With these transformed signals, we propose a deep
metric learning method that directly learns a non-linear fea-
ture representation of sensor streams, which implicitly en-
codes the correlated events for relation inference.

Once we have the representation, relation inference in a
(possibly large) set of time series is yet another challeng-
ing combinatorial optimization problem to solve. The funda-
mental principle guiding our solution is that a sensor should
best correlate with the others in relation due to functional
connection or physical co-location. Therefore, to identify
the relationships we search for a grouping among sensors
such that it maximizes the total sum of the intra-group pair-
wise similarity between sensors for all the groups produced.

Since exhaustive search for all the possible groupings is in-
tractable, we appeal to different approximate optimization
algorithms for efficiency and accuracy trade-off.

We perform an extensive evaluation using data from seven
office buildings consisting of tens of thousands of sensing
points with millions of readings in total, and demonstrate
the effectiveness of our solution in identifying the two rela-
tionships of interest. To the best of our knowledge, this is
the first attempt to facilitate the relation inference process
for sensors at such a scale. We believe the proposed method
is promising and could potentially apply to a broader set of
relation inference for sensors.

Related Work
Our work is related to two bodies of research — sensor re-
lational inference and metric learning for time series.
Sensor Relation Inference. Efforts on standardizing re-
source organization and management (e.g., sensors, devices,
equipment, etc) in smart buildings are emerging, including a
uniform schema (Balaji et al. 2016) and methods and tool-
ing (Koh et al. 2018) on inferring the type (Balaji et al. 2015;
Gao, Ploennigs, and Berges 2015; Hong et al. 2015) and lo-
cation (Hong et al. 2013; Koh et al. 2016) of sensors, as well
as the relations among them (Smith, Sookoor, and White-
house 2012; Koc, Akinci, and Bergés 2014; Pritoni et al.
2015). Our work is particularly concerned with relation in-
ference.

There are two different approaches to acquiring relation-
ships between sensors: parsing the sensor metadata (i.e.,
point names as shown in Fig. 1) and inferring from the sen-
sor time series readings. Bhattacharya et al. (Bhattacharya
et al. 2015) developed a programming language-based ap-
proach to automatically parse the sensor names and obtain
the relationships between sensors. Schumann et al. (Schu-
mann, Ploennigs, and Gorman 2014) used string matching
with a manually created dictionary to find the meaning of
sensor labels and derive the relationships. While effective,
however, these approaches can work well only if the point
names are available and the relations of interest are encoded
in the names, which is not always the case in practice.

There have also been recent efforts in the latter category,
i.e., identifying relationships from the sensor readings time
series. Hong et al. (Hong et al. 2013) showed that, by re-
moving dominant diurnal patterns from the raw sensor read-
ings, they can identify co-located sensors with decent ac-
curacy. Koc et al. (Koc, Akinci, and Bergés 2014) mea-
sured linear correlation to infer the spatial relationships be-
tween discharge air sensor and zone temperature sensor in a
room. However, while promising, the results in these stud-
ies are obtained using only a dozen sensors from a handful of
rooms. Pritoni et al. (Pritoni et al. 2015) discovered the func-
tional relationships between AHUs and VAV boxes by per-
turbing the operation of AHUs and leveraging the responses
in VAVs. Similarly, Koh et al. (Koh et al. 2016) perturbed the
VAV control parameter and can identify the sensors installed
in the same VAV. However, these approaches take weeks to
execute and require domain-specific knowledge about when
and how to perturb operations in a way that does not inter-
fere with building needs, which does not generalize to other
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Figure 3: The proposed STFT Triplet Network: A triplet composed of primitive sensing signals — from top to bottom: a negative
point, an anchor point, and a positive point — is sampled. The primitive signals are first converted to frequency-domain multi-
channel tensors by STFT and then fed to a deep metric learning network. Through multiple convolutional layers, the neural
network embeds the input tensors into 1-D feature vectors, which encode the relatedness among the sensing time series.

kinds of relationships. There are also approaches that do not
rely on perturbations. Park et al. (Park, Lasternas, and Aziz
2018) developed a data-driven solution that cross-correlates
the raw measurements from a particular pair of sensors in
the equipment and takes the majority match over a period
of time. Hong et al. (Hong et al. 2019) proposed to directly
infer the “events” in equipment using their sensory time se-
ries data and correlate based on these events to find AHU-
VAV functional connections. Our solution also does not re-
quire perturbations to system operation and further exploits
the phenomena already encoded in the time series data to
find multiple kinds of relationships between various types of
equipment and sensors, requiring minimal manual input.
Similarity Metric Learning for Time Series. One of the
most popular similarity measures for time series is Dynamic
Time Warping (DTW) (Berndt and Clifford 1994), which
computes the best alignment of two time series’ indices to
minimize the overall aligned distance. Apart from the opti-
mal alignment strategy in DTW, studies have proposed us-
ing all-pairs alignment distance to measure the similarity be-
tween time series (Yeh et al. 2016; Gharghabi et al. 2018).
Based on the concept of alignment distance, deep neural net-
works are further introduced to obtain a representation of
time series data. A recent work builds a Siamese network
to extract features and uses an expected all-pairs alignment
distance as the similarity metric (Che 2017). To improve
the pre-defined global alignment distance, (Grabocka and
Schmidt-Thieme 2018) uses deep networks to learn an in-
dicator function for all-pairs alignment. In addition to align-
ment methods, Recurrent Neural Networks (RNN) are also
used to model the similarity between time series (Mueller
and Thyagarajan 2016; Pei, Tax, and van der Maaten 2016),
where the state of the last hidden layer is directly used as
the representation of time series and the similarity is com-
puted using negative L1 or L2 distance function. However,
time series from building sensors is often noisy; small time-
shifts, outliers, and highly varied event patterns can result
in poor performance for these time-domain similarity met-
rics (Chan, Fu, and Yu 2003). We instead appeal to a so-
lution that explores the characteristics of sensor data in the

frequency domain.

Methodology

Relation inference among sensor time series is non-trivial,
as the event-triggered patterns in sensor readings highly de-
pend on the properties of the sensors or equipment, e.g.,
location and measurement type. Most of the existing ap-
proaches that find the asynchronous correlation between
time series are composed of two components: a method to
align time series that warp non-linearly on the time dimen-
sion, e.g., DTW, and a predefined distance function (Che
2017). Despite abundant improvements, this branch of ap-
proaches still bears O(T 2) computational complexity, where
T is the length of time series, and suffers from noise as well
as outliers in sequences.

To handle the complex correlation problem of time series
while circumventing computationally costly time-domain
based algorithms, we propose to identify and encode the
similarity of time series based on the event-triggered pat-
terns in the frequency domain. As illustrated in Fig. 3,
our solution first converts sensor time series into the fre-
quency domain using the Short-Time Fourier Transforma-
tion (Daubechies 1990) and then extracts features of Dis-
crete Fourier transformed data via a convolutional neural
network. The network is trained to embed relatedness be-
tween time series, i.e., deep metric learning. In the rest of
this section, we first elaborate on the technical details of the
aforementioned two key procedures in our algorithm, and
then explain how to infer the relations among sensors based
on the learned embedding vectors of sensor time series.

Short-Time Fourier Transformation Operator

As we are dealing with time series from sensors of various
types and locations, though they are physically connected
or co-located, the event-triggered changes in their time se-
ries are not necessarily synchronous, and the resultant pat-
terns often vary in “shapes”. Instead, characteristics of these
events in the frequency domain provide new perspectives for
distinguishing the changes in time series. We resort to the
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Short-Time Fourier Transformation (STFT), which converts
a time-domain sequence with varying frequency into a set
of frequency-domain components. Specifically, given a time
series sequence x = {x1, x2, . . . , xT } as input, STFT breaks
it into chunks using a fix-sized sliding window, and the nth

element in the mth chunk is derived as

STFT (τ,s){x}(m,n) =

T∑

t=1

x(t)·w(t−s·m)·e−j 2πn
τ

(t−s·m), (1)

where STFT (τ,s){·} denotes the short-time Fourier trans-
form operator with window size τ and sliding stride length
s, and w(t) is a sliding window function with width τ that
only has non-zero values for 1 ≤ t ≤ τ . Since the input
x is a real-valued sensor reading time series, each Discrete-
Fourier transformed chunk is conjugate symmetric, i.e., only
the first �τ/2+1� coefficients of the frequency components
are non-redundant.

Intuitively, given a real-world event, the response time of
a sensor can be captured by the phase of a sinusoidal wave,
and the response duration can be described by the ampli-
tudes of frequency components. Since the events could hap-
pen at an unpredictable pace, it is thus challenging to reveal
the complex non-linear dependencies between the Fourier
coefficients and different types of sensor relations. We ap-
peal to a deep metric learning technique, which we will
explain shortly, to recognize the relation dependent feature
vectors that represent the relatedness among sensors.

We further process the Fourier coefficients to facilitate the
representation learning for neural networks. Specifically, we
only preserve the k ≤ �τ/2 + 1� coefficients from the 2nd

to the k+1th and discard the rest. The reasons are two-fold:
First, the last coefficients correspond to the relatively high-
frequency components of the signal, which usually are the
noise in the time series data. Extracting the first coefficients
corresponds to deriving a sketch of the signal so that the real-
world events are preserved while high-frequency noise is re-
moved. Second, the direct current (DC) component, which
is the amplitude of 0 Hz term, should also be removed:

STFT (τ,s){x}(m, 0) =

τ+s·m∑

t=1+s·m
x(t). (2)

The DC component (Eq. (2)) can be easily derived from
Eq. (1) by setting n = 0, and it is equivalent to summing up
all the samples in the window. Since the signals are collected
from sensors with different types and locations, the DC com-
ponent only reflects the characteristics of the sensors rather
than the events. Therefore, we choose to eliminate it.

Note that the Discrete-Fourier transformed frequency co-
efficients are complex-valued, while the input to the neural
networks in the next step needs to be real-valued. We thus
transform the complex-valued coefficients into a real-valued
tensor in advance by re-arranging the k coefficients within a
chunk into 2k frequency channels:

a1, b1, a2, b2..., ak, bk,

where an and bn constitute the nth complex coefficients cn,
as cn = an + jbn for each 1 ≤ n ≤ k. Finally, we derive
a 2-D tensor X ∈ R

F×N with F = 2k frequency channels,
whose length N is equal to the number of chunks.

Deep Metric Learning Triplet Network

With the primitive sensor reading time series converted to
the frequency domain, we seek a means to learn a mapping
from the Fourier coefficients to an effective representation
of underlying events, through which functionally connected
or physically co-located sensors could best correlate with
each other. To this end, we design a deep metric learning
network that can represent sensors in relation using embed-
ding vectors of a closer distance than those not in relations.
It is noteworthy that when looking at each group of sensors
in relation, the number of positive samples is much smaller
than the number of negative samples (e.g., for co-location
inference, the number of sensors in the same room is much
smaller than that in different rooms), and thus directly learn-
ing the absolute pairwise distance between positive and neg-
ative pairs is heavily affected by the unbalanced training
data. As a result, we perform metric learning via a triplet
network to capture the relative relatedness among sensors
instead.

The triplet network is comprised of three identical feed-
forward networks with shared parameters. In each iteration,
a mini-batch of training triplets consisting of an anchor sen-
sor Xa, accompanied with a pair of positive sensor Xp (i.e., a
sensor in functional/spatial relation) and negative sensor Xn

(i.e., a sensor not in functional/spatial relation) are fed into
the triplet network. In one triplet T , Xa and Xp are sampled
from the group of related sensors (e.g., those in the same
room), while Xn is sampled from the non-related groups.
When fed with a triplet, the network outputs the correspond-
ing embedding vectors ya, yp, and yn. The objective of the
network is to learn an embedding space such that the anchor
sensor is closer to the positive sensor than to the negative
sensor, i.e., dp = ||ya − yp||2 < dn = ||ya − yn||2.

We achieve this objective by combining the triplet loss
(Weinberger and Saul 2009) and the angular loss (Wang et
al. 2017). Specifically, the triplet loss is defined as,

Ltri(T ) =
[
||ya − yp||

2 − ||ya − yn||
2
+ γ

]
+
, (3)

where T denotes the input triplet and
[
·
]
+

denotes the hinge
loss function. The goal of the triplet loss is to push the nega-
tive sensor point away from the anchor by a global distance
margin γ > 0 compared to the positive sensor point.

Accordingly, the angular loss is defined as,

Lang(T ) =
[
||ya − yp||

2 − μ||yc − yn||
2]

+
, (4)

where yc is the mean vector for the anchor and positive sen-
sor points, and μ is a weight parameter. Note that μ was
originally described as an angular upper bound 4 tan2 α in
(Wang et al. 2017), we predigest the format by simply view-
ing it as a hyper-parameter for simplicity. The main insight
of angular loss is to push the negative point away from the
local cluster centroid defined by ya and yp.

We shall note that, generally, the triplet loss directly opti-
mizes the relative distance between positive pairs and nega-
tive pairs, while the angular loss imposes an additional an-
gular constraint on the triplet. To take advantages of both
loss functions, we design a new loss function by introducing
a trade-off weight λ between Eq. (3) and Eq. (4) to boost the
overall performance:
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Lcomb(T ) = Ltri(T ) + λLang(T ). (5)
Considering that there is no locality among nearby fre-

quency bands in the input 2-D tensor X ∈ R
F×N , as they

are supposed to be orthogonal to each other, we only apply
convolution along the time dimension created by the mov-
ing windows. Therefore, as shown in Fig. 3, the convolu-
tional kernels cover the entire frequency spectrum and move
along the time dimension to extract the complex dependency
patterns in the input channels. Our convolution networks
consist of 4 convolutional layers with ReLU activation and
max-pooling layer applied between 2 consecutive layers. It
is noteworthy that we use one 1× 1 convolutional filter that
covers the entire input channels for the last block to generate
a 1-D feature vector as the final output of the whole network.

Relation Inference

After obtaining the embedding vectors of the sensor time
series data, the final step of our solution is to uncover the
relationships between sensors. We consider the task of re-
lation inference as a graph cut problem, where each vertex
represents a sensor or equipment and only the sensing points
in a given relation should be connected after the cut. We set
the weight of each edge to be the similarity between the em-
bedding vectors of two vertices, and relation is obtained via
min-cut on this graph. Additional constraints can be added:
for example, in spatial inference, the number of connected
components (i.e., number of rooms) and number of sensors
in each room could be provided ahead of time, i.e., a min-
imum k-cut problem. This however significantly increases
the complexity, as minimum k-cut is NP-complete (Garey
and Johnson 2002). Given the difficulty of this combinato-
rial optimization problem, we appeal to approximated algo-
rithms, e.g., genetic algorithm (Deb et al. 2002) and greedy
algorithm, for solutions.

For functional relationship inference, given the precondi-
tion that each VAV is connected to only one AHU and that
there is no connection within VAVs or AHUs, the problem
can be simplified to graph-cut in a bipartite graph setting.
Therefore, we use a greedy algorithm to assign each VAV to
the AHU with which it has the highest similarity. For spatial
relationship inference, we have the constraint that l rooms
are given, where each is instrumented with the same t types
of sensors, and one sensor for each type. This is a minimum
l-cut problem, and each connected component has exactly
t vertices. To solve this constrained combinatorial optimiza-
tion problem, we employ a genetic algorithm to approximate
the optimal solution.

Our employed approximation algorithms are task-specific
and not dependent on the deep metric learning model. De-
veloping an end-to-end solution that can directly optimize
the neural network with respect to relation inference quality
would be widely favored; we leave it as our future work.

Implementation Details

Before training, all the sensor reading time series are con-
verted into the frequency domain using the STFT operator.
In particular, we use overlapped sliding windows to miti-
gate the resolution loss at the edges of each window, and

use rectangular windows to weigh each time point equally.
To make the neural networks robust to the varying event
patterns due to different sensor types or locations, we nor-
malize the learnt embedding vectors to a unit length, i.e.,
||y||2 = 1. We update the weight of each convolutional ker-
nel by back-propagating the loss defined in Eq. (5) using
mini-batch stochastic gradient descent. For the final step, the
similarity between two embedding vectors is calculated as
ρ(y1, y2) = 1− ||y1 − y2||2, which is equivalent to Pearson
Correlation Coefficient when the vectors are normalized.

Empirical Evaluations

Experiment Setup

Datasets. To evaluate our solution for inferring functional
and spatial relationships among sensing time series, we use
two different real-world datasets. In particular, for functional
relation inference, we use the data from 6 large commercial
buildings located across the U.S.: the number of AHUs in
each building varies from 5 to 13, and the number of VAVs
ranges from 100 to 300, where the smallest building has over
1,300 sensing and control points installed. Sensor readings
are reported every 15 minutes. For each AHU, the number
of connected VAVs ranges from a handful to more than 50.
The ground-truth of the VAV and AHU connection is ob-
tained from the vendor of these buildings. For spatial rela-
tion inference, eight-day worth of data is collected from the
sensors in one office building, consisting of 50 office rooms
across 4 floors. Particularly, each room is instrumented with
four types of sensors, and one for each type — a CO2 sensor,
a humidity sensor, a light sensor, and a temperature sensor.
The data from these sensors is recorded every 5 seconds.
Baselines. We compare with two categories of solutions for
relation inference. The first three baselines are alternative
supervised deep learning methods that create feature vectors
to represent the raw sensor streams, with which we derive
pairwise similarity between sensors using their correspond-
ing predefined similarity measures.
• Dynamic Time Warping (DTW): As a clear competi-
tor against Euclidean distance, DTW (Berndt and Clifford
1994) is used as the similarity measure for embedded fea-
ture vectors generated from our deep learning model.
• Deep Expected Alignment Distance (DECADE): In-
stead of computing one single best warping path in DTW,
this deep network-based model takes all the possible warp-
ing paths and computes the expected alignment distance to
make training more efficient (Che 2017).
• Warping Networks (WN): As a state-of-the-art solu-
tion of deep metric learning for time series, this model
uses two connected deep neural networks to encode the raw
time series and the optimal warping distance respectively
(Grabocka and Schmidt-Thieme 2018).

In addition, we also compare with two unsupervised base-
lines for the relation inference that aim at explicitly extract-
ing events from time series.
• Hidden Markov Model (HMM): As a straightforward
solution, we apply a K(= 2)-state discrete HMM to infer
the binary event state in the sensor time series data, and use
the event sequences for relation inference.
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• Markovian Event Model (MEMO): It uses a 3-
layered switching Markovian model for inferring the event
state (Hong et al. 2019), and the inferred event sequence via
maximum a posterior inference for each sensor is used for
relation inference.

For our proposed STFT Triplet Network (STN) model,
we also inspect a few variants for comparisons. Specifically,
we employ the Triplet Network (TN) to study the effect
of STFT and STFT Siamese Network (SSN) to study the
effect of the triplet loss architecture.
Evaluation Metrics. For functional relationship, we eval-
uate the performance of different methods with regard to
the VAV assignment accuracy, i.e., how many VAVs are cor-
rectly assigned to their connected AHUs. For spatial rela-
tionship, we measure 1) edge accuracy, i.e., the percentage
of the sensor pairs that an algorithm predicts to be in the
same room is actually in the same room; and 2) room accu-
racy, i.e., the percentage of rooms that are correctly recov-
ered, where a room is considered as correctly recovered if
and only if all the four sensors that an algorithm assigns to
it are actually from the same room.
Model Setups. Because the sampling frequency and length
of sensor time series in the two datasets are different, we use
two different sets of parameters for the two inference tasks.
For functional inference, the duration of entire time series is
10-month (T = 28, 800), after removing invalid values (e.g.,
erroneous sensor readings). The window size of STFT is set
to 30, the stride of each window is 2, and we select the first
k = 14 complex Fourier coefficients. For spatial inference,
each eight-day long sensor time series has 130, 000 readings
after periods with missing values trimmed. The window size
is accordingly set to 200, the stride is 10, and k = 32. The
learning rate is fixed to 0.0001 for both datasets, and SGD
optimizer is used to update the model. We test all the super-
vised learning methods with 5-fold cross validation. In par-
ticular, for functional inference, there are multiple sensors
attached to each equipment, and we need to select a partic-
ular pair of sensors, one from AHU and one from VAV, for
training. By default, we use Air Flow Volume in VAVs and
Supply Fan Speed in AHUs for evaluation, as the two are
known to be physically correlated. To further relieve the do-
main knowledge required in this task, we also test our model
using all possible pairs of sensors and will report the results
later. And for spatial inference, we observe that the perfor-
mance of deep learning models varies moderately for each
run. To mitigate the effects of randomness and quantify the
range of variation, we repeat all the deep learning models 10
times and report their mean accuracy with stand deviation.

Experiment Results

Relation Inference Quality. The experiment results for
functional relation inference and spatial relation inference
are reported in Table 1 and Table 2, respectively. For the
two unsupervised baselines, HMM-based solution performs
poorly as expected, since it simply models the event states
based on the raw sensor readings. MEMO is designed for
functional inference and it on average performs well across
all the buildings. However, this event-based algorithm can-
not extract efficacious events for spatial inference, which in-

Table 1: VAV assignment accuracy (%) for functional rela-
tion inference.

Building ID 10312 10320 10381 10596 10606 10642
Unsupervised

HMM 18.01 11.50 25.64 21.02 31.59 34.75
MEMO 90.42 88.50 90.43 91.28 92.16 92.28

Supervised
DTW 88.46 25.46 83.81 91.67 55.17 80.78

DECADE 96.54 77.27 93.33 99.44 85.98 96.08
WN 97.31 60.91 95.23 99.44 77.93 96.86
TN 97.30 42.73 96.19 93.33 52.18 96.07

SSN 97.69 42.73 95.24 97.78 63.67 93.72
STN 98.07 90.00 96.23 99.44 93.10 98.03

Table 2: Accuracy (%) for spatial relation inference.

Edge Accuracy Room Accuracy
Unsupervised

HMM 12.67 4.00
MEMO 19.00 10.00

Supervised
DTW 37.27 ± 2.40 14.40 ± 2.94

DECADE 12.47 ± 1.61 2.00 ± 6.00
WN 17.47 ± 2.17 8.00 ± 9.80
TN 25.73 ± 1.94 6.00 ± 9.20

SSN 67.93 ± 8.66 50.20 ± 14.32
STN 88.61 ± 2.08 80.00 ± 3.79

dicates that its event model is over-specialized, thus unable
to recognize events in a different context.

For all the supervised learning baselines, we can see that,
apart from one building 10596 where DECADE, WN as well
as our model achieve the same result, our proposed STN
model outperforms all the other baselines in both tasks. Al-
though most of these supervised solutions are competitive
on the majority of the buildings, they do not perform well
on building 10320 and 10606, which are the noisiest and
difficult ones. Most of the baselines also perform poorly
in spatial inference, due to varied reasons. DTW is known
to be vulnerable to noise and outliers in data. Specifically,
DTW tends to mistakenly align two sequences that are not
correlated when too much noise exists. This greatly limits
the performance of DTW on building 10320 and 10606, and
the performance is only slightly better than random assign-
ment. For the two models based on all-pairs’ alignment dis-
tance (i.e., DECADE and WN), the neural networks contain
a tremendous amount of parameters, thus requiring a large
set of data for parameter estimation. However, given the rel-
atively small size of the training set for spatial relations, the
performance of these neural networks suffers. Furthermore,
their degradation on building 10320 and 10606 implies that
they also fail to handle real-world sensor streams with low
signal-to-noise ratio.

The comparison between different variants of our STN
model explains its improved performance. TN works in the
time domain by directly taking the raw time series as in-
put to the triplet network, and its performance on the two
difficult buildings drops significantly comparing to STN. In
addition, its low accuracy for spatial inference demonstrates
that frequency-domain features are more informative than
raw time series in the time domain. Compared to STN, the
performance of SSN indicates that the Siamese architecture
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is fairly unstable with a large variance. It demonstrates that
triplet architecture is more effective, especially for small
datasets where we do not have a large amount of training
data and for unbalanced datasets where the number of neg-
ative pairs is far more than the number of positive pairs.
The triplet structure can quadratically increase the amount
of training data, thus preventing the model from being over-
whelmed by large numbers of negative pairs.
Effect of Sensor Pair Selection. Previous experiments for
functional inference are based on the domain knowledge
about which two sensors are best correlated, i.e., we know
that when the Supply Fan Speed changes in an AHU, the
connected downstream VAVs will exhibit changes in their
Air Flow Volume. However, in practice, diverse air condi-
tioning systems could be deployed in different buildings
with different sensors available, and thus the aforementioned
pair of sensors might not always be available for use. We
thus inspect how sensitive our model is to the selection of
different sensor pairs, and we compare with the current best
unsupervised solution, i.e., MEMO.

As shown in Table 3, for the sensor pairs that are not di-
rectly correlated, e.g., room temperature (SpaceTemp) and
pressure of supplying airflow (SupplyAirPress), the accu-
racy of MEMO drops drastically to less than 40% while our
model can always maintain a high accuracy of over 90% re-
gardless of the pair of sensors chosen. The result indicates
that our model can learn an effective representation of the
hidden correlations between time series, even when some of
them are not directly dependent.
Cross-Building Learnability. As our algorithm still re-
quires labeled training data to obtain an effective embed-
ding of related sensors, reducing the burden of labeling data
is valuable. Furthermore, there will be scenarios where the
ground-truth annotation for relations is lacking in a target
building. A natural solution is to leverage the data of sen-
sors in relation from other buildings to reduce labeling ef-
fort in new buildings. To this end, we conduct experiments
to examine if our model is able to learn the characteristics of
sensors in relation in a cross-building setting: we train our
relation inference model using the data from building Y and
test it on a different building X. It is noteworthy that this is
a challenging task, given the heterogeneity of equipment de-
ployed in different buildings. Yet, we shall demonstrate the
advantageous transfer capability of our method, in the faced
of such heterogeneity.

Fig. 4 illustrates the comparison of our model and two
other deep learning baselines – DECADE and WN. We ob-
serve only gentle performance degradation for our model
with regard to the median accuracy, while the median ac-
curacy of the two baselines models drops significantly. Our
model is effective in most scenarios — the first quartile ac-
curacy of our model is significantly higher and our model
remains negatively skewed. This is due to the fact that the
baseline models merely learn the data-driven representa-
tions while our model learns higher-level representations in
a task-driven manner (i.e., identifying the underlying event
patterns). This distinctive feature allows our model to adapt
to a variety of real-world scenarios, e.g., transferring relation
inference across buildings.

Table 3: VAV assignment accuracy using different sensor
pairs. The left is the result of our model (STN) and the right
is the result of MEMO.

VAV \ AHU Supply Supply Supply
AirPress AirTemp FanSpeed

AirFlowVolume 97.69/75.22 97.69/33.63 98.07/91.15
DischargeAirTemp 98.21/57.52 99.11/42.48 97.82/36.28

SpaceTemp 93.07/13.27 91.51/15.04 96.05/31.86

Figure 4: Cross-building inference accuracy for functional
relations across all six buildings: ‘X|Y ’ denotes training on
Y and testing on X, and STN is our proposed method.

Table 4: Functional inference accuracy under one-month
v.s., ten-month training data.

STN WN DECADE
One-month 47.27 26.36 30.90
Ten-month 90.00 60.91 77.27

Relative Drop (%) 47.48 56.72 60.01

Effect of Amount of Data. We also investigate how sen-
sitive the models are to the amount of training data. As all
baselines generally do not work for spatial relation infer-
ence, we compare them in functional relation inference in
this experiment. Particularly, we train a model using first-
month data and test on ten-month data, and compare the
result to the setting when ten-month training data is used.
We test on the most difficult building 10320 and compare
our model STN with two supervised baselines, DECADE
and WN. From Table 4, we see a relatively small perfor-
mance drop by our model. Yet, admittedly, a loss of nearly
50% in accuracy indicates that further development of our
model is required, in order to overcome possible training
data scarcity.

Conclusions

In this paper, we develop a deep metric learning solution,
combined with approximate search algorithms, to perform
relation inference among sensor time series in smart build-
ings, which currently requires repeating laborious manual
effort. To handle the varying event-triggered patterns across
sensor streams, the solution starts from transforming the
time-domain readings to the frequency domain, and then ap-
peals to a deep metric learning network to derive an opti-
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mized representation of the sensors in relation. Extensive ex-
periment results on several large real-world building datasets
demonstrate the effectiveness as well as transfer learning ca-
pability of the solution, i.e., it can apply knowledge about
related sensors in one building to another.

As future work, we plan to extend our solution to an end-
to-end one, where the network would optimize and yield re-
lations directly as the output. It is also valuable to extend
the scope beyond smart buildings to more general relation
inference problems in sensor networks. We believe this is
a promising and important direction, as inferring relations
among sensing streams in general could be a critical task in
the grand future of Internet-of-Things.

Acknowledgments

This work was supported by National Science Foundation
IIS-1718216 and Department of Energy DE-EE0008227.

References
Balaji, B.; Verma, C.; Narayanaswamy, B.; and Agarwal, Y. 2015.
Zodiac: Organizing large deployment of sensors to create reusable
applications for buildings. In BuildSys, 13–22. ACM.
Balaji, B.; Bhattacharya, A.; Fierro, G.; Gao, J.; Gluck, J.; Hong,
D.; Johansen, A.; Koh, J.; Ploennigs, J.; Agarwal, Y.; et al. 2016.
Brick: Towards a unified metadata schema for buildings. In Pro-
ceedings of the 3rd ACM International Conference on Systems for
Energy-Efficient Built Environments, 41–50. ACM.
Berndt, D. J., and Clifford, J. 1994. Using dynamic time warping
to find patterns in time series. In Proceedings of the 3rd Inter-
national Conference on Knowledge Discovery and Data Mining,
AAAIWS’94, 359–370. AAAI Press.
Bhattacharya, A. A.; Hong, D.; Culler, D.; Ortiz, J.; Whitehouse,
K.; and Wu, E. 2015. Automated metadata construction to support
portable building applications. In BuildSys, 3–12. ACM.
Chan, F.-P.; Fu, A.-C.; and Yu, C. 2003. Haar wavelets for efficient
similarity search of time-series: with and without time warping.
IEEE Transactions on knowledge and data engineering 15(3):686–
705.
Che, Z. 2017. Decade : A deep metric learning model for multi-
variate time series.
Daubechies, I. 1990. The wavelet transform, time-frequency lo-
calization and signal analysis. IEEE transactions on information
theory 36(5):961–1005.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2002. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE trans-
actions on evolutionary computation 6(2):182–197.
Dong, B., and Lam, K. P. 2014. A real-time model predictive
control for building heating and cooling systems based on the oc-
cupancy behavior pattern detection and local weather forecasting.
In Building Simulation, volume 7. Springer.
Gao, J.; Ploennigs, J.; and Berges, M. 2015. A data-driven meta-
data inference framework for building automation systems. In
BuildSys, 23–32. ACM.
Garey, M. R., and Johnson, D. S. 2002. Computers and intractabil-
ity, volume 29. wh freeman New York.
Gharghabi, S.; Imani, S.; Bagnall, A.; Darvishzadeh, A.; and
Keogh, E. 2018. Matrix profile xii: Mpdist: A novel time series
distance measure to allow data mining in more challenging sce-
narios. In 2018 IEEE International Conference on Data Mining
(ICDM), 965–970.

Grabocka, J., and Schmidt-Thieme, L. 2018. Neuralwarp: Time-
series similarity with warping networks. ArXiv abs/1812.08306.
Hong, D.; Ortiz, J.; Whitehouse, K.; and Culler, D. 2013. Towards
automatic spatial verification of sensor placement in buildings. In
BuildSys.
Hong, D.; Wang, H.; Ortiz, J.; and Whitehouse, K. 2015. The
building adapter: Towards quickly applying building analytics at
scale. In BuildSys.
Hong, D.; Cai, R.; Wang, H.; and Whitehouse, K. 2019. Learning
from correlated events for equipment relation inference in build-
ings. In Proceedings of the 6th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation,
BuildSys ’19, 203–212. New York, NY, USA: ACM.
Katipamula, S., and Brambley, M. R. 2005. Methods for fault
detection, diagnostics, and prognostics for building systems—a re-
view, part i. Hvac&R Research 11(1):3–25.
Koc, M.; Akinci, B.; and Bergés, M. 2014. Comparison of lin-
ear correlation and a statistical dependency measure for inferring
spatial relation of temperature sensors in buildings. In BuildSys,
152–155. ACM.
Koh, J.; Balaji, B.; Akhlaghi, V.; Agarwal, Y.; and Gupta, R. 2016.
Quiver: Using control perturbations to increase the observability of
sensor data in smart buildings. arXiv preprint arXiv:1601.07260.
Koh, J.; Hong, D.; Gupta, R.; Whitehouse, K.; Wang, H.; and Agar-
wal, Y. 2018. Plaster: An integration, benchmark, and development
framework for metadata normalization methods. In Proceedings of
the 5th Conference on Systems for Built Environments, 1–10. ACM.
Mueller, J., and Thyagarajan, A. 2016. Siamese recurrent architec-
tures for learning sentence similarity. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence, AAAI’16, 2786–
2792. AAAI Press.
Palensky, P., and Dietrich, D. 2011. Demand side management: De-
mand response, intelligent energy systems, and smart loads. IEEE
transactions on industrial informatics 7(3):381–388.
Park, J. Y.; Lasternas, B.; and Aziz, A. 2018. Data-driven frame-
work to find the physical association between ahu and vav terminal
unit–pilot study.
Pei, W.; Tax, D. M. J.; and van der Maaten, L. 2016. Model-
ing time series similarity with siamese recurrent networks. CoRR
abs/1603.04713.
Pritoni, M.; Bhattacharya, A. A.; Culler, D.; and Modera, M. 2015.
Short paper: A method for discovering functional relationships be-
tween air handling units and variable-air-volume boxes from sensor
data. In BuildSys, 133–136. ACM.
Schumann, A.; Ploennigs, J.; and Gorman, B. 2014. Towards au-
tomating the deployment of energy saving approaches in buildings.
In Proceedings of the 1st ACM Conference on Embedded Systems
for Energy-Efficient Buildings.
Smith, V.; Sookoor, T.; and Whitehouse, K. 2012. Modeling
building thermal response to hvac zoning. ACM SIGBED Review
9(3):39–45.
Wang, J.; Zhou, F.; Wen, S.; Liu, X.; and Lin, Y. 2017. Deep metric
learning with angular loss. CoRR abs/1708.01682.
Weinberger, K. Q., and Saul, L. K. 2009. Distance metric learning
for large margin nearest neighbor classification. J. Mach. Learn.
Res. 10:207–244.
Yeh, C. M.; Zhu, Y.; Ulanova, L.; Begum, N.; Ding, Y.; Dau, H. A.;
Silva, D. F.; Mueen, A.; and Keogh, E. 2016. Matrix profile i: All
pairs similarity joins for time series: A unifying view that includes
motifs, discords and shapelets. In 2016 IEEE 16th International
Conference on Data Mining (ICDM), 1317–1322.

4690


