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Abstract

In many real-world applications, the data have several dis-
joint sets of features and each set is called as a view. Re-
searchers have developed many multi-view learning methods
in the past decade. In this paper, we bring Graph Convolu-
tional Network (GCN) into multi-view learning and propose a
novel multi-view semi-supervised learning method Co-GCN
by adaptively exploiting the graph information from the mul-
tiple views with combined Laplacians. Experimental results
on real-world data sets verify that Co-GCN can achieve better
performance compared with state-of-the-art multi-view semi-
supervised methods.

Introduction

Learning from labeled data is well-established in the ma-
chine learning community. However, providing labels to the
data requires human labor, and is time-consuming and ex-
pensive. In many real-world applications, unlabeled data
can often be obtained abundantly and cheaply, so there
has been substantive interest in semi-supervised learning
that exploits a large amount of unlabeled data together
with labeled data to achieve better performance. In general,
semi-supervised learning (Olivier, Schölkopf, and Alexan-
der 2006; Zhu 2005) can be categorized into four classes:
generative methods that use a generative model for the
classifier and employ EM to model the label or parame-
ter estimation process (Dempster, Laird, and Rubin 1977;
Miller and Uyar 1996; Nigam et al. 2000); semi-supervised
support vector machine methods (S3VMs) that use unla-
beled data to guide the decision boundary away from dense
regions (Bennett and Demiriz 1999); graph-based methods
that regularize the learning process by enforcing the label
smoothness over the graph as a regularization term (Belkin,
Matveeva, and Niyogi 2004; Zhou, Schölkopf, and Hofmann
2004; Zhu, Ghahramani, and Lafferty 2003); disagreement-
based methods that train different learners and then let
them label unlabeled data to boost the learning perfor-
mance (Blum and Mitchell 1998; Goldman and Zhou 2000;
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Zhou and Li 2005a; 2005b). In many years, these semi-
supervised learning methods were developed in parallel
threads, then Wang and Zhou (2010) presented a theoret-
ical graph-based explanation of co-training (a representa-
tive method of disagreement-based learning), and provided
a possibility of bringing the graph-based and disagreement-
based methods together.

Co-training (Blum and Mitchell 1998) is a representative
method of disagreement-based learning. When co-training
was proposed, it assumed that the data have two disjoint sets
of features and each set is called as a view. In real-world ap-
plications, many data have more than one view. For example,
the webpage classification data have two views, i.e., the text
appearing on the page itself and the anchor text attached to
the hyperlink pointing to this page (Blum and Mitchell 1998;
Jing et al. 2017); the multi-media data have at least two
views, i.e., image and text (Yan and Mikolajczyk 2015).
Previous studies surveyed in Xu, Tao, and Xu (2013) have
shown that multi-view learning methods could achieve bet-
ter performance than traditional single-view learning meth-
ods.

In recent years, Deep Neural Networks (DNNs) have wit-
nessed great successes in many applications. With the fast
development of deep learning, some deep semi-supervised
learning methods were developed. When the data have mul-
tiple views or multiple feature sets, deep neural network
and co-training are brought together to improve the per-
formance (Ardehaly and Culotta 2017; Cheng et al. 2016).
These methods utilized the two views (i.e., RGB and depth
in Cheng et al. (2016); image and text in Ardehaly and Cu-
lotta (2017)) to learn two DNNs and let them label unla-
beled data to augment the training set for each other to boost
the performance. Then Chen et al. (2018) presented tri-net
which extends to the case with more than two DNNs. How-
ever, these methods all try to iteratively augment the labeled
data set, which is time-consuming for retraining and can be
easily corrupted by the misleading pseudo labels.

Inspired by the theoretical graph-based explanation of co-
training (Wang and Zhou 2010) which provides the possi-
bility of bringing graph-based methods and co-training to-
gether, in this paper we simultaneously consider the spectral
graph information, multiple views and the expressive power
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of DNN, and develop a novel multi-view semi-supervised
learning method Co-GCN, which unifies Graph Convolu-
tional Network (GCN) and co-training into one framework.
In Co-GCN, the spectral graph information among the multi-
ple views are adaptively exploited with the combined Lapla-
cians. We conduct experiments on several real-world data
sets and the results verify that the proposed Co-GCN can
achieve better performance compared with state-of-the-art
multi-view semi-supervised methods.

The rest of this paper is organized as follows. After in-
troducing some related works, we present our method and
conduct the experiments. Finally, we make a conclusion.

Related Works
There are many existing multi-view and semi-supervised
learning methods, we only briefly introduce the most related
ones herein.

Multi-View Learning

Multi-view learning methods are generally categorized into
three classes (Xu, Tao, and Xu 2013; Ye et al. 2015), i.e.,
fusion methods, subspace learning, and co-training.

The fusion methods include pre-fusion and post-fusion
methods. Pre-fusion methods (e.g., multiple kernel learn-
ing) were originally developed to control the search space
capacity of possible kernel matrices to get good general-
ization on data with single view. Lanckriet et al. (2004)
formulated multiple kernel learning as a semi-definite pro-
gramming problem and Bach, Lanckriet, and Jordan (2004)
treated multiple kernel learning as a second-order cone prob-
lem. Multiple kernel learning is widely used in multi-view
learning because multiple kernels naturally correspond to
multiple views. Some other pre-fusion methods were also
developed, e.g., MLAN (Nie, Cai, and Li 2017) adaptively
learns an optimal graph for spectral clustering and semi-
supervised classification. The post-fusion methods (Ye et al.
2012) mainly focus on how to aggregate different classifiers
trained on each view. In recent years, hybrid-fusion methods
(Ye et al. 2015) were proposed in a privacy-preserving way,
which use rank consistency to communicate across views,
and adaptively aggregate the classifiers on multiple views in
the training process.

Subspace learning assumes that the features from differ-
ent views are generated from a common latent subspace.
Canonical Correlation Analysis (CCA) (Hotelling 1936) is
the first subspace learning method, which explores basis
vectors for the examples in the two views by mutually max-
imizing the correlation between the projections onto these
basis vectors. Later, KCCA (Akaho 2006) incorporates ker-
nel tricks for better generalization. The DNN-based methods
such as DCCA (Andrew et al. 2013) and DCCAE (Wang
et al. 2015) have also been developed to deal with large
amounts of training data.

Co-training was proposed by Blum and Mitchell (1998).
It learns two classifiers with initial labeled data on the two
views respectively and lets them label unlabeled data for
each other to augment the training data. Several successful
variants of co-training have been proposed by using two dif-
ferent learning algorithms instead of two views, e.g., Zhou

and Li (2005a) using two regressors with different parame-
ter configurations. Some other variants also considered co-
training from the view of Bayesian, e.g., Krishnapuram et
al. (2004)) used the graph information as prior, and Yu et al.
(2011) used a co-training kernel for gaussian process classi-
fier. There is another method which is similar to co-training
for multi-view learning, i.e., co-regularization (Sindhwani,
Niyogi, and Belkin 2005). It optimizes the empirical loss
on labeled data and the disagreement of two views over un-
labeled data. Co-LapSVM and Co-LapRLS were proposed
by using the classical regularization framework in Repro-
ducing Kernel Hilbert Spaces (Sindhwani and Rosenberg
2008). Some recent works (Wang, Bian, and Tao 2013;
Wu et al. 2019) also considered the disagreement among
the multiple views for multi-view semi-supervised feature
learning.

Spectral Graph Convolutional Networks

Spectral graph convolutional neural networks were intro-
duced in Bruna et al. (2014), they considered a possible
generalization of CNNs for non-Euclidean data. Later, Def-
ferrard, Bresson, and Vandergheynst (2016) extended this
framework by considering the fast localized convolutions.
Graph Convolutional Network (GCN) (Kipf and Welling
2017) is a spectral convolution method that restricts the
spectral filters to operate in 1-step neighborhood around
each node, which can improve scalability and classifica-
tion performance in large network. FastGCN (Chen, Ma,
and Xiao 2018) and GraphSAGE (Hamilton, Ying, and
Leskovec 2017) are two variants of GCN, which aim to im-
prove the propagation rule by using novel sampling strat-
egy in the process of feature aggregation. Graph attention
network (Velickovic et al. 2018) was proposed by adding
masked self-attentional layers to attend over the neighbor-
hoods’ features. An analysis of GCN (Li, Han, and Wu
2018) brought deeper insight and addressed that GCN is ac-
tually a special form of Laplacian smoothing and the vertices
in the same cluster tend to be densely connected.

Preliminaries

In the multi-view setting, the examples are described with
several disjoint sets of features. For simplicity, we first con-
sider the two-view setting and then discuss how to extend it
to the setting with more than two views. Suppose the data
have two views, we can denote the data matrices of the
two views as X1 and X2, respectively. For the v-th view
(v ∈ {1, 2}), we have Xv ∈ R

n×dv , where n is the num-
ber of data and dv is the feature dimension. We let l de-
note the number of labeled data and let u denote the number
of unlabeled data (i.e., n = l + u). For the labeled data,
let Yl = [y1,y2, . . . ,yl]

T be the ground-truth label, where
yi ∈ R

C×1 is one-hot indicator vector for the i-th example
and C is the number of classes. For the j-th element of yi,
yij = 1 means the i-th example belongs to the j-th class.

We now briefly introduce the architecture of Graph Con-
volutional Network (GCN) (Kipf and Welling 2017). Let
A denote the adjacency matrix of graph G = (V, E). The
graph Laplacian can be denoted as L = D − A, where
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Dii =
∑

j Aij and Aij represents the (i, j)-th element
in A. Motivated by a first-order approximation of localized
spectral filter on graph, the propagation rule of GCN layer is
designed as

H(k+1) = σ(D̃− 1
2 ÃD̃− 1

2H(k)W(k)), (1)

where Ã = A+In is the adjacency matrix of the undirected
graph G with added self-connections, In is the identity ma-
trix, and D̃ii =

∑
j Ãij . W(k) is a layer-specific train-

able weight matrix, and σ(·) denotes the activation function.
H(0) = X is the feature matrix, and the loss of GCN is eval-
uated with the cross-entropy error over all labeled examples

L = −
l∑

i=1

C∑
j=1

yij lnH
(K)
ij , (2)

where K is the number of layers in GCN.

Our Method

In order to deal with data that have more than one view, a
simple intuition is to apply the post-fusion technique to GCN
trained on each view. With co-training (Blum and Mitchell
1998), another basic idea is training a GCN in each view and
letting them label the unlabeled data to augment the training
set iteratively. However, this iterative method has two prob-
lems: (1) the process of re-training is time-consuming and
therefore is not suitable for deep models; (2) the misleading
pseudo-labels could corrupt the learners severely.

With the theoretical graph-based explanation of co-
training (Wang and Zhou 2010), it is revealed that co-
training can be represented as the label propagation pro-
cess on a combinative graph, where the number of connected
components is reduced. Inspired by this, we could construct
a combinative graph

Ac = max(A1,A2)

from the multiple views and then run GCN with this com-
binative graph. Here Av is the adjacency matrix in the
v-th view, max(·) is an element-wise maximum function,
and v ∈ {1, 2}. The combinative graph Ac can preserve
the adjacency relationships among the examples in the two
views. Thus, we can apply GCN with the combinative graph
Ac to utilize the structural information in each view. Let
Gv(Xv,Ac) denote the GCN model trained with the combi-
native graph Ac in the v-th view, the two GCN models can
be aggregated as follows

H̃ = max(H
(K1)
1 ,H

(K2)
2 ), (3)

where Kv is the number of layer in Gv(Xv,Ac) and the
output layer uses the softmax activation function. Then the
label can be inferred with

c = argmax
j∈{1,2,...,C}

H̃ij . (4)

Co-GCN with Combined Laplacians

The method discussed above that runs GCN with the combi-
native graph Ac in each view and then aggregates the two

GCNs to infer the label attempts to exploit the structural
information from the multiple views. However, the multi-
ple views have different sets of features, this method which
runs GCN with the same combinative graph Ac for all views
may be not a good solution for multi-view learning. A better
idea is that we should construct the specific structural in-
formation for each view. In order to tackle this, inspired by
some multiple graph methods (Argyriou, Herbster, and Pon-
til 2005; Wang et al. 2009), we give trainable weights to the
Laplacians from each view. We suppose that a good graph
for the v-th view (v ∈ {1, 2}) is a weighted combination of
multiple graph Laplacian matrices in the form of

V∑
w=1

πvwLw, (5)

where
∑V

w=1 πvw = 1 as that in Wang et al. (2009). Here,
Lw is the graph Laplacian matrix in the w-th view, πvw is a
weight parameter, V is the number of views, and w ∈ {1, 2}.
If Lw could provide diverse information for the v-th view,
the weight parameter πvw should be large in order to ex-
ploit the complementary information from Lw; if Lw only
provides similar information for the v-th view, the weight
parameter πvw should be small. In original GCN (Kipf and
Welling 2017), it uses a first-order approximation of Cheby-
shev polynomials

gθ � x ≈ θ0x+ θ1(L− In)x (6)

with two free parameters θ0 and θ1. To derive the formula-
tion of our co-training style GCN, we first replace the Lapla-
cian L with the weighted combination of Laplacians for the
v-th view, i.e., πv1L1 + πv2L2. We constrain the number of
parameters by assuming θ = θ0 = −θ1 as that in original
GCN (Kipf and Welling 2017) and obtain

gθ � x ≈ θ(In + πv1D
− 1

2
1 A1D

− 1
2

1 + πv2D
− 1

2
2 A2D

− 1
2

2 )x

in the v-th view. By using the renormalization trick

In +D
− 1

2
v AvD

− 1
2

v → D̃
− 1

2
v ÃvD̃

− 1
2

v

and defining Ãv = Av + In and D̃v(ii) =
∑

j Ãv(ij), we
have the propagation rule for GCN layer in the v-th view:

M(k)
v = L̃(k)

v H(k)
v W(k)

v ,

H(k+1)
v = σ(M(k)

v ),
(7)

where σ(·) is the activation function, H(k)
v is the v-th view’s

representation in the k-th layer and specifically H
(0)
v = Xv .

For L̃(k)
v , it is formulated as

L̃(k)
v = π

(k)
v1 D̃

− 1
2

1 Ã1D̃
− 1

2
1 + π

(k)
v2 D̃

− 1
2

2 Ã2D̃
− 1

2
2 , (8)

where π
(k)
vw (w ∈ {1, 2}) is the trainable parameter repre-

senting the weight of each Laplacian in the k-th layer for the
v-th view (v ∈ {1, 2}). With the propagation rule above, the
model in each view can learn with the dynamically weighted
Laplacians, and a combination of these models is used to
make predictions. We denote this method as Co-GCN and it
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Algorithm 1 Co-GCN
Input:
X1, X2, Y, and adjacency matrices A1 and A2.
Parameter:
T1, T2, απ and αW.

1: for v = 1 to 2 do
2: for t = 1 to Tv do
3: Calculate the gradient of Gv with the loss function

in Equation (2);
4: Fix {π(k)

vw}, update {W(k)
v } in Gv with the learning

rate αW;
5: Calculate the gradient of Gv with the loss function

in Equation (2);
6: Fix {W(k)

v }, update {π(k)
vw} in Gv according to

Equation (11) with the learning rate απ .
7: end for
8: end for

Output:
Aggregation of G1 and G2 according to Equation (3).

can be optimized in an alternating way to learn the adaptive
weights.

Optimization. Different from GCN (Kipf and Welling
2017), we have an extra set of weights {π(k)

vw} (v, w ∈
{1, 2}) to update in Co-GCN. In the optimization process,
we alternately optimize the two sets of parameters {π(k)

vw}
and {W(k)

v }. The parameter π
(k)
vw could be updated sepa-

rately according to its gradient. Thus, the optimization pro-
cess can be illustrated as the following two steps:
Update {W(k)

v }: Fix {π(k)
vw}, then update {W(k)

v } by using
the optimization method like gradient descent;
Update {π(k)

vw}: Fix {W(k)
v }, then calculate the gradient of

{π(k)
vw}:

∂L
∂π

(k)
vw

= Tr

[
(

∂L
∂M

(k)
v

)�
∂M

(k)
v

∂π
(k)
vw

]
(9)

here Tr(·) is the matrix trace operator and

∂M
(k)
v

∂π
(k)
vw

= D̃
− 1

2
w ÃwD̃

− 1
2

w H(k)
v W(k)

v , (10)

Finally, we update π
(k)
vw according to the gradient

π(k)
vw ← π(k)

vw − απ
∂L

∂π
(k)
vw

, (11)

where απ is the learning rate when updating {π(k)
vw}. After

updating {π(k)
vw}, we apply softmax normalization in each

layer to meet the constraint π(k)
v1 + π

(k)
v2 = 1. According

to Equation (10), the computational complexity of updating
{π(k)

vw} is also linear in the number of graph edges. We sum-
marize the process of our Co-GCN in Algorithm 1.

Extension to More-than-Two-View Setting

In some real-world applications, the data may have more
than two views. We denote the data with V views (V ≥ 3)

as X1,X2, ...,XV . In this section, we discuss how to gener-
alize Co-GCN to the setting with more than two views. The
Equation (8) can be extended as follows:

L̃(k)
v =

V∑
w=1

π(k)
vw D̃

− 1
2

w ÃwD̃
− 1

2
w , (12)

where π(k)
vw is the trainable parameter and can be updated ac-

cording to Equation (11) separately. To satisfy the constraint∑V
w=1 π

(k)
vw = 1, the softmax normalization is applied to

each hidden layer at the end of each epoch as

π(k)
vw ←

exp(π
(k)
vw )∑V

w=1 exp(π
(k)
vw )

, (13)

for π(k)
vw (v, w ∈ {1, 2, ..., V }).

Experiments

In this section, we evaluate the performance of the proposed
method on several real-world data sets.

Data Sets

In the experiments, we use three two-view data sets (i.e.,
Course, Cora, and Citeseer) and five more-than-two-view
data sets (i.e., Ads, HW, Reuters, Cal7 and Cal20). Table 1
briefly summarizes the statistics of these data sets.

Table 1: Statistics of data sets. n is the number of examples,
C is the number of classes, V is the number of views, and
dv is the number of features of each view.

data set n C V dv(v = 1, 2, ..., V )

Course 1051 2 2 3447, 427
Cora 2708 7 2 1433, 2708

Citeseer 3264 6 2 3703, 3264
Ads 983 2 5 457, 495, 472, 111, 19

Reuters 1200 6 5 2000, 2000, 2000, 2000, 2000
HW 2000 10 6 240, 76, 216, 47, 64, 6
Cal7 1474 7 6 48, 40, 254, 1984, 512, 928
Cal20 2386 20 6 48, 40, 254, 1984, 512, 928

• The Course data set contains 1,051 pages collected from
web sites of Computer Science departments of several
universities, and has two views. These pages are manu-
ally labeled as course or non-course, each with a fulltext
view and a inlinks view.

• The Cora data set contains 2708 documents over 7 labels,
where the documents are described by 1433 words in the
content view, and by the links between them in the cites
view.
• The Citeseer data set has the same structure as Cora and

contains 3312 documents over 6 labels. Following the
same strategy as Cora, the content view and the cites view
are used in experiments.
• The Advertise data set contains 983 images and has 5

views, i.e., caption, alt features in html description to-
gether with base url, destination url and image url. Each
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Table 2: Accuracy (%) of the methods with γ (γ = 1%, 5%, 10%) labeled data.

γ Course Cora Citeseer Ads Reuters HW Cal7 Cal20

1%

CoTrade 80.72 32.25 22.74 - - - - -
CoLap-SVM 78.45 39.29 44.20 - - - - -
DCCAE 82.40 48.18 35.34 - - - - -
MKL 81.85 42.25 43.71 86.04 40.23 81.27 86.24 73.01
MLAN 78.23 22.84 25.04 86.10 22.15 95.02 85.69 65.96
RANC 84.10 49.32 56.27 60.33 47.16 84.93 86.74 77.45
GCN fusion 82.60 67.56 60.08 88.02 31.21 81.25 80.13 63.70
GCN with Ac 93.16 73.69 62.94 89.16 44.11 85.91 83.15 69.72
Co-GCN 93.59 73.11 61.91 91.45 48.41 92.00 87.69 73.11

5%

CoTrade 80.51 48.86 35.45 - - - - -
CoLap-SVM 79.96 61.06 62.47 - - - - -
DCCAE 91.46 57.88 49.11 - - - - -
MKL 91.07 61.50 61.10 91.04 57.98 95.25 92.53 81.79
MLAN 78.33 47.12 49.83 86.15 27.15 97.27 89.54 77.64
RANC 91.57 65.75 66.18 93.18 59.64 94.16 90.93 84.16
GCN fusion 95.88 74.70 70.23 90.84 60.30 94.97 87.78 79.37
GCN with Ac 96.77 78.93 71.64 94.41 61.01 90.99 89.21 82.50
Co-GCN 97.77 78.37 71.95 94.09 62.28 96.83 93.62 84.15

10%

CoTrade 81.88 58.94 47.84 - - - - -
CoLap-SVM 85.64 69.21 67.13 - - - - -
DCCAE 92.64 63.29 54.26 - - - - -
MKL 93.86 71.58 67.20 92.44 65.10 96.67 94.87 86.09
MLAN 78.67 57.91 63.76 86.33 51.24 97.59 91.90 81.05
RANC 91.69 69.50 68.03 91.92 66.90 96.10 91.86 87.29
GCN fusion 96.83 77.94 71.68 92.09 65.63 96.91 91.04 82.73
GCN with Ac 98.59 82.41 71.30 95.60 67.07 89.69 91.04 85.16
Co-GCN 99.06 82.59 71.79 94.85 67.21 97.65 94.96 87.59

example describes an image on the web, and the images
are manually labeled as ads or non-ads.

• The Reuters data set (Bisson and Grimal 2012) is con-
structed from the Reuters RCV1/RCV2 Multilingual test
collection. Its multi-view information is created from dif-
ferent languages, i.e., English, French, German, Italian
and Spanish.

• The HW data set has 10 classes digits, each class has 200
different HW digits, and there are 2000 data points. The
first view is the 216-D profile-correlation features, the
second is the 76-D Fourier-coefficient features, the third is
the 64-D Karhunen-Loeve-coefficient features, the fourth
is the 240-D intensity-averaged features in 2×3 windows,
the fifth is the 47-D Zernike moment features, and the
sixth is the 6-D morphological features.

• Caltech-101 image data set consists of 101 categories
of images for object recognition. We follow previous
work (Li et al. 2015) and select the widely used 7 classes
to get 1474 images, which we call Cal7. We also select a
larger set named Cal20 which contains totally 2386 im-
ages of 20 classes. Five sets of features are extracted from
all the images, i.e., 48 dimension Gabor features, 40 di-
mension wavelet moments (WM), 254 dimension CEN-
TRIST features, 1984 dimension HOG features, 512 di-
mension GIST features, and 928 dimension LBP features.

Setting

We randomly sample 10% data as the validation set, and
then randomly sample γ (γ = 1%, 5%, 10%) of the re-
maining data as the labeled data, and the remainder of the
data are used as the unlabeled data. For each method, 10
trials are performed and the average accuracy is reported.
The hyper-parameters are chosen according to the validation
performance in the first trial, and then are fixed. We con-
struct k-nearest-neighbor graph for each view with differ-
ent distance metric exp(−d(xv(i),xv(j))

σ2 ) (k ∈ {1, 3, 5, 7, 9},
d(xv(i), xv(j)) is Euclidean and cosine distance function,
and σ ∈ {10−2, 10−1, 1}). In the experiments, we find that
Co-GCN is relatively robust to the parameter k, since it not
only utilizes the spectral information from the graph but also
learns from the features. For each data set, we study the ac-
curacy with different labeled ratios and different k under co-
sine distance and euclidean distance, and find that for all
data sets the 1-NN graph performs worse than other graphs
and the performances of 7-NN and 9-NN are comparable,
which reminds us that we can choose a relatively large k in
real-world applications.

In the experiments, we use GCN with two layers sim-
ilar to the setting in Kipf and Welling (2017). We use
dropout (p = 0.3) after each layer, use ReLU as the acti-
vation function in the hidden layer, and use softmax acti-
vation function in the output layer. The sizes of the hidden
layer are varied according to the dimension of features in the
view. If the view has more than 500 attributes, we use a hid-
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(a) Weights in the hidden layer

(b) Weights in the output layer

Figure 1: Weights of Laplacians in Co-GCN. A uniform legend applied to (a) and (b) is given in view 3 of (a).

den layer with 256 units, otherwise 128 units. We train all
models for a maximum of 2500 epochs (training iterations)
using Adam (Kingma and Ba 2015) with a learning rate of
αW = 10−3 and early stopping with a window size of 50,
i.e., we stop the training process if the validation accuracy
does not increase for 50 consecutive epochs. When updating
π
(k)
vw , the learning rate απ is set to be 10−2. Parameters in{
π
(l)
vw

}
are first initialized with 1/V before training.

Baselines

We use the method that runs GCN with the combinative
graph Ac = max(A1, . . . ,AV ) in each view and then ag-
gregates them to make predictions according to Equation (3)
as a baseline denoted as GCN with Ac in Table 2. We also
compare our Co-GCN with other state-of-the-art multi-view
learning methods. For co-training style methods, we use
CoLap-SVM (Sindhwani, Niyogi, and Belkin 2005) and an
improved version of co-training named CoTrade (Zhang and

Zhou 2011). For subspace methods, we use DCCAE (Wang
et al. 2015). For fusion methods, we use MKL (Bach, Lanck-
riet, and Jordan 2004), MLAN (Nie, Cai, and Li 2017) and
RANC (Ye et al. 2015). When data have multiple views, each
view can run GCN with its own graph and then aggregates
these GCNs to make predictions according to Equation (3),
we denote this method as GCN fusion in Table 2. Among
these methods, some are limited to the two-view setting, i.e.,
CoLap-SVM, CoTrade and DCCAE.

We consider the linear, polynomial and RBF kernel dur-
ing the training process for CoLap-SVM. Both encoder
and decoder networks have one hidden layer in DCCAE,
the number of units in the hidden layer is chosen from
{25, 26, 27}, and the dimension of subspace after encod-
ing is chosen from {10, 20, 30}. Hyper-parameter C is cho-
sen from {10−2, 10−1, 1} for MKL. We test several ker-
nel types in MKL, such as linear kernel, polynomial ker-
nel with the degree chosen from {2, 3, 4} and RBF ker-
nel with the parameter chosen from {10−1, 100, 101}. For
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Figure 2: Color map of the pairwise distance matrix for
Laplacians of six views.

RANC, two regularization parameters are selected from
{10−4, 10−3, . . . , 103, 104}, three different solutions, i.e.,
APG, ADMM and accelerate, are used for training. For all
baselines, we also use the validation set to choose the best
hyper-parameters for them.

Results

The results are described in Table 2 for different labeled data
ratios with γ ∈ {1%, 5%, 10%}. From Table 2, it can be
found that Co-GCN and GCN with Ac perform much better
than GCN fusion. Furthermore, it also shows that Co-GCN
is better than GCN with Ac on most data sets while compa-
rable with GCN with Ac on others, which verifies the use-
fulness of our adaptively weighted Laplacians.

Secondly, we compare Co-GCN with state-of-the-art
multi-view learning methods. From Table 2 we can find
that, in general, Co-GCN can achieve better performance
than other methods under different sizes of labeled exam-
ples, which verifies the superiority of the proposed method.
When the labeled ratio is relatively small, i.e., γ = 1%,
MLAN and MKL perform better on some data sets, i.e., HW,
Cal20. The reason is that these two data sets consist of mul-
tiple classes (see Table 1), and the labeled data for each class
is not enough to train good models. When the labeled ratio
increases, i.e., γ = 10%, Co-GCN outperforms almost all
baselines.

Discussions

In Co-GCN, combined Laplacians are adopted to consider
the information from different views, and the weights {π(k)

vw}
are updated and normalized in each epoch. To illustrate why
Co-GCN could perform better, we depict the weights of
Laplacians on Cal20 in Figure 1. To validate this, we also
draw a color map (see Figure 2) of the pairwise distance ma-
trix of the six Laplacians, where the pairwise distance matrix
P is defined as

Pij = ‖D− 1
2

i AiD
− 1

2
i −D

− 1
2

j AjD
− 1

2
j ‖F .

In Figure 2, the (i, j)-th block characterizes the difference
between the i-th and the j-th Laplacians (the lighter the color

is, the smaller the difference is). One can readily check that
the Laplacians of the 1-st view and the 3-rd view are almost
the same (the Frobenius norm of their difference is relatively
small), which echoes with the indistinguishable two lines in
Figure 1. Furthermore, one can observe from Figure 1 that
the weights of views 5 and 6’s Laplacians are rather large in
Co-GCN networks of views 1, 2 and 3. One possible expla-
nation is that the colors of the (5, 1)-th, (5, 2)-th, (5, 3)-th,
(6, 1)-th, (6, 2)-th, and (6, 3)-th blocks are dark in Figure 2,
which implies that views 1, 2, and 3 can provide comple-
mentary information for views 5 and 6.

Conclusion

In this paper, we propose Co-GCN for multi-view semi-
supervised learning which unifies co-training, spectral graph
information and the expressive power of neural network into
one framework, in which we use combined Laplacian to ex-
ploit the graph information from the multiple views. The
experimental results demonstrate that the proposed method
is superior to state-of-the-art multi-view semi-supervised
learning, and also empirically show that the Co-GCN net-
work in each view can adaptively learn the spectral informa-
tion from other complementary views.
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