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Abstract

Self-exciting event sequences, in which the occurrence of an
event increases the probability of triggering subsequent ones,
are common in many disciplines. In this paper, we propose
a Bayesian model called Tweedie-Hawkes Processes (THP),
which is able to model the outbreaks of events and find out
the dominant factors behind. THP leverages on the Tweedie
distribution in capturing various excitation effects. A varia-
tional EM algorithm is developed for model inference. Some
theoretical properties of THP, including the sub-criticality,
convergence of the learning algorithm and kernel selection
method are discussed. Applications to Epidemiology and in-
formation diffusion analysis demonstrate the versatility of
our model in various disciplines. Evaluations on real-world
datasets show that THP outperforms the rival state-of-the-art
baselines in the task of forecasting future events.

Introduction

Self-exciting event sequences are ubiquitous. In such an
event sequence, the occurrence of an event will raise the
probability of triggering succeeding events. These events
could be: posts in social networking sites, cases of an epi-
demic, comments on a popular movie, or aftershocks fol-
lowing an earthquake. The self-exciting nature often brings
about outbreaks of events in a short period of time. People
care about why an outbreak happens. Why are certain tweets
re-tweeted so many times but not the others? What factors
activate an outbreak of a certain epidemic? To answer these
questions, an effective and interpretable tool to model and
understand outbreaks is needed.

A typical tool for modeling self-/mutually excited data is
Hawkes process (Hawkes 1971). Many recent works have
explored its application in many disciplines, such as model-
ing high-frequency transactions (Bowsher 2007), aftershock
prediction (Ogata 1988), network inference (Linderman and
Adams 2014), recommendation (Du et al. 2015b), etc. De-
spite its success in many applications, traditional Hawkes
processes and most Hawkes-related models are not compe-
tent in capturing outbreaks. They mainly suffer from one or
many of the following drawbacks:
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• invariant excitation—the probability of events triggering
subsequent ones are either same or i.i.d. distributed;

• neglecting content/features—some models only consider
the temporal information of the event sequences, but the
contents are usually neglected;

• weak interpretability—parameters in the model are inac-
cessible, especially for those combined with neural net-
works and non-parametric techniques;

• unrealistic distribution of aggregation—Taylor’s power
law (Taylor 1961), which states that the variance of
species population density is proportional to a fractional
power of the mean, is more natural and common for popu-
lation and aggregation, whereas some existing works sim-
ply adopt Gaussian distribution;

• failure to sub-criticality—sub-criticality is a property that
the diffusion process produces finite number of events,
which many existing works fail to consider.
In this paper, we propose a Bayesian model called

Tweedie-Hawkes Process (THP). The model parameterizes
the excitation parameter in Hawkes process with a Tweedie
regression (Jorgensen 1987) over event features, and pro-
vides a solution to all the aforementioned drawbacks.

Why Tweedie distribution is more realistic? There
are two reasons. First, Tweedie distribution obeys Taylor’s
power law (Taylor 1961). This law is applicable to many cir-
cumstances, such as the spatial distribution of Colorado bee-
tle (Harcourt 1963) and daily turnovers of stocks traded on
the NYSE (Fronczak and Fronczak 2010). Hence, equipped
with this law, Tweedie distribution is powerful in modeling
data that exhibit aggregation (outbreak) phenomena. Sec-
ond, Tweedie distribution has two important characteristics:
heavy-tail and zero-inflation. Zero-inflation means the prob-
ability has a large mass at zero, resulting a natural spar-
sity. Empirical studies such as (Oestreicher-Singer and Sun-
dararajan 2012) and (Klugman, Panjer, and Willmot 2012),
especially in social networks, suggest that many population
distributions are heavy-tailed and zero-inflated. In the con-
text of self-excited data, the majority of events are “silent”
(i.e., do not have much excitation effect), while a small per-
centage of events would trigger numerous descendants (in
fact, this is how outbreaks are formed). We call the former
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Figure 1: The omnipresence of zero-inflated and heavy-
tailed distributions. Columns: Datasets of degrees of the
wiki vote network (Leskovec, Huttenlocher, and Klein-
berg 2010), the number of retweets in a retweet network
(De Domenico et al. 2013) and the amount of claims in ve-
hicle insurance (De Jong, Heller, and others 2008). Top row:
Q-Q plots between the actual and thoeretical quantiles of
Tweedie (red), Gaussian (blue) and exponential (yellow) dis-
tributions. Bottom row: actual distributions of each datasets.

“silent majority” and the latter “vocal minority”. Tweedie
distribution is able to well describe this phenomena.

Contributions. The contributions of this paper are sum-
marized as follows:

• We propose a Bayesian model combined Hawkes pro-
cesses and Tweedie distribution called THP, which is
able to model outbreaks of self-exciting event sequences
and understand the influential factors behind. By leverag-
ing on Tweedie distribution, THP is able to capture the
“silent majority” and “vocal minority” in excitation ef-
fects, which is also dependent on the features of events.

• We develop an effective mean-field variational EM learn-
ing algorithm for model inference. Several theoretical
properties of THP, including the sub-criticality and the
local optima and convergence of the learning algorithm
are also presented. A novel kernel bandwidth selection
method is proposed.

• We apply THP to 4 tasks in the experiments, to show the
versatility and effectiveness of the model. Two applica-
tions to Epidemiology and information diffusion analysis
demonstrate the potential of the model. Experimental re-
sults also show that THP outperforms the state-of-the-art
baselines in data fitting and event prediction.

Preliminaries

Hawkes Process

Hawkes process (Hawkes 1971), a class of point processes,
plays a core role in modeling the self- and mutually exciting
behavior of events. A Hawkes process N(t) is characterized
by its conditional intensity function λ(t|Ht−) defined by,

λ(t|Ht−) = lim
Δ→0

E
[
N(t+Δ)−N(t)|Ht−

]
Δ

,

where the history Ht− is the σ-algebra of events occurring
at times up to but not including t. Given a sequence of n
events with timestamps {t1, ..., tn} in an observation win-
dow [0, T ], the intensity function λ(t|Ht−) is given by:

λ(t|Ht−) = μ+
∑
i:t>ti

αφ(t− ti|h), (1)

where μ ∈ R+ is the base parameter controlling the events
generated externally, α ∈ R+ is the excitation parameter
measuring the strength of triggering subsequent events, and
φ(t|h) is the decay kernel function with bandwidth h. In the
basic Hawkes, all the events share the same excitation pa-
rameter α, regardless of their contents/features.

Tweedie Regression

Tweedie regression is a generalized linear model (GLM)
(Nelder and Baker 1972) with the response variable follow-
ing the Tweedie distribution (Tweedie 1984). Tweedie dis-
tribution belongs to the class of the exponential dispersion
models (Jorgensen 1987) (EDMs). The probability density
function of an EDM is defined by:

f(y|θ, ψ) = c(y|ψ) exp
(
yθ − b(θ)

ψ

)
, y ∈ Rψ. (2)

Here y is a random variable, θ is called the canonical param-
eter, and ψ the dispersion parameter. b(θ) is the cumulant
function, and c(y|ψ) is a known function. It is easy to verify
that the expectation of y, denoted as η, equals the derivative
of b(θ):

η � Ey = b′(θ). (3)

In GLM, the mean of the response variable y is connected
to the explanatory variables x in the linear predictor via a
smooth and invertible link function g such that g(η) = x′β.
Here β is the regression coefficients to be inferred. Note that
ψ is a nuisance parameter in the estimation of beta. We thus
preset ψ and treat it as a constant in this paper.

If y follows a Tweedie distribution, denoted by y ∼
Tweediep(η, ψ), the variance V(y) and the mean η = E(y)
obeys Taylor’s power law (Taylor 1961),

V(y) = ψE(y)p, (4)

where p /∈ (0, 1).

The Tweedie-Hawkes Process

The idea of the Tweedie-Hawkes process (THP) is to pa-
rameterize and randomize the excitation parameter α by the
features associated with each event. More specifically, our
model defines different α for different events. The intuition
is that, different events characterized by different features
should have different excitation effects on triggering new
events. We achieve this by defining the α in the original
Hawkes process as a random variable drawn from a Tweedie
distribution. The event features are then naturally incorpo-
rated through Tweedie regression. This is essentially to per-
form a Bayesian treatment on Hawkes. Our THP is detailed
as follows.
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Consider a sequence of events (i.e., a realization)
{(ti,xi)}, i = 1, . . . , n, where ti ∈ [0, T ] is a timestamp
in the observation window and xi ∈ R

m is the correspond-
ingm-dimensional feature vector. Note that we adopt a fixed
design setting here, which means that the events associate
with the features are served as input. Features are treated
as fixed affects here, thus they do not appear in the likeli-
hood function. A discussion on this setting is given in the
supplementary material. We denote the timestamp vector by
t = {t1, . . . , tn}′, which is modeled by a Hawkes process
with the excitation parameters α = {α1, . . . , αn}′ and the
base parameter μ:

t ∼ Hawkes(μ,α|η). (5)

The log-likelihood of Hawkes process is given by,

ln p(t|μ,α) =

n∑
i

lnλ(t|Ht−)−
∫ T

0

λ(t|Ht−)dt. (6)

Each αi is drawn from a Tweedie prior distribution, with its
mean ηi being a regression over the corresponding feature
vector xi,

αi ∼ Tweediep(ηi, ψ), (7)

θi = η1−pi /(1− p), (8)

g(ηi) = xTi β. (9)

Here g(η) is a monotonically increasing link function that
connects features and the prior distributions. The choice
of g(η) affects the convergence and sub-criticality of the
model. Further details will be discussed later. The prior dis-
tribution of α can be written as,

ln p(α|β) =
n∑
i=1

[
ln c(αi;ψ) +

αiθi − b(θi)

ψ

]
. (10)

Combining Eq. (6)(10) yields the complete log-likelihood
function,

ln p(t,α|μ,β) = ln p(t|μ,α) + ln p(α|β). (11)

Inference

In this section, we develop a variational expectation maxi-
mization (VEM) inference algorithm for THP. In the E-step,
we approximate the posterior over the hidden variables αi’s
using Tweedie variational distributions. In the M-step, we
update the model parameters β and μ based on the varia-
tional distributions. The algorithm is able to achieve local
optima and convergence.
E-step. We choose Tweedie distributions as the variational
distributions for the latent variables α’s. Meanwhile, we fac-
torize the joint distribution of α’s by the mean field approx-
imation:

q(α̃) =
n∏
i=1

q(α̃i),

where q(α̃i) is a Tweedie distribution with corresponding
parameter η̃i (expectation), and the tilde represents varia-
tional. Though Tweedie distribution are not the conjugate
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Figure 2: The true posterior over the latent variables (top
row) and the approximated one using Tweedie variational
distributions (bottom row).

priors for Hawkes processes, there are two reasons for this
choice. First, it results in an evidence lower bound (ELBO)
that can be easily approximated by a concave function,
guaranteeing local optima. Second, the thorny normaliza-
tion term c(y|ψ) in the posterior can be canceled out. Fig.
2 gives some results on the true posterior and the approxi-
mated one using Tweedie variational distributions. The ap-
proximation turns out to be accurate, which justifies our
choice of Tweedie as variational distributions.

The ELBO for approximating the true posterior distribu-
tion of α̃i with q(α̃i) is given by,

ELBO(α̃i) =

∫
α̃i

E
j �=i

ln(t,α|μ,β) q(α̃i) dα̃i − E
i
ln q(α̃i),

where E
j �=i

denotes the expectation over all the other α̃j’s but

α̃i, leading to a function of the variational variable α̃i. The
full form of the ELBO and detailed derivation is provided in
the supplementary material.

This objective function, which is to maximize the ELBO
with respect to the variational parameters, however, is not
necessarily convex. The second term is a convex-convex
fractional function, which spoils the convexity (Benson
2006). We find that the objective function is concave when
p < 2, ensuring convergence to global optima. We sum-
marize this finding in Lemma 1 and defer the proof to the
supplementary material.
Lemma 1 (Concavity). The ELBO is concave in η̃i for each
i, if p < 2.
M-step. We maximize the expected complete log-likelihood
using the variational distribution q(α̃). The Q function with
the current parameters μ′ and β′ is given by,

Q
(
μ,β

∣∣μ′,β′) = E
α̃
ln(t, α̃|μ,β). (12)

Applying Eq. (11), the Q function can be decomposed into
two parts,

Q
(
μ,β

∣∣μ′,β′) = E
α̃
ln p(t|μ, α̃)︸ ︷︷ ︸
Q(μ|μ′,β′)

+E
α̃
ln p(α̃|β)︸ ︷︷ ︸
Q(β|μ′,β′)

, (13)

where the first part contains only μ and the second part
only β. It is worth noting that the Q functions here do not
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contain the current parameters μ′ and β′ outwardly. In fact
they are embedded in the variational expectation η̃i. Though
the closed-form solutions do not exist, the decoupled Q
functions can be easily optimized by various gradient-based
methods as they are continuous and smooth. In our imple-
mentation, we adopt the Broyden-Fletcher-Goldfarb-Shanno
(Avriel 2003) algorithm.
Computational complexity. GivenM training sequences of
average length N (i.e., N events) with D-dimensional fea-
ture vectors, total number of iteration I , the average com-
putation complexity is O(I(N3M + D2N + D3)), which
is equivalent to those of the MMEL model (Zhou, Zha, and
Song 2013b), GC (Xu, Farajtabar, and Zha 2016) and SLRH
(Zhou, Zha, and Song 2013a), in terms ofN and I . However,
GC involves M basis functions which is much more expen-
sive than ours, and GMHP (Seonwoo, Oh, and Park 2018) em-
ploys a strenuous sampling method, which is apparently less
efficient. PHP has the same computational complexity as our
model, in terms of the number of events and the dimension-
ality of features. Note that the complexity stated in the PHP
paper excludes the feature-related computations and here we
include them for fairness.

Theoretical Properties

In this section, we present some theoretical properties of
THP. Detailed proofs can be found in the supplementary ma-
terial.

Sub-Criticality and the Link Function

One desirable property of Hawkes processes is sub-
criticality, which states that the total progeny of each event
is a.s. finite (Vere-Jones 2003). This is an important prop-
erty as it ensures that the effect of an event will eventually
vanish, which is a rule commonly present in many natural
phenomena. In this subsection, we show that our THP pos-
sesses this important property as long as the link function
g satisfies certain conditions. Note that the state-of-the-art
model PHP is not sub-critical.

Essentially, the concept of sub-criticality describes a
Galton-Watson branching process with a finite total num-
ber of events. A Hawkes process can be equivalently inter-
preted as a collection of branching processes, each centered
at an exogenous event (Hawkes and Oakes 1974). Built upon
Hawkes, our THP can also be decomposed likewise. More
specifically, the events generated by THP come from two
sources:

1. N†: the process that generates exogenous events;

2. N‡
ij : the j-th generation of the i-th exogenous event.

Exogenous event

1st generation

2nd generation

3rd generation

Figure 3: Illustration on the decomposition of THP. Each
black dot stands for an event.

An illustration on the decomposition of THP is given in
Fig. 3. The event sequence in the red box forms a Galton-
Watson branching process. An exogenous event is one trig-
gered by μ whereas endogenous by α. The process N of
THP is then the superposition of the above sub-processes:

N =

N†∑
i=1

∑
j

N ‡
ij (14)

A Galton-Watson branching process is said to be sub-
critical if the expected number of events at each generation
is smaller than that at the previous one, as formulated below.
Definition 2 (Sub-Criticality). A Galton-Watson branching
process N‡

i is sub-critical if EN ‡
i,j+1 < EN ‡

i,j for each
generation j = 1, 2, · · · .
Theorem 3 (Sub-Criticality of THP). THP consists of a fi-
nite number of sub-critical Galton-Watson branching pro-
cesses if the link function is, (1) invertible, and (2) map-
ping (0, 1) onto R. Besides, the number of Galton-Watson
branching processes N† is a Poisson process of rate μ.

Convergence Analysis

The learning algorithm presented in the last section is able
to achieve local optima and convergence. Theorem 4 states
that each iteration of the learning algorithm will consistently
increase the likelihood until convergence. The convergence
of the model parameters is stated in Theorem 5. ff
Theorem 4 (Local Optima). For any k = 1, 2, · · · , we have,

L(k+1) ≥ L(k), (15)

where L(k) = ln p(t|μ(k),β(k)) denotes the incomplete log-
likelihood of k-th iteration in the learning algorithm of THP.
Theorem 5 (Convergence). If the updating method for
Q(μ|μ′,β′) and Q(β|μ′,β′) is gradient descent (or
Newton-like methods), then as k → ∞, ‖μ(k+1) − μ(k)‖ →
0, ‖η(k+1)−η(k)‖ → 0. In particular, the convergence holds
for β that as k → +∞, ‖β(k+1) − β(k)‖ → 0, if either of
the following conditions is satisfied: (1) the link function g is
uniformly continuous, and (2) the link function g satisfies the
sub-critical conditions stated in Theorem 3 and η(k)i �→ 0 or
1 for all i.

Smoothing Kernel Bandwidth Selection

The selection of kernel bandwidth is an critical problem
of Hawkes processes, which is often neglected in existing
works. A bad choice of h may result in poor parameter es-
timations that deviate from true ones. In this part, we are
going to propose a solution to the problem.

The proposed method for kernel bandwidth selection is
based on the bias-variance trade-off. The main idea is to
minimize the expected mean square error (EMSE) on the
integrated intensity, which can be decomposed into three
parts, the variance, the squared bias, and the irreducible er-
ror. More details can be found in the supplementary material.

Fig. 4(a) shows some empirical results on a synthetic
dataset. It can be seen that with a true h, the estimation of
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Figure 4: Illustration on the kernel bandwidth in control-
ling the trade-offs in exogenous-endogenous events, and in
variance-bias. (a): The thin yellow curves show the estima-
tion of α with respect to the kernel bandwidth h, while the
thin blue curves represent the estimation of μ. The thick red
and thick blue curves represent the respective expectations
of the thin curves. (b): Variance (thin yellow over thick red
curve) and bias (thin blue curve over thick blue curve) as
functions of bandwidth h; a decomposition of the EMSE
(thick solid black curve).

α and μ is quite close to the ground truth. Fig. 4(b) shows
that the kernel bandwidth governs the trade-off in generat-
ing exogenous and endogenous events. A smaller h means a
slower decay on the excitation effect, making an event gen-
erate more endogenous offspring. This demonstrates the ne-
cessity and benefits of selecting the best kernel bandwidth in
Hawkes processes.

Related Work

Recent works regarding Hawkes processes make contribu-
tions in the following aspects:
Incorporating content features into Hawkes processes.
Basic Hawkes process only considers temporal information.
Recent works explore to involve the textual information in
two fashions: parametric and Bayesian. The first category
includes the parametric Hawkes process (PHP) (Li and Zha
2014) model, which parameterizes α with a linear regres-
sion on event features. However, the distribution of α in the
model is a symmetrical Gaussian and sub-criticality is not
necessarily satisfied, as illustrated before. (Tran et al. 2015)
proposes a model whose excitations are individuals’ partic-
ipation in communities. The model is similar to PHP, with
an application to a clustering task. The other category is
more related to our model, where the generation process of
features is involved in the model. Typical models also be-
long to marked point processes, such as (Simma and Jordan
2010) and (Seonwoo, Oh, and Park 2018), or mixture mod-
els combined Hawkes process and the generation process of
features, such as (Yang and Zha 2013), (He et al. 2015) and
(Wang et al. 2017). These models always assume that all the
events share the same distribution of α (or even same α),
which is somehow unrealistic.
Non-parametric Hawkes processes. Another research line
is non-parametric Hawkes process. Representative works in-
clude the isotonic Hawkes process (Wang et al. 2016), and

Hawkes integrated cumulants model (Achab et al. 2017).
Neural-based methods (Mei and Eisner 2017), (Li et al.
2018) and (Du et al. 2015b) also gain a lot of attentions re-
cently. These methods, however, suffer from the weakness
of interpretability, which do not serve our purpose to find
the influencing factors behind event outbreaks.
Bayesian Hawkes processes. As Hawkes processes are a
versatile probabilistic model, many recent works apply them
to non-parametric Bayesian framework to ease the pain of
parameters selection. For example, both DHP (Du et al.
2015a) and DMHP (Xu and Zha 2017) combine Dirich-
let process and Hawkes process and apply respective mod-
els to clustering tasks. However, they fail to consider the
content of the event and assume that the distribution of α
only depends on the cluster or nodes (invariant excitation).
(He et al. 2015) takes into account the contents and com-
bines Hawkes processes with topic model, but it is a shame
that α is treated as a fixed parameter which is only asso-
ciated to nodes. (Blundell, Beck, and Heller 2012) propose
a Bayesian non-parametric model combining Hawkes pro-
cesses and the infinite relational model. The model claims to
discover the implicit social structure by decompose the base
intensity term into the products of several factors, but fails
to consider the transmission/diffusion of the events between
groups, which also follows the basic setting of Hawkes.
Miscellaneous. Another related model is Cox regression
(CR) (Cox 1972), which is commonly used in survival anal-
ysis for finding the risk factors for a disease. Both CR and
our model assume that the intensity function is related to
event features. However, CR needs observation on the whole
cohort, whereas our model only needs the reported cases.
Therefore, our model is suitable when only the positive cases
are available. Besides, random graph models (Caron and Fox
2017), share some common components with THP, such as
the sparsity of adjacency matrix, heavy-tailed distributions,
and many other characteristics in social networks. The main
difference is that, random graph-related models are rooted
in the generation of adjacency matrix, which is not time-
sensitive, whereas our model, with the benefit of Hawkes
process, is able to infer the network structure indirectly from
the temporal sequences (eg. timelines of Twitter), without
knowing any topological structure of the network.

Experiments

In this section, we demonstrate applications and evaluations
on both synthetic and real-world datasets. In the first two
tasks, we present two applications to Epidemiology and the
diffusion of textual information. Then in Task 3, we present
that our model has better aggregation of events, which ex-
plains why THP is better at capturing outbreaks of events.
Last but not least, we test our model on several real-world
datasets for forecasting future events in Task 4, which shows
our model outperforms the rival baselines.

Task 1: An Application to the Transmission of
MERS-CoV

In this task, we apply THP to study the transmission of Mid-
dle East respiratory syndrome-coronavirus (MERS-CoV) in
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An outbreak occurred
in a haemodialysis
unit in a hospital

in Riyadh.

Most of these cases
are primary cases
with exposure to 
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Figure 5: A decomposition of the intensity function
with features: camel milk consumption (blue),
exposure to MERS-CoV case (red) and exposure
to camels (yellow).

Saudi Arabia in 2017. MERS-CoV is a viral respiratory ill-
ness that can cause fever, shortness of breath, Pneumonia,
and even death. According to the World Health Organiza-
tion (WHO), approximately 35% of reported MERS patients
have died. There are two major routes for transmission: non-
human to human transmission, especially from dromedary
camels, and human-to-human transmission. However, the
transmission patterns of the virus are not fully understood.
The aim of this study is to provide some statistical insights
for health care workers.

The data is collected from the WHO website, where we
study the reported cases in Saudi Arabia in the first 200 days
of 2017. The dataset contains 155 cases (i.e., events in our
model). We split them into two halves. The first half is for
training and the second half for testing. There are three po-
tential risk factors: “exposure to camels”, “camel milk con-
sumption”, and “exposure to MERS-CoV case”. All of them
are boolean. They are treated as event features in our model.

We find that “exposure to MERS-CoV case” has the
largest regression coefficient, which means that human-to-
human transmission is the most statistically important risk
factor for MERS-CoV, comparing with the other two fac-
tors. Fig. 5 visualizes how the contribution of each factor
changes over time by decomposing the intensity function.
The respective intensity is calculated by using each feature
only. By investigating the decomposed intensities in the fig-
ure, we have two findings. First, there are big spikes in inten-
sity from roughly day 60 to day 75. This is supported by an
outbreak that occurred in a haemodialysis unit in a hospital
in Riyadh between 23 February and 16 March 2017. Sec-
ond, “exposure to MERS-CoV case” accounts more for this
outbreak, as the other two intensity curves are far below the
red one. This finding is consistent with the WHO’s observa-
tion that several outbreaks occurred primarily due to com-
munity transmission within health care settings and house-
holds. The cases that were infected by direct or indirect con-
tact with dromedary camels tend to happen individually and
occasionally.

Task 2: An Application to Information Diffusion of
Textual Contents

Hawkes processes are a potent tool for modeling the dynam-
ics of information and have been applied in many works to
the propagation of textual contents, such as (He et al. 2015)

TEXT 1

TEXT 2

TEXT 3

TEXT 4

Timeline

Figure 6: An illustration of the textual cascade tree inferred
by THP. Each histogram shows the distribution of α for re-
spective text, which is related to the features and the co-
efficient β through Eq. (9). Arrows represent the inferred
parent-child relationships, which depend on two factor: (1)
temporal distance and (2) textual similarities. Text 1 is a root
node. Texts 2, 3 and 4 are descendant of Text 1.

and (Seonwoo, Oh, and Park 2018). Due to the omnipres-
ence of the Tweedie distribution, THP greatly enhances
Hawkes processes when dealing with text-based cascades in
social networks, especially in the following aspects:
• Identifying influential texts. The most important differ-

ence between THP and other Hawkes-related models is
that in THP, every event has an individual α, which con-
trols the probability of triggering subsequent events. For
those events that have larger α, they are more likely to
bring about more events. Therefore, η, which is the ex-
pectation of α, can be regarded as a indicator of how in-
fluential the text is.

• Popular topic detection. The Tweedie regression part of
THP explains why an event has a larger α (through Eq.
(9)). If a bag of words or topic models are used as features,
then the value of β represents the contribution of each
topic/word, in which

• Information diffusion modeling based on the latent
parent-child relationship of texts. As a derivative model
of Hawkes processes, THP also possesses the branching
structure as illustrated in Fig. 3, which provides a method
to infer the parent-child relationships among texts. As a
consequence, the textual cascade tree, which is a directed
tree showing the propagation of information in timeline,
can be inferred. Fig. 6 demonstrates a toy example.
We test our model on the MemeTracker dataset

(Leskovec, Backstrom, and Kleinberg 2009). Due to the lack
of ground truths (labels), we are not able to really evaluate
the model’s performance on finding popular texts or top-
ics. Alternatively, we aim at a prediction task, which is to
forecast future dynamics of event sequences. The results are
shown in Task 4 with Table 1. Moreover, a case study on
the MemeTracker dataset is given in the supplementary
material.

Task 3: Temporal Aggregation of Events on
Synthetic Dataset

Thanks to the Tweedie component, THP is able to generate
event data that are more temporally aggregated. We compare
with the following baseline models:

• a basic Poisson process (PP).
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Figure 7: An illustration of the aggregation of events gener-
ated by different models. (a)(b): Number of Clusters and Sil-
houette coefficients of the clustering of events by DBSCAN.
It shows that THP has a better aggregation of events in time-
lines. (c): Comparison of the estimated distributions of α.
THP’s zero-inflation and heavy-tail can be seen, whereas
PHP and HP result a Gaussian distribution and a scalar, re-
spectively.

• a vanilla Hawkes process (HP) (Hawkes 1971);

• Parametric Hawkes process (PHP) (Li and Zha 2014).

We generate 100 datasets using each model (with the
same mean of event numbers, and the same mean of α’s for
HP, PHP, and THP) and use DBSCAN (Ester et al. 1996) to
cluster the timestamps in each dataset. As shown in Fig. 7(a)
and 7(b), THP obtains the smallest number of clusters and
the highest Silhouette coefficient, indicating that it indeed
achieves the highest aggregation of events. This is particu-
larly useful for capturing the bursty patterns of real event
sequences, where outbreaks of events often occur. Fig. 7(c)
further shows the distribution of α learned by different mod-
els. HP has a fixed α, while PP has α = 0. PHP exhibits a
Gaussian-like α distribution. In THP, most α’s are around 0,
and only a very small percentage of α’s have large values.
This demonstrates the silent majority and the vocal minor-
ity characteristics of THP and explains the highly clustered
nature of generated events.

Task 4: Predictions on Real-world Datasets

In this part, we evaluate our model against several state-of-
the-art models on 4 real-world datasets in a task of predict-
ing future event sequences. Besides the 3 baselines in Task
3, we also involve 4 more state-of-the-art models to compare
with:

• Gaussian Marked Hawkes Processes (GMHP) (Seonwoo,
Oh, and Park 2018);

• Sparse Low-rank Hawkes process (SLRH) (Zhou, Zha,
and Song 2013a);

• Majorization Minmization Euler-Lagrange algorithm
(MMEL) (Zhou, Zha, and Song 2013b);

• Granger Causality for Hawkes (GC) (Xu, Farajtabar, and
Zha 2016);

It is worth noting that only PHP, GMHP and our THP incor-
porate both temporal and feature information, whereas the
other several baselines only consider the temporal informa-
tion. The datasets used for testing are:

• MERS-CoV (MC): the dataset we use in Task 1.
• MemeTracker (MT) (Leskovec, Backstrom, and Klein-

berg 2009): the dataset in the Task 2.
• IPTV (Luo et al. 2014): the dataset consists of IPTV

viewing events, which records the timestamps and the cat-
egory that the video belongs to.

• Weeplace (Liu et al. ) : This dataset contains the check-
in histories of users at different locations. The categories
of events include food, education, shops, and 10 others.

The sizes of the datasets we use in the above are: 155, 11275,
2916, 948. We divide each dataset into two parts: 60% as
training dataset, and 40% as testing dataset.

Two metrics are used to assess the prediction quality:
• NegLogLik, negative log-likelihood of the test dataset.

The likelihood only considers time, with features ex-
cluded.

• RMSE, root mean square error of predicting the arrival
times of the next N events (N = 1/5/10).

A lower NegLogLik and RMSEmeans the model can better
capture the transmission patterns. Due to the page limit, we
list the results of log-likelihood in Table 1. For more results,
please refer to the supplementary material.

Table 1: The log-likelihood of the predicted future event se-
quences on various real-world datasets.

Model MC MT IPTV Weeplace

THP -76.344 128.455 -783.270 -1114.906
PHP -94.617 126.922 -930.218 -1123.601
GMHP -80.066 108.048 -969.380 -1187.383
HP -94.389 102.111 -965.310 -1121.381
GC -103.287 125.889 -1081.648 -1281.400
SLR -95.838 52.827 -967.232 -1348.445
MML -103.693 108.340 -966.795 -1214.991
PP -104.612 107.982 -1027.998 -1151.463

Conclusion & Discussion
In this paper, we proposed Tweedie-Hawkes Processes,
which is powerful in modeling and understanding outbreaks
of events. Our model leverages upon the Tweedie distribu-
tion in capturing the “silent majority” and “vocal minor-
ity” in excitation effects. We showed that the model en-
joys a number of theoretical merits and outperforms the
state-of-the-art baselines in data fitting and event prediction
when tested on several real-world datasets. We also showed
the versatility of our model by applying to two tasks in
Epidemiology and information diffusion analysis, respec-
tively. It is worth noting that our model is built upon one-
dimensional Hawkes processes. Multi-dimensional Hawkes
processes can be modified into a THP by setting the dimen-
sionality as a feature. Besides, the distribution of α can be
something beyond Tweedie or Gaussian (e.g., binomial dis-
tribution). Our model offers a feasible framework to such
problem that one can change the Tweedie regression to any
other generalized linear models (GLMs).
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