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Abstract

The merits of fast convergence and potentially better per-
formance of the weight normalization family have drawn
increasing attention in recent years. These methods use
standardization or normalization that changes the weight
W to W ′, which makes W ′ independent to the magni-
tude of W . Surprisingly, W must be decayed during gra-
dient descent, otherwise we will observe a severe under-
fitting problem, which is very counter-intuitive since weight
decay is widely known to prevent deep networks from
over-fitting. Moreover, if we substitute (e.g., weight nor-
malization) W ′ = W

||W || in the original loss function
∑

i L(f(xi;W
′), yi) + 1

2
λ||W ′||2, it is observed that the

regularization term 1
2
λ||W ′||2 will be canceled as a constant

1
2
λ in the optimization objective. Therefore, to decay W , we

need to explicitly append: 1
2
λ||W ||2. In this paper, we the-

oretically prove that 1
2
λ||W ||2 improves optimization only

by modulating the effective learning rate and fairly has no
influence on generalization when the weight normalization
family is compositely employed. Furthermore, we also ex-
pose several serious problems when introducing weight decay
term to weight normalization family, including the missing of
global minimum, training instability and sensitivity of initial-
ization. To address these problems, we propose an Adaptive
Weight Shrink (AWS) scheme, which gradually shrinks the
weights during optimization by a dynamic coefficient pro-
portional to the magnitude of the parameter. This simple yet
effective method appropriately controls the effective learning
rate, which significantly improves the training stability and
makes optimization more robust to initialization.

Introduction
The normalization methodologies on features have made
great progress in recent years, with the introduction of
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Figure 1: Counter-intuitive performance degradation (under-
fitting) by setting weight decay parameter λ to 0 for WS-
equipped convolutions. Top-1 Accuracy via single 224×
crop on the ImageNet training set is plotted.

BN (Ioffe and Szegedy 2015), IN (Ulyanov, Vedaldi, and
Lempitsky 2016), LN (Ba, Kiros, and Hinton 2016), GN
(Wu and He 2018) and SN (Luo et al. 2018). These meth-
ods mainly focus on a zero mean and unit variance nor-
malization operation on a specific dimension (or multi-
ple dimensions) of features, which makes deep neural ar-
chitectures (He et al. 2016a; 2016b; Huang et al. 2017a;
Wang et al. 2018) much easier to optimize, leading to robust
solutions with favorable generalization performance.

Beyond feature normalization, there is an increasing in-
terest on the normalization of network weights. Weight Nor-
malization (WN) (Salimans and Kingma 2016) first sepa-
rates the learning of the length and direction of weights, and
it performs satisfactorily on several relatively small datasets.
In some contexts of generative adversarial networks (GAN)
(Goodfellow et al. 2014), Weight Normalization with Trans-
lated ReLU (Xiang and Li 2017) is shown to achieve supe-
rior results. Later, Centered Weight Normalization (CWN)
(Huang et al. 2017b) further powers WN by additionally
centering their input weights, ulteriorly improving the con-
ditioning and convergence speed. Recently, very similar to
CWN, Weight Standardization (WS) (Qiao et al. 2019) aims
to standardize the weights with zero mean and unit variance.
On the large-scale tasks (ImageNet (Deng et al. 2009) clas-
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sification/COCO (Lin et al. 2014) detection), WS further en-
hances optimization convergence and generalization perfor-
mance, under the cooperation of feature normalizations such
as GN and BN.

In terms of weight normalization family, despite its ap-
pealing success, there is still one confusing mystery –
the disharmony between weight normalization family and
weight decay (Krogh and Hertz 1992). Specifically, we con-
sider training a single-layer (note that the following conclu-
sions can be easily extended to the multiple-layer one) neu-
ral network f(x;W ′), where x,W ′ ∈ Rn with the follow-
ing loss function to be optimized:

L̂(W ′) =
∑
i

L(f(xi;W
′), yi) +

1

2
λ||W ′||2, (1)

where L̂ contains task-related loss L(·, ·), input/label pair
(xi, yi), and the regularization term 1

2λ||W ′||2 with a con-
stant λ to balance against L(·, ·). For simplicity, we use
weight normalization to re-parameterize W ′, regardless the
learning of its length. By substituting W ′ = W

||W || in Eq.
(1), we can get

∑
i L(f(xi;

W
||W || ), yi)+

1
2λ, which is equiv-

alent to minimize the following function
∑
i

L(f(xi;
W

||W || ), yi). (2)

Interestingly, the weight decay term has indeed disappeared.
In the case of WS, we can get similar conclusions by replac-
ing W ′ = W−W√

||W−W ||2
n

:

∑
i

L(f(xi;
W −W√
||W−W ||2

n

), yi), (3)

where W =
∑

i Wi

n . It probably makes sense since weight
decay will not take effect on a fixed distribution of nor-
malized weights. However, when we apply Eq. (3) to WS-
equipped ResNet50 (WS-ResNet50) on ImageNet dataset,
i.e., setting weight decay ratio λ to 0 for all WS-equipped
convolutions, we observe a severe degradation with signif-
icant performance drop in training set (Figure 1). It is in-
credibly strange that weight decay is known to prevent the
training from over-fitting the data, but it appears that, remov-
ing the weight decay instead puts the network into a serious
under-fitting, which is very counter-intuitive.

To answer above questions, in this paper, we first prove
that in Eq. (2) (and Eq. (3)), the addition of W ’s weight de-
cay term does not change the optimization goal. Therefore,
weight decay loses its original role that finds a better gen-
eralized solution by introducing a different loss part against
the task-related one. At the same time, basing on the deriva-
tion of the gradient formula of W , we further prove that
weight decay only takes effect in modulating the effective
learning rate to help the gradient descent process when the
weight normalization family is employed, and empirically
demonstrate how it adjusts the effective learning rate.

The current common and default operation (Salimans and
Kingma 2016; Qiao et al. 2019) to optimize networks with

weight normalization family is to continue to preserve the
traditional decay term of W for better convergence that
comes from ensuring the stable effective learning rate, i.e.,
to explicitly add 1

2λ||W ||2 on Eq. (2):

∑
i

L(f(xi;
W

||W || ), yi) +
1

2
λ||W ||2. (4)

However, there are many potential problems in taking the
final optimization objective as Eq. (4). First, we prove that
Eq. (4) has no global minimum theoretically. In addition, the
improper selection of λ will easily lead to training failures
due to gradient float overflow. Finally, Eq. (4) is also very
sensitive to the initialization of parameter W .

To address these problems, we propose a very simple
yet effective Adaptive Weight Shrink (AWS) scheme, which
gradually shrinks the weights during optimization by a dy-
namic coefficient proportional to the length of the parameter.
By doing so, we are able to discard the fixed weight decay
term in the loss expression and avoids a series of existing
problems, which greatly improves the training stability and
makes it robust to initialization. The effectiveness of our
method is demonstrated by experiments on the large-scale
ImageNet dataset.

To summarize our contributions:

• We thoroughly analyze the disharmony between weight
normalization family and weight decay, and expose the
serious problems caused by the optimization of weight
decay term in the final loss objective.

• We theoretically prove that weight decay loses the abil-
ity to enhance generalization in the weight normalization
family, and only plays a role in regulating effective learn-
ing rate to help training. The detailed mathematical ex-
pression of how to adjust the effective learning rate is also
given.

• We propose a simple yet effective Adaptive Weight Shrink
(AWS) scheme to overcome the disharmony between
weight decay and weight normalization family, which im-
proves the training stability and robustness to initializa-
tion whilst maintaining competitive performance.

Roles of Weight Decay in Weight

Normalization Family

In this section, we explain the roles of weight decay in
weight normalization family in details. The theoretical anal-
yses on the roles of weight decay help to understand why
weight decay loses the ability to enhance the generalization.

Weight Decay Doesnot Change Optimization Goal

We first prove that in the networks equipped with weight
normalization family, the introduction of weight decay does
not change the goal of optimization, indicating that weight
decay faithfully brings no additional generalization benefits.
For analyses, we simply use the tools of variable decompo-
sition. Specifically, we choose two representative methods
from weight normalization family, namely WN and WS, and
discuss each in turn.
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In WN, we aim to prove that optimizing

L̂(W ) =
∑
i

L(f(xi;
W

||W || ), yi) +
1

2
λ||W ||2, (5)

is equal to optimizing

L(W ) =
∑
i

L(f(xi;
W

||W || ), yi). (6)

Specifically, let A = W
||W || and k = ||W ||(k > 0), we

can decompose the direction and length of W as two inde-
pendent variables. Then the objectives of Eq. (5) and (6) can
be rewritten as

min
A,k

L̂(A, k) =
∑
i

L(f(xi;A), yi) +
1

2
λk2,

s.t. ||A|| = 1, k > 0, (7)
and

min
A

L(A) =
∑
i

L(f(xi;A), yi), s.t. ||A|| = 1. (8)

Since A and k are two independent variables, we have

min
A,k

L̂(A, k) = min
A

∑
i

L(f(xi;A), yi) + min
k

1

2
λk2

= min
A

L(A) + min
k

1

2
λk2. (9)

Eq. (9) shows that minimizing L̂ actually contains the
task of minimizing L, which completes the proof. Simi-
larly, in WS we can further decompose the mean and vari-
ance of W by letting B = W−W√

||W−W ||2
n

,m = W and

v =

√
||W−W ||2

n (v > 0), where B,m, v are also mutually
independent. Again we can have

min
B,m,v

L̂(B,m, v) = min
B

L(B) + min
m,v

1

2
λn(m2 + v2).

(10)
Therefore, according to the above analyses, for the net-

works with the weight normalization family, the introduction
of weight decay does not essentially change the learning ob-
jective, which implies that it takes no effect on the network
generalization.

Weight Decay Ensures Effective Learning Rate

Since weight decay does not bring a regularization effect to
a network with weight normalization family, why is it indis-
pensable in the training process? The central reason is that
weight decay helps to control the effective learning rate in a
stable and reasonable range. Taking WN as an example, we
can derive the gradient of W as (the deviate to Eq. (6)):

∂L
∂W

=
∂L
∂A

∗ ( 1

||W || −
W ∗W
||W ||3 ), (11)

where ∗ denotes the element-wise product. If we consider
one gradient descent update at t step for an element in W ,
i.e., Wi, with the use of learning rate η, we have:

W t+1
i = W t

i − η

||W t|| (1−
(W t

i )
2

∑
j(W

t
j )

2
)
∂L
∂Ai

. (12)

Figure 2: The comparisons of effective learning rate for dif-
ferent weight decay ratios. The blue curve ensures a larger
effective learning rate which helps the network converge.

Suppose we fix the direction of W and vary the length
||W ||, then A = W

||W || remains unchanged, thereby ∂L
∂Ai

is

also fixed. Meanwhile, (1 − (W t
i )

2

∑
j(W

t
j )

2 ) term is as well fixed

within a stable range [0, 1]. Consequently, the entire update
step size can be determined by η

||W || , which exactly controls
the effective learning rate (Hoffer et al. 2018). If we do not
limit ||W || during the update process, the weights can grow
unbounded ||W || → ∞, and the effective learning rate goes
to 0 ( η

||W || → 0). The similar analysis can be conducted in
the case of WS, where one update step is:

W t+1
i =W t

i −
η√

||W t−W t||2
n

(1− 1

n
− (W t

i −W t)2∑
j(W

t
j −W t)2

)
∂L
∂Bi

,

(13)
which has η√

||W−W ||2
n

term as its effective learning rate.

To show how weight decay regulates the effective learning
rate, we plot the mean effective learning rate of all the filters
from the first layer of WS-ResNet50 throughout the training
process in Figure 2, which represents the applications of 0
and 1e-4 weight decay to the corresponding convolutional
layers respectively.

Further, we can theoretically prove that, using SGD (Bot-
tou 2010; Sutskever et al. 2013), the training trajectory of L̂
(Eq. (5) with weight decay) can be completely reproduced
by simply scaling the learning rate at each step when opti-
mizing L (Eq. (6) without weight decay). Here we focus on
the normalized variables to represent the training trajectory,
e.g., A (or B), as they are the ultimate weights with which
networks use to operate. In the case of WN, we suppose
optimizing L̂(A, k) and L(A) take T steps in total respec-
tively, and at each step, we feed the same data batch to both
of them. For the ease of reference, the corresponding vari-
ables at t step for optimizing L̂ are marked with superscript
L̂t, e.g., W L̂t . Such notations are kept similarly in optimiz-
ing L, e.g., WLt . We further assume that two optimization
processes start from the same initial weights AL̂0 = AL0 ,
which also means W L̂0 = p0W

L0 , where pt is a scale be-
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gradient descent step on (with WD)  

gradient descent step on (without WD)  

Figure 3: Illustration of proving that weight decay can be
entirely replaced by modulating the learning rate (under the
setting of p0 = 1 in this example). (a) denotes one update
with weight decay. (b) denotes one update without weight
decay. (c) shows the similar triangle relationship between
these two updates, where the scale ratio 1−λη can be easily
derived.

tween W L̂t and WLt (if pt exists). Specifically, we aim to
prove that there exists a sequence of {d1, ..., dT } as multi-
pliers (note that d must be independent of the training pro-
cess) for learning rate η during optimizing L, and it ensures
AL̂t = ALt for any step t from {1, ..., T}. We take the
standard SGD (Ruder 2016) for analysis via mathematical
induction:

1) As stated in the assumption, we have AL̂0 = AL0 hold
for t = 0, indicating W L̂0 = p0W

L0 . Here we do not
have d0 since the gradient descent step does not start in the
initialization phase.

2) Suppose AL̂q = ALq holds for t = q with W L̂q =

pqW
Lq , we needs to prove AL̂q+1 = ALq+1 under certain

expression of dq . Let us expand W L̂q+1 and WLq+1 by per-
forming one gradient descent step:

W L̂q+1

=(1−λη)W L̂q − η

||W L̂q ||
(1−W L̂q ∗W L̂q

||W L̂q ||2
) ∗ ∂L

∂AL̂q

= (1−λη)pqWLq − η

pq ||WLq || (1−
WLq ∗WLq

||WLq ||2 ) ∗ ∂L
∂ALq

, (14)

and

WLq+1 = WLq − ηdq

||WLq || (1− WLq ∗WLq

||WLq ||2 ) ∗ ∂L
∂ALq

.

(15)
Therefore, it is very obvious to deduce from Eq. (14) and
(15) that when dq = 1

p2
q(1−λη) , we can have

W L̂q+1 = (1− λη)pqW
Lq+1 , (16)

which consequently leads to AL̂q+1 = ALq+1 and thereby
it completes the proof. At the same time, we can also derive
the recursive formula for p:

pq+1 = (1− λη)pq. (17)

Figure 4: The curves of mean effective learning rate of mul-
tiple WS-equipped convolutional layers. We observe an in-
teresting warmup phenomenon in the initial training stage.
In the form of “layera.b.convc”, “a” denotes the stage num-
ber, “b” denotes the bottleneck number, “c” represents the
order of convolutional layer inside this bottleneck. For ref-
erence, the first “conv1” means the first convolutional layer,
which is exactly the same with the blue curve in Figure 2.

Given the sequence of p generated from Eq. (17),
the resulted sequence {d1, ..., dT } of d then becomes
{ 1
p2
1(1−λη)

, ..., 1
p2
T (1−λη)

} finally. The similar deductions can
be carried out for the case of WS. To give a better illustration
of the proof, we let p0 = 1 and demonstrate the first gradi-
ent descent update of L̂ and L in Figure 3. It is easy to see
that W L̂1 and WL1 form a similar triangle relationship and
their scale factor is only determined by the hyper-parameter
λ and η.

According to the above analyses, we conclude that for net-
works with weight normalization family, weight decay only
takes effect in modulating effective learning rate, and theo-
retically, we can replace it simply by adjusting the learning
rate in each iteration with a calculated ratio which is only
related to the hyper-parameter λ and η.

One more interesting empirical observation is that the
control of effective learning rate by weight decay in the early
stage is quite similar to a warmup process, and the effective-
ness of warmup has been generally confirmed in (He et al.
2019; You, Gitman, and Ginsburg 2017; Goyal et al. 2017;
Liu et al. 2019). As shown in the Figure 4, we sample and
investigate a set of convolutional layers, and observe that al-
most all of the layers show an increase in the effective learn-
ing rate of several epochs at the beginning of training.

Problems via Introducing Weight Decay

Despite the certain practical success of applying traditional
weight decay to control the effective learning rate, there are
still several serious problems in essence. In this section, we
discuss about these problems of introducing weight decay
term in the loss objective for weight normalization family.
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No Garantee of Global Minimum and Training
Instability

We first consider WN. If we introduce W ’s weight decay
term to the final loss objective, i.e., Eq. (4), we can prove
that for W , the entire loss function does not theoretically
garantee a global minimum. Here we use the proof by con-
tradiction:

If there exists a global minimum W ∗ such that the ob-
jective is minimized, then we have the smallest loss L̂(W ∗)
as

L̂(W ∗) =
∑
i

L(f(xi;
W ∗

||W ∗|| ), yi) +
1

2
λ||W ∗||2. (18)

Let’s take a real number α(0 < α < 1) and form a new
solution W# = αW ∗. Then we have:

L̂(W#) =
∑
i

L(f(xi;
W#

||W#|| ), yi) +
1

2
λ||W#||2

=
∑
i

L(f(xi;
W ∗

||W ∗|| ), yi) +
1

2
λα2||W ∗||2

<
∑
i

L(f(xi;
W ∗

||W ∗|| ), yi) +
1

2
λ||W ∗||2 = L̂(W ∗),

(19)
which leads to the contradiction with the assumption that
L̂(W ∗) is smallest. The similar conclusion can be found
with WS.

The lack of the global minimum will make the training of
the network ill-posed, which means that the model cannot be
optimized by any learning parameters. Moreover, the objec-
tive will continuously push the length of the weight to 0. The
effective learning rate is inversely proportional to the weight
length, which is easier to cause the floating point overflow
and lead to a failed training.

Specifically, we find that improper selection of λ would
actually cause the instability in training. When we choose a
slightly larger λ, some of the weights in the network will
quickly converge to 0, making the effective learning rate
close to infinity. Thereby the numerical gradient updates are
beyond the representation of float in the computational re-
source, resulting in a training failure. Table 1 shows the im-
pact of λ on network training with two widely used optimiz-
ers SGD (Sutskever et al. 2013) with momentum and Adam
(Kingma and Ba 2014), where it is much easier to have a
failed training for networks with weights normalized.

Initialization Sensitivity

When the initialized weight W is with a larger magnitude,
the training process will spend a lot of iterations and time
on minimizing the regularization term, so that it cannot con-
verge efficiently to the optimal solution of the task-related
objective. That is, the introduction of the fixed weight de-
cay term makes the networks more sensitive to initialization.
To verify this, we plot the accuracy rate curves for the WS-
ResNet50 on the ImageNet training and validation set by
multiplying the initialization weights by 1, 20, and 100, re-
spectively. From Figure 5 we can see that as the initial length

Table 1: Accuracy via single 224× crop on ImageNet vali-
dation set of different Weight Decay (WD) settings for WS-
convolution in WS-ResNet50. WD of other parts (BN and fc
layers) is kept with 1e-4. We demonstrate the results of two
widely used optimizers: SGD (with momentum) and Adam.
“–” denotes a failed training due to the float overflow. For
reference, we list the SGD results of ResNet50 without WS.

λ (WD) SGD (w/ WS) Adam (w/ WS) SGD (w/o WS)
Top-1/5 Acc (%)

1e-2 – – 47.67/72.53
1e-3 – – 74.12/91.88
1e-4 76.74/93.28 – 76.54/93.07
1e-5 74.70/92.08 – 74.80/92.16

Figure 5: Top-1 Accuracy curves via single 224× crop on
the ImageNet training and validation set with different ini-
tialization scales for training with weightk decay. The base-
line initialization strategy (W×1) is from (He et al. 2015).
The traditional fixed weight decay term is sensitive to ini-
tialization with various scales.

of W increases, the performance of the network gradually
degrades, and both the training and validation accuracy drop
simultaneously.

Method

This section describes our proposed Adaptive Weight Shrink
(AWS) method to address the above problems.

Adaptive Weight Shrink

From the analysis of these problems, we understand that a
fixed regularization term will bring about training failure and
low training efficiency. In order to improve the efficiency
and make the statistics of the network stable within a reason-
able range, we propose dynamic shrink mechanism during
the training process, where the weight is shrunken according
to the length of the current weight (or standard deviation for
the case of WS), whilst the original fixed weight decay term
in the loss objective is discarded. Specifically, for WN, we
keep the loss objective as L(W ) =

∑
i L(f(xi;

W
||W || ), yi)

and use a dynamic factor:

γ = α||W ||, (20)
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Table 2: Accuracy via single 224× crop on ImageNet vali-
dation set of different α AWS settings for WS-convolution
in WS-ResNet50 and WN-convolution in WN-ResNet50,
trained with SGD and Adam respectively. WD of other parts
(BN and fc layers) is kept with 1e-4. AWS greatly improves
the training stability.

w/ WS w/ WN

α (AWS) SGD Adam SGD Adam
Top-1 Acc (%)

1e-1 72.15 71.02 70.64 70.15
1e-2 76.35 71.85 72.02 71.63
1e-3 75.93 72.54 75.76 72.31
1e-4 74.37 72.55 76.63 72.34
1e-5 73.23 72.65 75.48 72.40

to shrink the corresponding weight in each step during the
gradient update (e.g., for Wi):

W t+1
i =(1− ηγ)W t

i − η

||W t|| (1−
(W t

i )
2

∑
j(W

t
j )

2
)
∂L
∂Ai

=(1−ηα||W t||)W t
i −

η

||W t|| (1−
(W t

i )
2

∑
j(W

t
j )

2
)
∂L
∂Ai

.

(21)
α is a hyper-parameter for adjusting the intensity of

shrinking. For the case of WS, the γ becomes α
√

||W−W ||2
n .

Experimental Setting

To validate the effectiveness of the proposed AWS, we con-
duct comprehensive experiments on the ImageNet (Deng et
al. 2009) dataset accordingly. The training settings are kept
similar with (Li, Hu, and Yang 2019), except that we set the
weight decay ratio λ to 0 for all the bias part in networks
(He et al. 2019), which generally improves about 0.2% over
the baselines here. We train networks on the training set and
report the Top-1 and Top-5 accuracies on the validation set
with single 224 × 224 central crop. For data augmentation,
we follow the standard practice (Szegedy et al. 2015) and
perform the random-size cropping and random horizontal
flipping. All networks are trained with naive softmax cross
entropy without label-smoothing regularization (Szegedy et
al. 2016). We train all the architectures from scratch by SGD
(Sutskever et al. 2013) or Adam (Kingma and Ba 2014;
Loshchilov and Hutter 2019). SGD is with weight decay
0.0001 and momentum 0.9 for 100 epochs, starting from
learning rate 0.1 and decreasing it by a factor of 10 every 30
epochs. Adam keeps the default settings with learning rate
0.001, β1 = 0.9, β2 = 0.999. The total batch size is set as
256 and 8 GPUs (32 images per GPU) are utilized for train-
ing. The default weight initialization strategy is in (He et
al. 2015). Note that in our experiments, only those normal-
ized weights are trained with AWS, others (BN and fc layer
weights) are kept with traditional weight decay term since
they donot suffer from these problems. We mainly conduct
experiments based on the state-of-the-art Weight Standard-
ization (WS) from the weight normalization family. For a
fair comparison, all experiments are run under a unified py-
torch (Paszke et al. 2017) framework.

Table 3: Accuracy via single 224× crop on ImageNet vali-
dation set of different backbones using SGD.

Top-1/5 Acc (%) baseline WS + WD WS + AWS
ResNet-50 76.54/93.07 76.74/93.28 76.59/93.18
ResNet-101 78.17/93.98 78.07/94.02 78.14/94.05
ResNeXt-50 77.64/93.70 77.76/93.76 77.71/93.52
ResNeXt-101 78.71/94.28 78.68/94.17 78.74/94.33
SE-ResNet-50 77.55/93.81 77.78/93.84 77.68/93.77
SE-ResNet-101 78.43/94.15 78.65/94.33 78.50/94.23

Dynamic Balance for Training Stability

Intuitively for WN, AWS will work since the dynamic
shrinking ratio γ considers the presence of ||W || in the ef-
fective learning rate (elr):

γ ∝ ||W ||, elr ∝ 1

||W || . (22)

During the optimization, if ||W || is too large, γ will in-
crease in proportion, and ||W || will decay at a very fast
speed; if ||W || is too small, γ will be sharply reduced, which
means nearly no shrinking will take effect. Meanwhile, the
elr greatly increases, and the network will quickly increase
the ||W || when optimizing the task-related loss. Through
the above mechanism, the network can efficiently achieve a
stable state of numerical statistics during training, thereby
avoiding training failures and inefficient optimizations.

To verify this, analogous to Table 1, we traverse AWS’s
hyper-parameter α in a large scope, yielding the results in
Table 2. In comparison with Table 1, we find that AWS
greatly improves the stability of training, i.e., no matter how
the hyper-parameter α changes, the optimization can finally
converge to a good solution with no cases of training failures
for any type of optimizer.

Further, we apply AWS to more network structures (He
et al. 2016a; Xie et al. 2017; Hu, Shen, and Sun 2018) and
compare it to the original baseline and WS+WD training us-
ing SGD. For the WS-equipped networks, we search for the
optimal hyper-parameters λ or α to report our results (typ-
ically λ = 1e-4 and α = 2.5e-3). As can be seen from Ta-
ble 3, while keeping excellent training stability, AWS also
achieves very competitive results.

Robust to Initialization

Different from the fixed weight decay training, AWS ensures
efficient optimization by calculating the dynamic statistics
of the training weights. Therefore it is much robust to the ini-
tialization. To validate this, similar to Figure 5, we let α =
2.5e-3 and vary the initialization weight by multiplying 1,
20, and 100, respectively. The accuracy curves are depicted
in Figure 6, where different training curves quickly converge
to similar training and validation errors during the first train-
ing phase. For other choices of hyper-parameter α, we can
still observe similar results.

Related Work

Weight Normalization Family: Weight Normalization
(WN) (Salimans and Kingma 2016) takes the first attempt to
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Figure 6: Top-1 Accuracy curves via single 224× crop on
the ImageNet training and validation set with different ini-
tialization scales for training with AWS. AWS is much more
robust to various initialization, compared with fixed weight
decay in Figure 5.

reparameterize weights by the separation of direction W
||W ||

and length g:

W ′ = g
W

||W || . (23)

The normalization operation participates in the gradient
flow, resulting in accelerated convergence of stochastic gra-
dient descent optimization. WN shows certain advantages
in some tasks of supervised image recognition, generative
modelling, and deep reinforcement learning. However, (Git-
man and Ginsburg 2017) points out that in the large-scale
ImageNet dataset, the final test accuracy of WN is signif-
icantly lower (∼ 6%) than that of BN (Ioffe and Szegedy
2015). Later, Centered Weight Normalization (CWN) is pro-
posed to further improve the conditioning and accelerate the
convergence of training deep networks. The central idea of
CWN is an additional centering operation based on WN:

W ′ = g
W −W

||W −W || . (24)

Recently, in order to alleviate the problem of degraded per-
formance of GN (Wu and He 2018), Weight Standardization
(WS) (Qiao et al. 2019) is proposed, which is very close to
CWN but with the learning length g removed:

W ′ =
W −W√
||W−W ||2

n

, (25)

WS is recommended to cooperate with feature normaliza-
tion methods (such as GN and BN), which leads to further
enhanced performance in large-scale tasks and can signif-
icantly accelerate the convergence. Introducing WS on the
basis of GN or BN can consistently bring gains to multi-
ple downstream visual tasks. In this paper, we mainly focus
on the weight normalization family and conduct a series of
analyses on their properties.
Weight Decay: Weight Decay (WD) can be traced back to
(Krogh and Hertz 1992), which is defined as multiplying
each weight in the gradient descent at each epoch by a factor

λ(0 < λ < 1). It is known to be beneficial for the general-
ization of neural networks. In the Stochastic Gradient De-
scent (SGD) setting, WD is widely interpreted as a form of
L2 regularization because it can be derived from the gradient
of the L2 norm of the weights (Loshchilov and Hutter 2019).
Recently, (Zhang et al. 2018) identify three distinct mecha-
nisms by which weight decay improves generalization: in-
creasing the effective learning rate for BN, reducing the Ja-
cobian norm, and reducing the effective damping parame-
ter. Similarly, a series of recent work (Van Laarhoven 2017;
Hoffer et al. 2018) also demonstrates that when using BN,
weight decay improves optimization only by fixing the norm
to a small range of values, leading to a more stable step size
for the weight direction. Although related, these works differ
from our work in at least four aspects: 1) they mainly focus
on the discussion between the feature normalization (espe-
cially BN) and weight decay, whilst we are the first to give
a thorough analysis on the disharmony between weight nor-
malization family and weight decay; 2) they solely demon-
strate empirical results that the accuracy gained by using
WD can be achieved without it, but only by adjusting the
learning rate. However, we give theoretical proof and derive
how to linearly scale the learning rate at each step, which
is also purely determined by the training hyper-parameters
λ and η; 3) they fail to discover the problems by introduc-
ing WD into the loss objective with normalized weights,
which is heavily revealed and discussed in this article; 4) al-
though WD has several potential problems with normaliza-
tion methods, they have not proposed a solution to replace
WD. In contrast, our proposed AWS can guarantee training
stability and become robust to initialization.

Conclusion

In this paper, we first review the disharmony between weight
normalization family and weight decay, i.e., the counter-
intuitive under-fitting risk caused by weight decay on the
normalized weights. Then, we theoretically answer this
question by two evidences: 1) weight decay doesnot change
the optimization goal and 2) it ensures the appropriate ef-
fective learning rate for better convergence. After that, we
expose the detailed problems via introducing fixed weight
decay term in the loss objective, including missing of global
minimum, training instability and initialization sensitivity.
Finally, to solve these potential problems, we propose Adap-
tive Weight Shrink (AWS) that dynamicly shrinks the weight
based on their variable magnitude, which significantly im-
proves the training stability and robustness to initialization
whilst maintaining competitive performance.
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