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Abstract

Subsampled Newton methods approximate Hessian matrices
through subsampling techniques to alleviate the per-iteration
cost. Previous results require Ω(d) samples to approximate
Hessians, where d is the dimension of data points, making
it less practical for high-dimensional data. The situation is
deteriorated when d is comparably as large as the number
of data points n, which requires to take the whole dataset
into account, making subsampling not useful. This paper
theoretically justifies the effectiveness of subsampled New-
ton methods on strongly convex empirical risk minimization
with high dimensional data. Specifically, we provably require
only Θ̃(dγeff) samples for approximating the Hessian matrices,
where dγeff is the γ-ridge leverage and can be much smaller
than d as long as nγ � 1. Our theories work for three types
of Newton methods: subsampled Netwon, distributed New-
ton, and proximal Newton.

Introduction
Let x1, ...,xn ∈ R

d be the feature vectors, li(·) is a convex,
smooth, and twice differentiable loss function; the response
yi is captured by li. In this paper, we study the following
optimization problem:

min
w∈Rd

G(w) :=
1

n

n∑
j=1

lj(x
T
j w) +

γ

2
‖w‖22 + r(w) (1)

where r(·) is a non-smooth convex function. We first con-
sider the simple case where r(·) is zero, i.e.,

min
w∈Rd

F (w) :=
1

n

n∑
j=1

lj(x
T
j w) +

γ

2
‖w‖22. (2)

Problem (2) arises frequently in machining learning (Shalev
Shwartz and Ben David 2014). For example, in logistic re-
gression, lj(xT

j w) = log(1+ exp(−yjx
T
j w)), and in linear

regression, lj(xT
j w) = 1

2 (x
T
j w−yj)

2. Then we consider the
more general case where r is non-zero, e.g., LASSO (Tibshi-
rani 1996) and elastic net (Zou and Hastie 2005).

To solve (2), many first order methods have been pro-
posed. First-order methods solely exploit information in
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the objective function and its gradient. Accelerated gradi-
ent descent (Golub and Van Loan 2012; Nesterov 2013;
Bubeck 2014), stochastic gradient descent (Robbins and
Monro 1985), and their variants (Lin, Mairal, and Harchaoui
2015; Johnson and Zhang 2013; Schmidt, LeRoux, and Bach
2017) are the most popular approaches in practice due to
their simplicity and low per-iteration time complexity. As
pointed out by (Xu, Roosta Khorasan, and Mahoney 2017),
the downsides of first-order methods are the slow conver-
gence to high-precision and the sensitivity to condition num-
ber and hyper-parameters.

Second-order methods use not only the gradient but also
information in the Hessian matrix in their update. In particu-
lar, the Newton’s method, a canonical second-order method,
has the following update rule:

wt+1 = wt − αtH
−1
t gt, (3)

where the gradient gt = ∇F (wt) is the first derivative of
the objective function at wt, the Hessian Ht = ∇2F (wt)
is the second derivative at wt, and αt is the step size and
can be safely set as one under certain conditions. In compar-
ison to the first-order methods, Newton’s method requires
fewer iterations, is more robust to hyper-parameter settings,
and is guaranteed super-linear local convergence to high-
precision. However, Newton’s method is slow in practice,
as in each iteration many Hessian-vector products are re-
quired to solve the inverse problem Htp = gt. Quasi-
Newton methods use information from the history of updates
to construct Hessian (Dennis and Moré 1977). Well-known
works include Broyden-Fletcher-Goldfarb-Shanno (BFGS)
(Wright and Nocedal 1999) and its limited memory version
(L-BFGS) (Liu and Nocedal 1989), but their convergence
rates are not comparable to Newton’s method.

Recent works proposed the Sub-Sampled Newton (SSN)
methods for reducing the per-iteration complexity of the
Newton’s method (Byrd et al. 2011; Pilanci and Wain-
wright 2015; Roosta-Khorasani and Mahoney 2016; Pi-
lanci and Wainwright 2017; Xu, Roosta Khorasan, and Ma-
honey 2017; Berahas, Bollapragada, and Nocedal 2017;
Ye, Luo, and Zhang 2017). For the particular problem (2),
the Hessian matrix can be written in the form

Ht =
1

n
AT

t At + γId, (4)
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for some n× d matrix At whose i-th row is a scaling of xi.
The basic idea of SSN is to sample and scale s (s � n) rows
of A to form Ãt ∈ R

s×d and approximate Ht by

H̃t =
1

s
ÃT

t Ãt + γId,

The quality of Hessian approximation is guaranteed by ran-
dom matrix theories (Tropp 2015; Woodruff 2014), based
on which the convergence rate of SSN is established, e.g.,
(Pilanci and Wainwright 2017; Roosta-Khorasani and Ma-
honey 2016; Xu et al. 2016).

As the second-order methods perform heavy computa-
tion in each iteration and converge in a small number of
iterations, they have been adapted to solve distributed ma-
chine learning aiming at reducing the communication cost
(Shamir, Srebro, and Zhang 2014; Mahajan et al. 2015;
Zhang and Lin 2015; Reddi et al. 2016; Wang et al. 2018).
In particular, the Globally Improved Approximate NewTon
Method (GIANT) (Wang et al. 2018) is based on the same
idea as SSN and has fast convergence rate.

As well as Newton’s method, SSN is not directly ap-
plicable to problem (1) because the objective function is
non-smooth. Following the proximal-Newton method (Lee,
Sun, and Saunders 2014), SSN has been adapted to solve
convex optimization with non-smooth regularization (Liu et
al. 2017). SSN has also been applied to optimize noncon-
vex problem (Xu, Roosta Khorasan, and Mahoney 2017;
Tripuraneni et al. 2018).

Recall that n is the total number of samples, d is the num-
ber of features, and s is the size of the randomly sampled
subset. (Suppose s � n; otherwise, the subsampling would
not speed up computation.) The existing theories of SSN
require s to be at least Ω(d). For the big-data setting, i.e.,
d � n, the existing theories nicely guarantee the conver-
gence of SSN.

However, high-dimensional data is not uncommon at all
in machine learning; d can be comparable to or even greater
than n. Thus requiring both s � n and s = Ω(d) seriously
limits the application of SSN. We considers the question:

Do SSN and its variants work for (1) when s < d?
The empirical studies in (Xu et al. 2016; Xu, Roosta Kho-
rasan, and Mahoney 2017; Wang et al. 2018) indicate that
yes, SSN and its extensions have fast convergence even if
s is substantially smaller than d. However, their empirical
observations have not been verified by theory.

Our contributions

This work gives a definitive answer to the question (for a
class of strongly convex optimization problems). We show
it suffices to use s = Θ̃(dγeff) uniformly samples to approx-
imate the Hessian, where γ is the regularization parameter,
dγeff (≤ d) is the γ-effective-dimension of the d× d Hessian
matrix, and Θ̃ hides the constant and logarithmic factors. If
nγ is larger than most of the d eigenvalues of the Hessian,
then dγeff is tremendously smaller than d (Cohen, Musco, and
Musco 2015).

Our theory is applicable to three SSN methods: standard
SSN, distributed Newton, and sub-sampled proximal New-
ton.

• We study the convex and smooth problem (2). we show
the convergence of the standard SSN with the effective-
dimension dependence and improves (Xu et al. 2016).

• For the problem (2), we extend the result to the distributed
computing setting and improves the bound of GIANT
(Wang et al. 2018).

• We study a convex but nonsmooth problem (1) and ana-
lyze the combination of SSN and proximal-Newton.

We additionally analyze SSN methods with the subproblems
inexactly solved. The proofs of the main theorems are in the
appendix.

Admittedly, this work has two limitations. First, this
work is applicable to only strongly convex problems; we
do not have theories for nonconvex problems.1 Second, for
non-quadratic objectives, we do not have global conver-
gence bound. (We do have global convergence if the loss
is quadratic.) They will be studied in our future work.

Notation and Preliminary
Basic matrix notation. Let In be the n× n indentity ma-
trix. Let ‖a‖2 denote the vector �2 norm and ‖A‖2 denote
the matrix spectral norm. Let

A = UΣVT =

d∑
i=1

σiuiv
T
i (5)

be its singular value decomposition (SVD), with σmax(A)
its largest singular value and σmin(A) the smallest (the d-
th largest). The moore-Penrose inverse of A is defined by
A† = VΣ−1UT . If a symmetric real matrix has no nega-
tive eigenvalues, it is called symmetric positive semidefinite
(SPSD). We denote A � B if B−A is SPSD. For the SPSD
matrice H, we define a norm by ‖x‖H =

√
xTHx and its

conditional number by κ(H) = σmax(H)
σmin(H) .

Ridge leverage scores. For A = [aT1 ; · · · ;aTn ] ∈ R
n×d,

its row γ-ridge leverage score (γ ≥ 0) is defined by

lγj = aT
j (A

TA+ nγId)
†aj =

d∑
k=1

σ2
k

σ2
k + nγ

u2
jk, (6)

for j ∈ [n] � {1, 2, ..., n}. Here σk and uk are defined
in (5). For γ = 0, lγj is the standard leverage score used
by (Drineas, Mahoney, and Muthukrishnan 2008; Mahoney
2011).

Effective dimension. The γ-effective dimension of A ∈
R

n×d is defined by

dγeff(A) =

n∑
j=1

lγj =

d∑
k=1

σ2
k

σ2
k + nγ

≤ d. (7)

If nγ is larger than most of the singular values of ATA,
then dγeff(A) is tremendously smaller than d (Alaoui and

1The Hessian matrix of a nonconvex problem is not SPSD. Thus
effective dimension does not generalize to nonconvex problems
straightforwardly.
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Mahoney 2015; Cohen, Musco, and Musco 2017). In fact,
to trade-off the bias and variance, the optimal setting of γ
makes nγ comparable to one of the top singular values of
ATA (Hsu, Kakade, and Zhang 2014; Wang, Gittens, and
Mahoney 2018), and thus dγeff(A) is small in practice.

Ridge coherence. The row γ-ridge coherence of A ∈
R

n×d is
μγ =

n

dγeff
max
i∈[n]

lγi , (8)

which measures the extent to which the information in the
rows concentrates. If A has most of its mass in a relatively
small number of rows, its γ-ridge coherence could be high.
This concept is necessary for matrix approximation via uni-
form sampling. It could be imagined that if most information
is in a few rows, which means high coherence, then uniform
sampling is likely to miss some of the important rows, lead-
ing to low approximation quality. When γ = 0, it coincides
with the standard row coherence

μ0 =
n

d
max
j∈[n]

l0j =
n

d
max
j∈[n]

aT
j (A

TA)†aj

which is widely used to analyze techniques such as com-
pressed sensing (Candes, Romberg, and Tao 2006), matrix
completion (Candès and Recht 2009), robust PCA (Candès
et al. 2011), and so on.

Gradient and Hessian. For the optimization problem (2),
the gradient of F (·) at wt is

gt =
1

n

n∑
j=1

l′j(x
T
j wt) · xj + γwt ∈ R

d.

The Hessian matrix at wt is

Ht =
1

n

n∑
j=1

l′′j (x
T
j wt) · xjx

T
j + γId ∈ R

d×d.

Let aj =
√

l
′′
j (x

T
i wt) · xj ∈ R

d and

At = [a1, · · · ,an]
T ∈ R

n×d. (9)

In this way, the Hessian matrix can be expressed as

Ht = 1
n
AT

t At + γId ∈ R
d×d. (10)

Sub-Sampled Newton (SSN)

In this section, we provide new and stronger convergence
guarantees for the SSN methods. For SSN with uniform
sampling, we require a subsample size of s = Θ̃(μγdγeff). For
SSN with ridge leverage score sampling,2 a smaller sample
size, s = Θ̃(dγeff), suffices. Because dγeff is typically much
smaller than d, our new results guarantee convergence when
s < d.

2We do not describe the ridge leverage score sampling in detail;
the readers can refer to (Alaoui and Mahoney 2015; Cohen, Musco,
and Musco 2015).

Algorithm description

We set an interger s (� n) and uniformly sample s items out
of [n] to form the subset S . In the t-th iteration, we form the
matrix Ãt ∈ R

s×d which contains the rows of At ∈ R
n×d

indexed by S and the full gradient gt. Then, the approxi-
mately Newton direction p̃t is computed by solving the lin-
ear system (

1
s ÃtÃ

T
t + γId

)
p = gt (11)

by either matrix inversion or the conjugate gradient. Finally,
w is updated by

wt+1 = wt − αtp̃t,

where αt can be set to one or found by line search. In the
rest of this section, we only consider αt = 1.

Most of the computation is performed in solving (11). The
only difference between the standard Newton and the SSN
methods is replacing At ∈ R

n×d by Ãt ∈ R
s×d. Mea-

sured by the per-iteration time complexity, SSN is n
s times

faster than Newton’s method. However, SSN requires more
iterations to converge. Nevertheless, to reach a fixed preci-
sion, the overall cost of SSN is much lower than Newton’s
method.

Our improved convergence bounds

Global convergence for quadratic loss. Let w� be the
unique (due to the strong convexity) optimal solution to
problem (1), wt be the intermediate output of the t-th it-
eration, and Δt = wt − w�. If the loss function of (1) is
quadratic, e.g., lj(xT

j w) = 1
2 (x

T
j w− yj)

2, the Hessian ma-
trix Ht =

1
nA

T
t At+γId does not change with the iteration,

so we use H and A instead. Theorem 1 guarantees the global
convergence of SSN.
Theorem 1 (Global Convergence). Let dγeff and μγ respec-
tively be the γ-ridge leverage score and γ-coherence of A,
and κ be the condition number of H. Let ε ∈ (0, 1

4 ) and
δ ∈ (0, 1) be any user-specified constants. Assume the loss
function of (1) is quadratic. For a sufficiently large sub-
sample size:

s = Θ
(

μγd
γ
eff

ε2
log

d
γ
eff
δ

)
,

with probability at least 1− δ,∥∥Δt

∥∥
2
≤ εt

√
κ
∥∥Δ0

∥∥
2
. (12)

Local convergence for non-quadratic loss. If the loss
function of (1) is non-quadratic, the Hessian matrix Ht

changes with iteration, and we can only guarantee fast local
convergence, as well as the prior works (Roosta-Khorasani
and Mahoney 2016; Xu et al. 2016). We make a standard as-
sumption on the Hessian matrix, which is required by all the
prior works on Newton-type methods.

Assumption 1. The Hessian matrix ∇2F (w) is L-Lipschitz
continuous, i.e., ‖∇2F (w)−∇2F (w′)‖2 ≤ L‖w −w′‖2,
for arbitrary w and w′.
Theorem 2 (Local Convergence). Let dγeff, μ

γ respectively
be the γ-ridge leverage score and γ-coherence of At. Let
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ε ∈ (0, 1
4 ) and δ ∈ (0, 1) be any user-specified constants.

Let Assumption 1 be satisfied. For a sufficiently large sub-
sample size:

s = Θ
(

μγd
γ
eff

ε2
log

d
γ
eff
δ

)
,

with probability at least 1− δ,∥∥Δt+1

∥∥
2
≤ ε

√
κt

∥∥Δt

∥∥
2
+ L

σmin(Ht)

∥∥Δt

∥∥2

2
, (13)

where κt =
σmax(Ht)
σmin(Ht)

is the condition number.

Theorem 3. If ridge leverage score sampling is used in-
stead, the sample complexity in Theorems 1 and 2 will be
improved to

s = Θ
(

d
γ
eff
ε2

log
d
γ
eff
δ

)
.

Remark 1. Ridge leverage score sampling eliminates the
dependence on the coherence, and the bound is stronger
than all the existing sample complexities for SSN. However,
ridge leverage score sampling is expensive and impractical
and thus has only theoretical interest.

Although Newton-type methods empirically demonstrate
fast global convergence (in terms of iterations) in almost all
the real-world applications, they do not have stronger global
convergence rate than first-order method. A weak global
convergence bound for SSN was established by (Roosta-
Khorasani and Mahoney 2016). We do not further discuss
the global convergence issue in this paper.

Comparison with prior work

For SSN with uniform sampling, the prior work (Roosta-
Khorasani and Mahoney 2016) showed that to obtain the
same convergence bounds as ours, (12) and (13), the sam-
ple complexity should be

s = Θ
(

nκt
ε2(1−εκt)2

maxi ‖ai‖22
‖A‖22

log d
δ

)
.

In comparison, to obtain the same convergence rate, our
sample complexity has a better dependence on the condition
number and the dimensionality.

For the row norm square sampling of (Xu et al. 2016),
which is slightly more expensive than uniform sampling, a
sample complexity of

s = Θ̃
(

1
ε2(1−εκt)2

σmax(A
T
t At)+nγ

σmax(A
T
t At)

d∑
i=1

σi(A
T
t At)

σmin(A
T
t At)+nγ

)

suffices for the same convergence rates as ours, (12) and
(13). Their bound may or may not guarantee convergence
for s < d. Even if nγ is larger than most of the singular
values of AT

t At, their required sample complexity can be
large.

For leverage score sampling, (Xu et al. 2016) showed that
to obtain the same convergence bounds as ours, (12) and
(13), the sample complexity should be

s = Θ
(

d
ε2

log d
δ

)
,

which depends on d (worse than ours dγeff) but does not de-
pend on coherence. We show that if the ridge leverage score
sampling is used, then s = Θ

(dγ
eff
ε2 log

dγ
eff
δ

)
samples suffices,

which is better than the above sample complexity. How-
ever, because approximately computing the (ridge) leverage
scores is expensive, neither the leverage score sampling used
by (Xu et al. 2016) nor the ridge leverage score sampling
used by us is a practical choice.

SSN was studied by very recent work, e.g., (Kasai and
Mishra 2018; Roosta et al. 2018; Tripuraneni et al. 2018;
Zhou, Xu, and Gu 2018). They are less relevant to this work,
so we do not discuss them in detail.

Distributed Newton-Type Method

Communication-efficient distributed optimization is an im-
portant research field, and second-order methods have
been developed to reduce the communication cost, e.g.,
DANE (Shamir, Srebro, and Zhang 2014), AIDE (Reddi et
al. 2016), DiSCO (Zhang and Lin 2015), and GIANT (Wang
et al. 2018). Among them, GIANT has the strongest conver-
gence bound for strongly convex and smooth problems. In
this section, we further improve the convergence analysis of
GIANT and show that GIANT does converge when the local
sample size, s = n

m , is smaller than the number of features,
d.

Motivation and algorithm description

Assume n samples are partition among m worker machines
uniformly at random. Each worker machine has its own pro-
cessors and memory, and the worker machines can commu-
nicate by message passing. The communication are costly
compared to local computation; when the number of worker
machines is large, communication is oftentimes the bottle-
neck of distributed computing. Thus there is a strong de-
sire to reduce the communication cost of distributed com-
puting. Our goal is to solve the optimization problem (2) in
a communication-efficient way.

The first-order methods are computation-efficient but not
communication-efficient. Let us take gradient descent for
example. In each iteration, with the iteration wt at hand,
the i-th worker machine uses its local data to compute a lo-
cal gradient gt,i; then the driver machine averages the local
gradient to form the exact gradient gt and update the model
by

wt+1 = wt − αtgt,

where αt is the step size. Although each iteration is com-
putationally efficient, the first-order methods (even with
acceleration) take many iterations to converge, especially
when the condition number is big. As each iteration requires
broadcasting wt and aggregating the local gradients to form
gt =

∑m
i=1 gt,i, the total number and complexity of com-

munication are big.
Many second-order methods have been developed

to improve the communication-efficiency, among which
the Globally Improved Approximate NewTon (GIANT)
method (Wang et al. 2018) has the strongest convergence
rates, provided that the objective is strongly convex and
smooth. Let s = n

m be the local sample size and At,i ∈
R

s×d be the i-th block of At ∈ R
n×d, which is previously

defined in (9). With the iteration wt at hand, the i-th worker
machine can use its local data samples to form the local Hes-
sian matrix

H̃t,i = 1
s
AT

t,iAt,i + γId
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and outputs the local Approximate NewTon (ANT) direction

p̃t,i = H̃−1
t,i gt. (14)

Finally, the driver machine averages the ANT directions to
get

p̃t =
1

m

m∑
i=1

p̃t,i

and perform the update

wt+1 = wt − αtp̃t,

where the step size αt can be set to one under certain condi-
tions; we only consider the αt = 1 case in this paper.

GIANT is much more communication-efficient than the
first-order methods. With αt fixed, each iteration of GIANT
has four rounds of communications: (1) broadcasting wt,
(2) aggregating the local gradients to form gt, (3) broadcast-
ing gt, and (4) aggregating the ANT directions to form p̃t.
Thus the per-iteration communication cost is just twice as
much as a first-order method. Wang et al. showed that GI-
ANT requires a much smaller number of iterations than the
accelerated gradient method which has the optimal iteration
complexity (without using second-order information).

Our improved convergence bounds

We analyze GIANT and improve the convergence analysis
of (Wang et al. 2018). Throughout this section, we assume
the n samples are partitioned to m worker machine uni-
formly at random.

Global convergence for quadratic loss. We let w� be the
unique optimal solution to problem (2) and Δt = wt −
w�. If the loss function of (2) is quadratic, e.g., li(xT

i w) =
1
2 (x

T
i w−yi)

2, the Hessian matrix Ht =
1
nA

T
t At+γId does

not change with the iteration, so we use H and A instead.
Theorem 4 guarantees the global convergence of GIANT.
Theorem 4 (Global Convergence). Let dγeff, μ

γ respectively
be the γ-ridge leverage score and γ-coherence of A, and κ
be the condition number of H. Let ε ∈ (0, 1

4 ) and δ ∈ (0, 1)
be any user-specified constants. Assume the loss function of
(1) is quadratic. For a sufficiently large sub-sample size:

s = Θ
(

μγd
γ
eff

ε
log

md
γ
eff

δ

)
,

with probability at least 1− δ,∥∥Δt

∥∥
2
≤ εt

√
κ
∥∥Δ0

∥∥
2
. (15)

Local convergence for non-quadratic loss. If the loss
function of (1) is non-quadratic, we can only guarantee fast
local convergence under Assumption 1, as well as the prior
works (Wang et al. 2018).
Theorem 5 (Local Convergence). Let dγeff, μ

γ respectively
be the γ-ridge leverage score and γ-coherence of At. Let
ε ∈ (0, 1

4 ) and δ ∈ (0, 1) be any user-specified constants.
Let Assumption 1 be satisfied. For a sufficiently large sub-
sample size:

s = Θ
(

μγd
γ
eff

ε
log

md
γ
eff

δ

)
,

with probability at least 1− δ,∥∥Δt+1

∥∥
2
≤ ε

√
κt

∥∥Δt

∥∥
2
+ L

σmin(Ht)

∥∥Δt

∥∥2

2
, (16)

where κt =
σmax(Ht)
σmin(Ht)

is the condition number.

Remark 2. GIANT is a variant of SSN: SSN uses one of
{p̃t,i}mi=1 as the descending direction, whereas GIANT uses
the averages of the m directions. As a benefit of the averag-

ing, the sample complexity is improved from s = Θ̃
(μγdγ

eff

ε2

)
to s = Θ̃

(μγdγ
eff

ε

)
.

Comparison with prior work

To guarantee the same convergence bounds, (15) and
(16), Wang et al. require a sample complexity of s =

Θ(μ
0d
ε log d

δ ).
3 This requires require the local sample size

s = n
m be greater than d, even if the coherence μ0 is small.

As communication and synchronization costs grow with m,
the communication-efficient method, GIANT, is most useful
for the large m setting; in this case, the requirement n > md
is unlikely satisfied.

In contrast, our improved bounds do not require n > md.
As dγeff can be tremendously smaller than d, our requirement
can be satisfied even if m and d are both large. Our bounds
match the empirical observation of (Wang et al. 2018): GI-
ANT convergences rapidly even if md is larger than n.

The very recent work (Yuan and Li 2019) improves the
convergence rate of DANE (Shamir, Srebro, and Zhang
2014). In particular, they showed global convergence rate
for non-quadratic problem which matches accelerated gra-
dient descent. However, for quadratic loss, their global con-
vergence rate is worse than this work.

Sub-Sampled Proximal Newton (SSPN)
In previous sections, we analyze second-order methods for
the optimization problem (2) which has a smooth objective
function. In this section, we study the following problem
which can be non-smooth:

min
w∈Rd

1

n

n∑
j=1

lj(x
T
j w) +

γ

2
‖w‖22 + r(w),

where r is any convex function. The standard Newton’s
method does not apply because the second derivative of the
objective function does not exist. Proximal Newton (Lee,
Sun, and Saunders 2014), a second-order method, was devel-
oped to solve the problem, and later on, sub-sampling was
incorporated to speed up computation (Liu et al. 2017). We
further improve the bounds of Sub-Sampled Proximal New-
ton (SSPN).

Algorithm Description

Let F (w) = 1
n

∑n
j=1 lj(x

T
j w)+ γ

2 ‖w‖22 be the smooth part
of the objective function, and gt and Ht be its first and sec-
ond derivatives at wt. The proximal Newton method (Lee,

3The sample complexity in (Wang et al. 2018) is actually
slightly worse; but it is almost trivial to improve their result to what
we show here.
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Sun, and Saunders 2014) iteratively solves the problem:

pt = argmin
p

1
2

(
pTHtp− 2gT

t p+ gT
t H

−1
t gt

)
+ r(wt − p),

and then perform the update wt+1 = wt−pt. The righthand
side of the problem is a local quadratic approximation to
F (w) at wt. If r(·) = 0, then proximal Newton will be the
same as the standard Newton’s method.

The sub-sampled proximal Newton (SSPN) method uses
sub-sampling to approximate Ht; let the approximate Hes-
sian matrix be H̃t, as previously defined in (4). SSPN com-
putes the ascending direction by solving the local quadratic
approximation

p̃t = argmin
p

1
2

(
pT H̃tp− 2gT

t p+ gT
t H̃

−1
t gt

)
+ r(wt − p),

(17)
and then performs the update wt+1 = wt − p̃t.

Our improved convergence bounds

We show that SSPN has exactly the same iteration complex-
ity as SSN, for either quadratic or non-quadratic function
lj(·). Nevertheless, the overall time complexity of SSPN is
higher than SSN, as the subproblem (17) is expensive to
solve if r(·) is non-smooth.

Theorem 6. Theorems 1, 2, and 3 hold for SSPN.

Comparison with prior work

Liu et al. showed that when ‖Δt‖2 is small enough,
‖Δt+1‖2 will converge to zero linear-quadratically, similar
to our results. But their sample complexity is

s = Θ̃
(

d
ε2

)
.

This requires the sample size s greater than d. The �1
regularization, r(w) = λ‖w‖1, is often used for high-
dimensional data, the requirement that d < s � n violates
the motivation of �1 regularization.

Our improved bounds show that s = Θ̃(
dγ

effμ
γ

ε2 ) suffices

for uniform sampling and that s = Θ̃(
dγ

eff
ε2 ) suffices for ridge

leverage score sampling. Since dγeff can be tremendously
smaller than d when nγ 
 1, our bounds are useful for
high-dimensional data.

Inexactly Solving the Subproblems

Each iteration of SSNand GIANT involves solving a sub-
problem in the form(

1
s
ÃT

t Ãt + γId
)
p = gt.

Exactly solving this problem would perform the multiplica-
tion ÃT

t Ãt and inversion of the d× d approximate Hessian
matrix 1

s Ã
T
t Ãt + γId; the time complexity is O(sd2 + d3).

In practice, the linear system can be approximately solved
by the conjugate gradient (CG) method, each iteration of
which applies a vector to Ãt and ÃT

t ; the time complex-
ity is O(q · nnz(A)), where q is the number of CG iterations
and nnz is the number of nonzeros. The inexact solution is
particularly appealing if the data are sparse. In the following,

we analyze the effect of the inexact solution of the subprob-
lem.

Let κt be the condition number of H̃t. Standard conver-
gence bound of CG guarantees that by performing

q ≈
√
κt−1
2 log 8

ε20

CG iterations, the conditions (18) and (19) are satisfied, and
the inexact solution does not much affect the convergence of
SSN and GIANT.
Corollary 7 (SSN). Let p̃t and p̃′

t be respectively the exact
and an inexact solution to the quadratic problem H̃−1

t p =
gt. SSN updates w by wt+1 = wt − p̃′

t. If the condition∥∥H̃1/2
t (p̃t − p̃′

t)
∥∥
2
≤ ε0

2

∥∥H̃1/2
t p̃t

∥∥
2

(18)

is satisfied for some ε0 ∈ (0, 1), then Theorems 1 and 2, with
ε in (12) and (13) replaced by ε+ ε0, will continue holding.
Corollary 8 (GIANT). Let p̃t,i and p̃′

t,i be respectively
the exact and an inexact solution to the quadratic prob-
lem H̃−1

t,i p = gt. GIANT updates w by wt+1 = wt −
1
m

∑m
i=1 p̃

′
t,i. If the condition∥∥H̃1/2

t,i (p̃t,i − p̃′
t,i)

∥∥
2
≤ ε0

2

∥∥H̃1/2
t p̃t,i

∥∥
2

(19)

is satisfied for some ε0 ∈ (0, 1) and all i ∈ [m], then The-
orems 4 and 5, with ε in (15) and (16) replaced by ε + ε0,
will continue holding.

SSPN is designed for problems with non-smooth regular-
ization, in which case finding the exact solution may be in-
feasible, and the sub-problem can only be inexactly solved.
If the inexact solution satisfies the same condition as (18),
Corollary 9 will guarantee the convergence of SSPN.
Corollary 9 (SSPN). Let p̃t and p̃′

t be respectively the ex-
act and an inexact solution to the non-smooth problem (17).
SSPN updates w by wt+1 = wt− p̃′

t. If p̃′
t satisfies the con-

dition (18) for any ε0 ∈ (0, 1), then Theorem 6 still holds
for SSPN with ε replaced by ε+ ε0.

Conclusion
We studied the subsampled Newton (SSN) method and its
variants, GIANT and SSPN, and established stronger con-
vergence guarantees than the prior works. In particular, we
showed that a sample size of s = Θ̃(dγeff) suffices, where
γ is the �2 regularization parameter and dγeff is the effective
dimension. When nγ is larger than most of the eigenvalues
of the Hessian matrices, dγeff is much smaller than the di-
mension of data, d. Therefore, our work guarantees the con-
vergence of SSN, GIANT, and SSPN on high-dimensional
data where d is comparable to or even greater than n. In
contrast, all the prior works required a conservative sample
size s = Ω(d) to attain the same convergence rate as ours.
Because subsampling means that s is much smaller than n,
the prior works did not lend any guarantee to SSN on high-
dimensional data.

Admittedly, our theories are limited to strongly convex
problems. We established global convergence for quadratic
loss and local convergence for non-quadratic loss. How-
ever, we do not have global convergence guarantee for non-
quadratic loss. Nonconvex problems and global convergence
will be left as our future work.
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Sketch of Proof

Random Sampling for Matrix Approximation

Here, we give a short introduction to random sampling and
their theoretical properties. Given a matrix A ∈ R

n×d, row
selection constructs a smaller matrix C ∈ R

s×d (s < n) as
an approximation of A. The rows of C is constructed us-
ing a randomly sampled and carefully scaled subset of the
rows of A. Let p1, · · · , pn ∈ (0, 1) be the sampling prob-
abilities associated with the rows of A. The rows of C are
selected independently according to the sampling probabili-
ties {pj}nj=1:

P(cj = ak/
√
spk) = pk,

where cj and ak are the j-th row of C and k-th row of A. In
a matrix multiplication form, C can be formed as

C = STA,

where S ∈ R
s×d is called the sketching matrix. As a result

of row selection, there is only one non-zero entry in each
column of S, whose position and value correspond to the
sampled row of A.

Ridge leverage score sampling. It takes pj proportional
to the j-th ridge leverage score:

pj = lγj /

n∑
i=1

lγi , ∀ j ∈ [n] (20)

where lγi is the ridge leverage score of the i-th row of A.
Let U be its sketching matrix. Then the non-zero entry in
j-th column of U is

√
1

s·pk
if the j-th row of UTA is drawn

from the k-th row of A, where pk is defined as (20). If ridge
leverage score sampling is used to approximate the d × d
Hessian matrix, the approximate Hessian matrix turns to

H̃t = 1
n
AT

t UUTAt + γId. (21)

The sample complexity in Theorems 1 and 2 will be im-
proved to s = Θ

(dγ
eff
ε2 log

dγ
eff
δ

)
. Lemma 10 and 11 can be

similarly proved by following (Cohen, Musco, and Musco
2015)

Lemma 10 (Ridge Leverage Rampling). Let Ht and H̃t
be defined in (10) and (21). Denote dγeff = dγeff(At), μ

γ =

μγ(At) for simplicity. Given arbitrary error tolerance ε ∈
(0, 1) and failure probability δ ∈ (0, 1), for

s = Θ

(
d
γ
eff
ε2

log
d
γ
eff
δ

)
,

the spectral approximation holds with probability at least
1− δ:

(1− ε)Ht 	 H̃t 	 (1 + ε)Ht.

Uniform sampling. Uniform sampling simply sets all the
sampling probabilities equal, i.e., p1 = · · · = pn = 1

n .
Its corresponding sketching matrix S is often called uniform
sampling matrix. The non-zero entry in each column of S is
the same, i.e.,

√
n
s . If s is sufficiently large,

H̃t = 1
n
AT

t SS
TAt + γId (22)

is a good approximation to Ht.

Lemma 11 (Uniform Sampling). Let Ht and H̃t be de-
fined as that in (10) and (22). Denote dγeff = dγeff(At), μ

γ =

μγ(At) for simplicity. Given arbitrary error tolerance ε ∈
(0, 1) and failure probability δ ∈ (0, 1), for

s = Θ

(
μγd

γ
eff

ε2
log

d
γ
eff
δ

)

the spectral approximation holds with probability at least
1− δ:

(1− ε)Ht 	 H̃t 	 (1 + ε)Ht.

Analyzing SSN, GIANT, and SSPN

To show the convergence of SSN and GIANT, we define the
quadratic auxiliary function

φt(p) � pT (
1

n
AT

t At + γId)︸ ︷︷ ︸
�Ht

p− 2pTgt.

If H̃t well approximates Ht, then measured by φt, the ap-
proximate Newton direction p̃ is close to the exact Newton
direction p. Then, the convergence of SSN and GIANT fol-
lows from that φt(p̃) ≈ φt(p). The convergence analysis of
SSPN is similar but more involved.
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