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Abstract

Feature selection is an important tool to deal with high di-
mensional data. In unsupervised case, many popular algo-
rithms aim at maintaining the structure of the original data.
In this paper, we propose a simple and effective feature se-
lection algorithm to enhance sample similarity preservation
through a new perspective, topology preservation, which is
represented by persistent diagrams from the context of com-
putational topology. This method is designed upon a unified
feature selection framework called IVFS, which is inspired by
random subset method. The scheme is flexible and can han-
dle cases where the problem is analytically intractable. The
proposed algorithm is able to well preserve the pairwise dis-
tances, as well as topological patterns, of the full data. We
demonstrate that our algorithm can provide satisfactory per-
formance under a sharp sub-sampling rate, which supports ef-
ficient implementation of our proposed method to large scale
datasets. Extensive experiments validate the effectiveness of
the proposed feature selection scheme.

Introduction

High dimensional data becomes more and more common in
machine learning applications, e.g., computer vision, natu-
ral language processing and gene selection. In many cases,
the curse of dimensionality leads to costly computation and
a less comprehensible model. Therefore, feature selection is
one of the standard data preprocessing methods. The most
widely used approach is filter method, where each feature
is individually assigned a score according to some statisti-
cal measure, and those with highest scores are selected. Su-
pervised filter methods include t-test (Guyon and Elisseeff
2003), mutual information (Peng, Long, and Ding 2005),
correlation (Yu and Liu 2003), etc. Meanwhile, there are
many unsupervised filter algorithms based on similarity and
manifold preservation. LaplacianScore algorithm (He, Cai,
and Niyogi 2006) are proposed to choose features according
to a nearest neighbor graph. Features that are smoothest on
the graph are regarded as most capable to represent the local
manifold structure of full data. Spectral Feature Selection
(SPEC) (Zhao and Liu 2007) aims at separating the samples
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into clusters using the spectrum of pairwise similarity graph.
Multi-cluster Feature Selection (MCFS) (Cai, Zhang, and
He 2010) considers combining spectral embedding and l1-
regularized regression by assuming a multi-clustered struc-
ture of the data.

Although filter methods are fast to implement, the per-
formance can sometimes be unsatisfactory. In recent years,
many learning-based embedded feature selection methods
are proposed. The idea of most embedded approaches is to
optimize a selection (or weight) matrix with some sparsity
regularization. The objective function can be designed to
achieve similarity preservation. For instance, Similarity Pre-
serving Feature Selection (SPFS) (Zhao et al. 2013) learns a
linear transformation W by minimizing

min
W

‖XW (XW )T − S‖2F + λ‖W‖2,1, (1)

where X is the data, S is the sample similarity matrix and
W is weight matrix. Features with largest row l2 norm of W
are selected. SPFS mainly considerss preserving similarity
globally. An improved version of SPFS is called Global and
Local Structure Preservation Feature Selection (GLSPFS)
(Liu et al. 2014), whose objective modifies (1) as

min
W

‖XW (XW )T − S‖2F + μ · tr(WTXTLXW ) + λ‖W‖2,1,
where L is a locality representation graph. This way, local
structure is also considered. Other unsupervised embedded
algorithms include NDFS (Li et al. 2012), RUFS (Qian and
Zhai 2013), FSASL (Du and Shen 2015), SOGFS (Nie, Zhu,
and Li 2016), AHLFS (Zhu et al. 2017), UPFS (Li et al.
2018b), DGUFS (Guo and Zhu 2018), etc.

Typically, existing similarity preserving feature selection
schemes face two major challenges:
• High dimensionality. As will be shown in our experi-

ments, many methods actually perform not as good in
high dimensions in terms of distance preserving, possi-
bly due to lack of consideration of feature interactions, or
huge number of parameters to optimize. This may result
in non-robust or unstable solutions.

• Large sample size. In most of the embedded methods in-
troduced above (GLSPFS, SOGFS, etc.), the algorithm in-
volves (repeatedly) matrix decomposition and/or inverse,
which runs very slowly with large sample size.
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Topology preserving feature selection

Many embedded methods are associated with clustering or
nearest neighbor graph embedding, which in some sense
address more on the local manifold structure. In this pa-
per, we look at similarity preservation problem from a new
view: topology. In recent years, topological data analysis
(TDA) has been shown as a powerful tool for various learn-
ing tasks (Hofer et al. 2017). The merit of TDA comes from
its capability to encode all the topological information of a
point set X by persistent diagram, denoted as D(X) herein.
In Euclidean space, D(X) is tightly related to pairwise sam-
ple distances. This motivates us to consider similarity preser-
vation from a TDA perspective. If we hope to select covari-
ates XF to preserve the topological information of the orig-
inal data, the persistent diagram D(XF ) generated by XF
should be close to the original diagram D(X). More pre-
cisely, TDA offers a new space (of persistent diagrams) in
which we compare and preserve the distances. We refer this
property as “topology preservation”, which is very impor-
tant especially when applying TDA after feature selection.
In existing literature, however, topology preservation has not
been considered yet.

Our contributions

We develop a simple but powerful filter based feature selec-
tion method that achieves topology preservation:

• We propose a unified scheme called Inclusion Value Fea-
ture Selection (IVFS) that extends the idea of random sub-
set evaluation to unsupervised case. It generalizes to sev-
eral well-known supervised methods, i.e., random forest
(Breiman 2001) and random KNN (Li, Harner, and Ad-
jeroh 2011; Räsänen and Pohjalainen 2013).

• We use IVFS to achieve topology (persistent diagram)
preserving feature selection, based on theories from TDA.
By reinforcing the scalablity, this algorithm not only per-
form very well in high dimensions, but also run efficiently
with large sample size.

• We conduct extensive experiments on high dimensional
datasets to justify the effectiveness of IVFS. The results
suggest that IVFS is capable of preserving the exact topo-
logical signatures (as well as the pairwise distances), mak-
ing it a suitable tool for TDA and many other applications.

IVFS: A Unified Feature Selection Scheme

First, we provide a unified framework based on random sub-
set evaluation, which is flexible, universally applicable, and
generalizes to several existing algorithms. In this section, we
provide a detailed discussion on this general scheme.

Problem formulation and notations

The data matrix is denoted by X ∈ �n×d with n samples
and d covariates.1 Our goal is to find the best d0 < d features
according to some criteria, associated with a loss function
L. Denote I = {1, 2, ..., d} the indices of all features, and

1For the ease of presentation, we also use X to represent data
(X,Y ) if the problem is supervised, where Y is the label vector.

Md̃ = {σ ∈ I d̃ : σi �= σj for ∀i �= j} the set of all size-d̃
subsets of I. The goal is to minimize the objective function

min
F∈Md0

LF � min
F∈Md0

L(XF ). (2)

Our algorithm relies on repeatedly sampling random sub-
set F̃ of arbitrarily d̃ features (not necessarily equal to d0),
equipped with a subset score function s(F̃ ;X) : �d̃ �→ �

d̃

which assigns score to each selected feature by evaluating
the chosen random subset. In principle, a high score should
correspond to a small loss.

IVFS: a filter method for feature selection

The individual feature score, which serves as the filter of the
unified selection scheme, essentially depends on the subset
score function s(·) defined above.

Definition 1. Suppose 1 ≤ d̃ ≤ d. The Inclusion Value of
feature f ∈ I at dimension d̃ associated with s(·) is

IVd̃(f) =

∑
σ∈Mf

d̃

sσ(f)
(d−1
d̃−1

) ,

where Mf

d̃
= {σ ∈ Md̃ : f ∈ σ} is the collection of

subsets with size d̃ that contains feature f , and sσ(f) is the
score assigned to feature f by computing s(σ;X).

Intuitively, the inclusion value illustrates how much gain
in score a feature f could provide on average, when it is
included in the feature subset of size d̃. Our feature selec-
tion scheme is constructed based on inclusion value esti-
mation, as summarized in Algorithm 1. We call it Inclu-
sion Value Feature Selection (IVFS). Roughly speaking,
the algorithm selects features with highest estimated inclu-
sion value, which is derived via k random sub-samplings of
both features and observations. One benefit is that IVFS con-
siders complicated feature interactions by evaluating subset
of features together in each iteration.

Special cases. The IVFS scheme includes several popular
methods as special cases based on different score function
(i.e., the inclusion value).

• Permutation importance. For each feature in a random
subset F , if we set sF (f) as the difference between
the performance (e.g., classification accuracy, regression
mean squared error) using F and the performance when
feature vector f is randomly permuted, then IVFS be-
comes the feature selection algorithm via supervised ran-
dom forest permutation importance (Strobl et al. 2008).

• RKNN. When we set sF (f) = −LF , ∀f ∈ F , where L
is the KNN classification error rate, IVFS becomes super-
vised RKNN (Li, Harner, and Adjeroh 2011).

Note that for random forest, the score function sF (f) is dif-
ferent for each feature f ∈ F , while in RKNN, all the fea-
tures in a random subset share a same score.
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Algorithm 1: IVFS scheme for feature selection

Input: Data matrix X ∈ �n×d; Number of subsets k;
Number of features used for each subset d̃;
Number of samples for each subset ñ;
Target dimension d0

Initialize: Counters for each feature ci = 0, i = 1, ..., d;
Cumulative score for each feature Si = 0

1 for t = 1 to k do

2 Randomly sample a size d̃ feature set F ∈ Md̃

3 Randomly sub-sample Xsub
F ∈ �ñ×d̃, with ñ

observations and features in F
4 for f in F do
5 Update counter cf = cf + 1
6 Update score Sf = Sf + sF (f)

7 Set Si =
Si

ci
for i = 1, 2, ..., d

Output: Select top d0 features with highest score

Analysis of IVFS

Theorem 1 (Asymptotic k). Suppose k → +∞, ñ = n,
sσ(f) has finite variance ∀f ∈ I, and the IVd0 for different
features are all distinct, then IVFS algorithm will select top
d0 features with highest IVd̃ with probability 1.

Proof. The algorithm is equivalent to finding the top d0 fea-
tures with the largest

ˆIV d̃(f) =

∑
σ∈Ĉf

d̃

sσ(f)

|Ĉf

d̃
| ,

where Ĉf

d̃
= {σ ∈ Ĉd̃ : f ∈ σ}, and Ĉd̃ is the collection of

all k chosen random subsets. By central limit theorem, when
k → ∞ we have for some τ and ∀f ,

ˆIV d̃(f)− IVd̃(f)√
k

→ N(0, τ2).

Let δ be the difference between the d0-highest IVd̃ and the
(d0 + 1) highest, then for ∀f , for any ε > 0 there exists
a K such that when k > K, the probability of | ˆIV d̃(f) −
IVd̃(f)| > δ/2 is less than ε. Taking ε → 0 and k → ∞, the
theorem is proved.

In the following, we look at the case where sF (f) are
equal for every f ∈ F (e.g., RKNN). As a result, we may
re-write the score function as s(F) evaluated on subsets. The
next assumption on monotonicity appears commonly in fea-
ture selection literature, similar in spirit to (Narendra and
Fukunaga 1977; Foroutan and Sklansky 1987), etc.

Assumption 1 (Monotonicity). There exists a d̃-
dimensional set Ω ∈ Md̃ such that ∀F ,F ′ ∈ Md̃, if
(F ∩ Ω) ⊆ (F ′ ∩ Ω), then s(F) ≤ s(F ′).

Basically, this assumption says that there is a subset Ω of
“dominant features”: For any two subsets F , F ′ with same
size, if (F∩Ω) is contained in (F ′∩Ω), then the score of F ′
is no smaller than that of F . It turns out that this dominant

set is indeed optimal, and it is also the solution that IVFS
converges to in large k limit.
Theorem 2 (Optimality). Under Assumption 1, we have

Ω = arg max
F∈Md̃

s(F),

and Ω is the set of d̃ features with the highest IVd̃.

Proof. It suffices to show that for ∀f ∈ Ω, g �∈ Ω, IVd̃(f) ≥
IVd̃(g). We have by assumption

IVd̃(f)− IVd̃(g)

=
1

d̃

( ∑

F∈Md̃−1

f /∈F

s(F ∪ {f})−
∑

F∈Md̃−1

g/∈F

s(F ∪ {g}))

=
1

d̃

∑

F∈Md̃−1

f /∈F,g /∈F

(
s(F ∪ {f})− s(F ∪ {g})) ≥ 0,

which proves the second argument. Since for ∀F ∈ Md̃,
(F ∩Ω) ⊆ (Ω∩Ω), we have Ω = argmaxF∈Md̃

s(F).

Together with Theorem 1, we know that if we set d̃ = d0,
under Assumption 1, IVFS would converge to the minimal
score feature set. For instance, in the case of RKNN, the
selected features would minimize the KNN error rate.

Choosing d̃. In practice (when k � (
d
d0

)
), we are actually

drawing random samples from the population, and use fea-
ture scores as estimation of true inclusion values. An inter-
esting fact is that, IVFS actually uses ˆIV d̃ to estimate IVd0 .
This makes sense since 1) we expect features with high IVd̃
to have high IVd0 as well, and 2) we care more about the
rank of feature scores rather than the exact values. Hence,
setting d̃ > d0 may not defect the model performance.

Choosing ñ. We also have a parameter ñ which controls
the number of random observations for each subset. A rel-
atively small ñ is extremely helpful to accelerate the algo-
rithm for scalable implementation on large datasets. In exist-
ing methods, however, sub-sampling is not commonly used.

• In the original proposal of random forest (Breiman 2001),
the authors suggested to set ñ = n with replacement.
Later on, a popular variant (Geurts, Ernst, and Wehenkel
2006) chose to disable sub-sampling procedure. In gen-
eral, in all variants of random forest, sub-sampling is not
recommended (Tang, Garreau, and von Luxburg 2018).

• In RKNN (Li, Harner, and Adjeroh 2011), the author did
not consider sub-sampling training points, either.

For supervised learning, the above phenomenon seems rea-
sonable, since sub-sampling the training data may harm the
learning capacity of each random subset, especially with
high dimensions. However, as shall be seen from next sec-
tions, when applying IVFS for the purpose of unsupervised
topology preservation, we can choose a very small ñ with-
out loosing much capacity. This makes IVFS a strong candi-
date for dealing with large scale datasets. In general, a good
choice of ñ depends on the specific problem.
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Advantages of IVFS. On a high level, IVFS has the fol-
lowing nice features:
• Intuitive formulation, no complicated computation.
• IVFS can well handle the problems where the optimiza-

tion problem is very hard to solve (or intractable), as long
as the loss function can be computed efficiently.

• IVFS can be applied to large datasets efficiently by using
a small ñ, which is feasible for some applications.

In the following sections, we design a topology preserving
feature selection algorithm by combining IVFS framework
and ideas from topological data analysis (TDA).

Preliminaries on Computational Topology

In this section, we provide some intuition to several impor-
tant concepts in computational topology. Interested readers
are referred to (Edelsbrunner and Harer 2010) for more de-
tailed introduction. A p-dimensional simplex is defined as

γp = {θ0x0 + ...+ θpxp|θi > 0 ∀i,
p∑

i=0

θi = 1},

where x0, ..., xp are affinely independent points in �p. For
instance, a 1-simplex is a line segment, and a 2-simplex is a
triangle, etc. A simplicial complex C is then formed by glu-
ing simplices in different dimensions together. In Euclidean
space, the most commonly used complex is the Vietoris-Rips
complex, with an example given in Figure 1. It is formed by
connecting points with distance smaller than a given thresh-
old α. If we gradually increase α from 0 to ∞, the number
of edges will increase from 0 to n2 eventually. The distance
associated with each edge, is called the filtration for Rips
complex. As α increases, topological features with different
dimension (e.g., 0 for connected components, 1 for loops, 2
for voids, etc.) will appear and disappear. We call the pair of
birth and death time (the α value) of a p-dimensional topo-
logical feature as a p-dimensional persistent barcode. The
p-dimensional persistent diagram is a multiset of all these
barcodes. An example persistent diagram is plotted in Fig-
ure 1 right panel. Note that we can always normalize the
filtration function to be bounded in [0, 1]. Often, barcodes
with length less than a small number ε are regarded as noise
and eliminated from the diagram. In many applications, use-
ful features are then retrieved from persistent diagrams (e.g.,
persistent image (Adams et al. 2017) and persistent land-
scape (Bubenik 2015)) as inputs fed into learning machines.

Topology Preservation via IVFS

In most applications of TDA, the first step is to generate
a persistent diagram summarizing the topological patterns.
When feature selection is adopted in TDA, the persistent di-
agram should be accurately preserved. In this section, we
propose a variant under IVFS scheme that achieves this goal.

Distance measure

In our study, we focus on Rips complex which is widely
used for real-valued data. The filtration of Rips complex is
based on distances between data points (cf. Figure 1). In this
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Figure 1: Left panel: an example of Rips complex. Points
that are close are connected. Dots, lines and triangles forms
0, 1 and 2-dimensional complex respectively. Right panel:
an example of persistent diagram. Each red point represents
a (birth, death) time of a topological feature. The green line
is a threshold: only barcodes that are stable (points above the
green line) are included in the final barcode set.

paper, we will mainly focus on Euclidean distance. Consider
a distance matrix (Dij), with the (i, j)-th entry defined as
Dij = ‖xi − xj‖2, where xi and xj are two sample points,
and ‖·‖2 is the l2 norm for vectors. We divide D by its largest
entry to normalize all distances to [0, 1]. Other similarities
such as cosine and generalized min-max (GMM) (Li 2017;
Li and Zhang 2017) can also be adopted.

Distances between persistent diagrams

Recall that our objective involves minimizing the difference
between persistent diagrams. The following two distances
measures between diagrams are widely used in TDA.
Definition 2. For two persistent diagrams Ψ and Γ, define
Wasserstein distance (wq

p) and Bottleneck distance (w∞)

wq
p(Ψ,Γ) = inf

φ
(
∑

x∈Ψ

‖x− φ(x)‖pq)
1
p ,

w∞(Ψ,Γ) = inf
φ

sup
x∈Ψ

‖φ(x)‖∞,

where φ is taken over all bijections Ψ → Γ and p, q ∈ N.

Objective function

Now we are ready to formally state our objective function.
Recall the notations I = {1, 2, ..., d}, and Md̃ = {σ ∈
I d̃ : σi �= σj for ∀i �= j}. To achieve topology preserving
feature selection, we minimize following loss function,

min
F∈Md0

w∗(D(X),D(XF )), (3)

where w∗ denotes Wasserstein or bottleneck distance. This
way, we find the subset that best preserves the topological
signatures of original data. However, the mapping between
feature space and persistent diagram is so sophisticated that
analytical approach to (3) is hard to derive. This is exactly
the circumstance where IVFS is particularly effective.

Note that the computational cost to generate persistent
diagram is non-negligible even for data of moderate size.
Hence, directly applying IVFS with objective loss (3) would
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be extremely slow. To this end, we leverage from the stabil-
ity property of persistent diagrams to propose an alternative
solution. We re-state the theorems as below.
Theorem 3. (Chazal, De Silva, and Oudot 2014) Suppose
X is the point set, f and f ′ are two Lipschitz functions. Let
D(X, f) and D(X, f ′) denote the persistent diagram built
upon X using filtration function f and f ′, respectively. Un-
der some technical conditions, the bottleneck and Wasser-
stein distances are bounded by

w∞(D(X, f),D(X, f ′)) ≤ C1‖f − f ′‖∞,

ww
p (D(X, f),D(X, f ′)) ≤ C2‖f − f ′‖C3∞ ,

where C1, C2 and C3 are a universal constant independent
of X , and ‖ · ‖∞ refers to the infinite norm.

In words, the theorem says that when we change filtra-
tion from f to f ′, the change in persistent diagrams would
be bounded linearly in the ‖f − f ′‖∞ for Bottleneck dis-
tance, and polynomially for Wasserstein distance. Since the
filtration for Rips complex is the pairwise distances, we can
alternatively control the l∞ norm of the difference between
two distance matrices. Thus, we substitute our objective to

min
F∈Md0

‖DF −D‖∞, (4)

where ‖A‖∞ = maxi,j |Aij |, D and DF are the distance
matrix before and after feature selection. By (4), we get rid
of the expensive computation of persistent diagrams, mak-
ing the algorithm applicable to real world applications. Nev-
ertheless, optimization regarding l∞ is still non-trivial.

IVFS-l∞ Algorithm and Extensions

The IVFS scheme (Algorithm 1) can be directly adapted to
the topology preservation problem (4). At line 6, we substi-
tute score function as

sF (f) = −‖DF −D‖∞, ∀f ∈ F , (5)

and all other steps remain the same. This is called the IVFS-
l∞ algorithm.

Extensions. We can easily extend this algorithm to
other reasonable loss functions. Denote ‖D − DF‖1 =∑

i,j |Dij − DFij
| and ‖D − DF‖2 the matrix Frobinius

norm. One should expect that minimizing these two norms
of (D − DF ) to be good alternatives, because small ‖D −
DF‖1 or ‖D − DF‖2 is likely to result in a small ‖DF −
D‖∞ as well. We will call these two methods IVFS-l1 and
IVFS-l2 algorithm respectively. Both extensions are imple-
mented simply by changing the lines in Algorithm 1 with
corresponding loss and score function.

Experiments

Following many previous works on feature selection (e.g
(Zhao and Liu 2007; Liu et al. 2014; Li et al. 2018b)),
we carry out extensive experiments on popular high-
dimensional datasets from UCI repository (Asuncion and
Newman 2007) and ASU feature selection database (Li et
al. 2018a). The summary statistics are provided in Table 1.
For all datasets, the features are standardized to mean zero
and unit variance, and at most 300 features are selected.

Methods and tuning parameters

We compare several popular similarity preserving methods:
• SPEC: We use the second type algorithm which per-

forms the best, according to (Zhao and Liu 2007).
• MCFS: As guided in (Cai et al., 2010), we run MCFS

with number of clusters M = {5, 10, 20, 30}.
• GLSPFS: It is a embedded method that learns to ap-

proximate the sample similarity matrix and will serve as a
major baseline. Following (Liu et al. 2014), we chose the
parameter combinations of μ = {0, 10−1:3}, λ = {10−1:3}.

• IVFS-l∞ and variants: We try following combinations:
d̃ = {0.1 : 0.1 : 0.5} × d, ñ = {100, 0.1n, 0.3n, 0.5n}.
We run experiments with k = 1000, 3000, 5000. All the re-
ported results are averaged over 5 repetitions.

Evaluation Metrics

We compare each method by various widely adopted metrics
that can well evaluate the quality of selected feature set.2

KNN accuracy. Following (Zhao and Liu 2007; Liu et al.
2014), etc., we test local structure preservation by KNN clas-
sification. Each dataset is randomly split into 80% training
sets and 20% test set, on which the test accuracy is com-
puted. We repeat the procedure 10 times and take the av-
erage accuracy. For number of neighbors, we adopt K ∈
{1, 3, 5, 10} and report the highest mean accuracy.

Distances between persistent diagrams. For X and XF ,
we compute the 1-dimensional persistent diagram D and DF
with α = 0.5 and drop all barcodes with existing time less
than ε = 0.1. Wasserstein (w1

1) and Bottleneck (w∞) dis-
tances are computed between the diagrams.

Norms between distance matrix. When the purpose of
feature selection is to preserve the sample distance (or sim-
ilarity), one straightforward measure should be the change
between distance matrices D and DF . We compute ‖D −
DF‖1, ‖D−DF‖2 and ‖D−DF‖∞ to evaluate the close-
ness of these two matrices.

Running time. We compare the running time for a single
run, with fixed parameter setting: MCFS: k = 10, GLSPFS:
μ = 1, λ = 1, and IVFS: k = 1000, ñ = 0.1n, d̃ = 0.3d.

Results

Overall performance. Table 1 summarizes the results. All
the datasets are high-dimensional, and Isolet, RELATHE,
COIL20 have relatively larger size with around 1500 sam-
ples. For algorithms with tuning parameters, we report the
best result among all parameters and number of selected fea-
tures for each metric. From Table 1, we observe:

• IVFS-l∞ provides smallest w1
1 , and w∞ on almost all

datasets. Moreover, the l1, l2 and l∞ norms are signifi-
cantly reduced on all the data—The distance and topology
preserving capability is essentially improved.

• On all datasets, IVFS-l∞ also beats other methods in
terms of KNN accuracy, which indicates its superiority
on supervised tasks and local manifold preservation.
2We also tested normalized mutual information (NMI) in the

experiment. The pattern was very similar to KNN accuracy.
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Table 1: Experiments on high dimensional data using normalized Euclidean distance. # n is the number of samples, # d is the
dimensionality and # C is the number of classes. The unit of L1/n

2 is (×10−2). If n < 1000, ñ = 0.1n; otherwise, ñ = 100.

Dataset #n #d #C Methods KNN w1
1 w∞ L∞ L1/n

2 L2 Time (Sec)

CLL-SUB-111 111 11340 3

SPEC 58.2% 2.35 0.05 0.42 9.49 13.86 0.85
MCFS 63.9% 2.91 0.04 0.21 4.19 5.85 3.35
GLSPFS 63.9% 2.44 0.02 0.30 6.89 9.58 11.29
IVFS-l∞1000 68.7% 2.09 0.02 0.11 2.81 3.94 5.27

Lymphoma 96 4026 9

SPEC 81.5% 0.31 0.05 0.25 6.38 7.64 0.28
MCFS 92.5% 0.09 0.02 0.14 2.46 2.95 1.51
GLSPFS 92.0% 0.12 0.03 0.19 4.22 5.10 1.50
IVFS-l∞1000 94.0% 0.06 0.01 0.08 1.90 2.30 1.28

Orlraws10P 100 10304 10

SPEC 81.5% 0.92 0.03 0.49 13.21 16.51 0.71
MCFS 92.0% 0.50 0.03 0.20 4.63 5.90 2.69
GLSPFS 93.5% 0.66 0.02 0.24 5.73 7.13 12.49
IVFS-l∞1000 98.0% 0.47 0.02 0.08 1.85 2.35 4.08

Pixrow10P 100 10000 10

SPEC 98.0% 2.43 0.07 0.57 13.81 17.29 0.68
MCFS 99.0% 1.76 0.05 0.29 6.70 8.43 2.64
GLSPFS 99.0% 1.41 0.05 0.26 6.48 8.02 14.68
IVFS-l∞1000 100% 0.60 0.03 0.07 2.03 2.50 3.71

Prostate-GE 102 5966 2

SPEC 73.3% 3.70 0.09 0.38 12.39 15.37 0.43
MCFS 81.9% 0.94 0.05 0.22 5.06 6.27 2.01
GLSPFS 83.8% 0.64 0.03 0.27 4.61 7.39 4.45
IVFS-l∞1000 87.6% 0.40 0.02 0.06 1.44 1.96 1.89

SMK-CAN-187 187 19993 2

SPEC 70.3% 4.10 0.06 0.59 10.28 25.26 2.13
MCFS 66.1% 0.99 0.03 0.29 3.82 9.91 7.06
GLSPFS 71.1% 1.57 0.04 0.26 5.81 14.35 55.90
IVFS-l∞1000 72.6% 0.58 0.02 0.09 2.00 3.86 9.62

WarpPIE10P 130 2400 10

SPEC 85.5% 1.07 0.06 0.44 21.72 22.31 1.30
MCFS 95.7% 0.60 0.05 0.14 5.90 6.14 1.49
GLSPFS 90.0% 0.68 0.05 0.16 7.10 7.39 2.03
IVFS-l∞1000 95.9% 0.50 0.04 0.05 2.60 3.04 1.11

COIL20 1440 1024 20

SPEC 98.2% 16.07 0.07 0.35 16.96 258.5 17.02
MCFS 99.6% 3.50 0.08 0.30 2.63 42.43 3.92
GLSPFS 99.9% 1.78 0.06 0.20 2.02 40.60 8.98
IVFS-l∞1000 100% 2.16 0.05 0.18 1.41 25.66 3.86

Isolet 1560 617 26

SPEC 81.6% 63.85 0.08 0.43 11.96 209.9 12.86
MCFS 82.3% 20.18 0.04 0.18 2.47 52.14 2.20
GLSPFS 88.2% 11.64 0.03 0.13 1.94 38.26 7.34
IVFS-l∞1000 88.7% 2.09 0.01 0.08 1.37 27.04 2.78

RELATHE 1427 4322 2

SPEC 72.8% 36.04 0.10 0.83 15.08 263.6 69.20
MCFS 68.8% 9.68 0.08 0.35 8.43 142.6 9.34
GLSPFS 72.5% 7.32 0.07 0.32 5.21 94.32 30.46
IVFS-l∞1000 75.6% 0.70 0.05 0.24 1.90 40.90 8.87

Robustness. We plot ‖D−DF‖2 and w∞(D,DF ) against
the number of selected features in Figure 2 and Figure 3, re-
spectively. SPEC performs very poorly on high-dimensional
datasets. We observe clearly a trend that IVFS keeps lifting
its performance as number of features increases. This ro-
bustness comes from the fact that the inclusion value intrin-
sically contains rich information about features interactions.

Stability. We bootstrap samples from original dataset to
mimic the process of sampling from population. Denote FX

and FB the subset chosen based on original data and boot-
strap data respectively. We count |G| with G = {f : f ∈
FX , f �∈ FB}. We use same parameters as for testing the

running time. The results are averaged over 5 repetitions. In
principle, the selected feature pool should not vary signifi-
cantly if we only change a few samples (by bootstrap), since
the “truly” important features should be independent of the
samples. In Table 2, we see that IVFS-l∞ is hardly affected
by the bootstrapping process, while other methods are much
more sensitive and gives very different solutions.

Efficiency-capacity trade-off. From Table 1, we also see
that IVFS-l∞ is comparable with MCFS in terms of run-
ning time, and is more efficient than GLSPFS. In particu-
lar, GLSPFS may run very slowly when it takes a long time
to converge (e.g., SMK-CAN-187). Additionally, for datasets
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Table 2: Stability under bootstrap: the number of different
selected features between original data and bootstrap data.

SPEC MCFS GLSPFS IVFS-l∞1000
CLL-SUB-111 187.2 271.8 243.6 12.2

Lymphoma 156.6 260.8 260.4 4.4
Orlraws10P 119.2 283.6 267.2 7.8
Pixrow10P 143.0 284.8 266.0 6.8
Prostate-GE 125.8 264.4 236.2 12.0

SMK-CAN-187 125.8 264.4 236.2 18.6
WarpPIE10P 56.0 241.6 191.0 4.8

COIL20 14.0 178.2 115.4 5.6
Isolet 12.8 124.5 80.0 3.3

RELATHE 21.4 145.0 102.8 8.4
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Figure 2: l2 norm vs. number of features.

with large size, SPEC and GLSPFS gets slower due to large
matrix inverse and singular value decomposition.

The computational cost of our IVFS algorithms depends
tightly on the sub-sampling rate ñ/n and number of ran-
dom subsets k. As one would expect, there exists a trade-
off between computational efficiency and distance preserv-
ing power. In Figure 4, we plot the relative performance (set
the value for k = 5000, ñ = 0.5n as 1) of different k and ñ,
averaged over all datasets and number of chosen features. In
general, the performance of IVFS boosts as k and ñ increase
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Figure 3: Bottleneck distance vs. number of features.
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Figure 4: Performance comparison across different number
of subsets k and sub-sampling ratio ñ/n.

because of more accurate estimate of the inclusion values.
Note that in our experiment, when the sample size is rela-

tively large (i.e., greater than 1000), we simply fix ñ = 100,
and IVFS still outperforms other methods (on COIL20, RE-
LATHE). Thus, to achieve better efficiency, we recommend
practitioners to set k = 1000 as default. For ñ, if the data
size is not very large, we suggest using ñ = 0.1n as the first
try. Otherwise, one may threshold ñ at a small number (e.g.,
100 in our experiment). This way, the running time, when
fixing k and d̃, becomes approximately constant.

Discussion

For supervised random forest, it is conventional to set as de-
fault d̃ =

√
d, which is around 102 when d is around 104.

However, in this case we have to use large k to make sure
that every feature is evaluated for not too few times. We ob-
serve that there is not much gain in performance with small
d̃ and large k combination. Thus, we suggest to use a rela-
tively large d̃ to speed up the algorithm for higher efficiency.

It is worth mentioning that there are also hybrid strategies
for feature selection, where one first determines a pool of
features, and then select ultimate feature set from the pool
through another round of screening. One thing we observe
from the experiments is that IVFS is much more stable and
robust than other algorithms, which means that the features
selected are mostly “good” features that help with reducing
the loss. Therefore, IVFS is also suitable to be applied in the
pool selection procedure for such hybrid methods.
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Conclusion

In this paper, we propose IVFS, a unified feature selection
scheme based on random subset methods. After we show its
connection with existing methods such as random forest and
RKNN, we propose IVFS-l∞ and several variants that can
preserve the pairwise distance and topological signatures
(persistent diagram) of the original dataset more precisely
than the competing similarity preserving algorithms. This
would be very helpful for applications requiring high-level
distance preservation, e.g. topological data analysis. In the
experiments, we evaluate the distance preserving capability
of different algorithms through to demonstrate the effective-
ness of the proposed IVFS algorithms. We also demonstrate
that a sharp sub-sampling rate can be effectively adopted on
this problem to speed up the algorithm on large datasets.
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