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Abstract

In this work, we propose to learn a generative model using
both learned features (through a latent space) and memories
(through neighbors). Although human learning makes seam-
less use of both learned perceptual features and instance recall,
current generative learning paradigms only make use of one
of these two components. Take, for instance, flow models,
which learn a latent space that follows a simple distribution.
Conversely, kernel density techniques use instances to shift
a simple distribution into an aggregate mixture model. Here
we propose multiple methods to enhance the latent space of a
flow model with neighborhood information. Not only does our
proposed framework represent a more human-like approach
by leveraging both learned features and memories, but it may
also be viewed as a step forward in non-parametric methods.
In addition, our proposed framework allows the user to eas-
ily control the properties of generated samples by targeting
samples based on neighbors. The efficacy of our model is
shown empirically with standard image datasets. We observe
compelling results and a significant improvement over base-
lines. Combined further with a contrastive training mechanism,
our proposed methods can effectively perform non-parametric
novelty detection.

1 Introduction

The typical training paradigm for many generative models
makes a one time use of the training data. For instance, VAEs
(Kingma and Welling 2013) and flow models (Dinh, Krueger,
and Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018) use the training data to fit a
latent space. After the features (the latent space) are learned,
the training data is discarded, as the learned network is en-
tirely responsible for the generative process. This paradigm
has proven effective, however it leaves the entire burden of
modeling a complicated support (such as the space of images)
completely on the learned latent space and network capacity.
Moreover, such an approach is in stark contrast to human
learning, which not only uses data to learn perceptual features
(Kuhl, Tsao, and Liu 2003), but will reuse data as memories
with instance recall (Carrier and Pashler 1992). Furthermore,
since samples are generated from a random latent code, it
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is difficult to control the properties of generated samples.
In this work, we more closely follow nature’s paradigm for
generative modeling, making use of our data not only to learn
features but to pull instances as neighbors.

Neighborhood based methods abound much of the history
of machine learning and statistics. For instance, the well-
known k-nearest neighbor estimator often achieves surpris-
ingly good results (Altman 1992). Moreover, by equipping
models with neighborhood information, one reduces the prob-
lem to a local-manifold, a much simpler domain (Roweis and
Saul 2000; Seung and Lee 2000). In this work, we focus our
attention on density estimation, which features a staple neigh-
bor based estimator: the kernel density estimator (KDE). The
KDE models a local manifold as a Gaussian, an untenable
restriction when dealing with complicated data such as im-
ages, see Fig. 1. Instead, we model local manifolds using
more flexible densities, simultaneously better representing
the local space of a neighborhood whilst reducing the burden
of the density estimator. In doing so, this work brings forth
methodology that is in the same vein as non-parametric den-
sity estimation. We begin with a simple observation about the
kernel density estimator. Recall that KDE models a dataset
{xi ∈ R

d}Ni=1 as a mixture of “kernel” distributions K cen-
tered around each data-point:

p(x) =
1

N

N∑

i=1

K(xi, x). (1)

In practice, the kernel is often chosen to be a Gaussian distri-
bution centered at the data-points with a diagonal covariance
matrix:

p(x) =
1

N

N∑

i=1

N (x | xi, σ
2I), (2)

where N (x | xi, σ
2I) is the pdf of a Gaussian with mean xi

and covariance matrix σ2I. That is, the density is modeled
as a mixture of training data-centered distributions. The sam-
pling procedure is simple, as one selects a training point xi

from the training data at random and adds Gaussian noise to
it. More generally, one sees that KDE models the density as:

p(x) =
1

N

N∑

i=1

p(x | xi), (3)
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(a) Low Dimensional Neighborhoods (b) High Dimensional Neighborhoods

Figure 1: Neighborhood based models, which focus on modeling a simpler local manifold rather than the more complicated
global support. (a) In low dimensions, one may model tight local manifolds using simple distributions (e.g. Gaussians). Thus,
in low dimensions it is relatively simple to model a rich class of densities as the mixture of shifted simple distributions (i.e.
kernels). (b) In higher dimensions, such as the space of natural images, the number of simple kernels to adequately model the
space grows exponentially, and is thus intractable. Tractable local manifolds may no longer be Gaussian, however they still
exhibit a structure that can be exploited. In this work, we propose to model local manifolds using flexible density estimators and
careful conditioning.

for a very restricted class of conditionals p(·|xi), namely
shifted Gaussians. We propose a data-driven generalization
of KDE, another step forward in non-parametric methods.
We use neighborhoods to allow the estimator to model local
manifolds, a simpler space. Specifically, we model the density
as:

p(x) =
1

N

N∑

i=1

pθ(x | N(xi)), (4)

where pθ(· | N(xi)) is a more flexible density estimator
conditioned on neighborhood information (Fig. 1(b)) and
N(xi) is the neighborhood around point xi.

Our approach (4) is capable of inferring relevant features
and variances of the neighborhood, lessening the burden
on pθ. Note further that KDE (2) blurs the line between
density estimation and data augmentation; KDE samples by
“augmenting” a data point with Gaussian noise. The proposed
approach expands on this by learning how to “augment” or
sample given a neighbor or neighborhood.

The sampling procedure for our proposed model would
remain simple: one would choose a training point xi uni-
formly at random from the training data, then sample ac-
cording to the estimator conditioned on the neighborhood:
x ∼ pθ(· | N(xi)). Note that the entire sampling procedure
is not a conditional model since we marginalize out the effect
of the neighborhood by picking them from training data at
random (4).

In addition to the simple global unconditioned sampling
procedure, our paradigm also offers an unprecedented tar-
geted sampling interface. Suppose that a user wanted to pro-
duce novel images of a tiger in a grassy outdoor setting,
standing, and facing the camera. In order to provide a user
with such fine-grained control in standard conditional models,

one would have to train a multi-labeled model based on con-
cepts such as “contains tiger”, “orient forward”, “outdoor”,
“grassy”, etc. However, such a labeled dataset may be very
expensive to collect. Furthermore, it may be hard to obtain
a compact representation for certain concepts (Higgins et al.
2016). Lastly, a multi-labeled conditional model would be
unable to extrapolate to unforeseen concepts at test times.
These shortcomings make a traditional approach unfit for a
targeted sampling task. Instead, our neighbor based approach
is very adept at producing targeted novel samples. In the
aforementioned scenario, the user would be able to condition
the neighborhood model using tiger images similar to his/her
target. In effect, our model provides an indispensable “more
like this” interface to generative models.

Our proposed approach builds on the standard non-
parametric methodology in three key ways. First, we pro-
pose to use more robust density kernels than the standard
approaches; while kernels like the Gaussian distribution lead
to general distributions asymptotically, their simple unimodal
nature often falls short for higher dimensions in finite sam-
ples (Wasserman 2010). Second, we propose to condition on
training data in a more robust fashion than by simply shifting
a base distribution as is standard; this allows one to capture
a richer set of correlations of data in a local neighborhood.
Third, we propose to extract the set-level information from
the neighborhood N(xi) in a data-driven fashion; condition-
ing on multiple instances in a neighborhood allows our model
to learn the variances present in the local manifold (in the
background of images, for instance) without the network
needing to memorize them.

In all, our proposed paradigm makes use of both memories
(via instance recall of neighborhoods) and learned features
(via a latent space). As such, our approach is richer than
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existing methods, more closely resembles human learning,
and gives us fine-grained control over sample properties.
We show the efficacy of our models on standard benchmark
image datasets with experiments below.

2 Methods

While the local manifold of a neighborhood might be remark-
ably simpler than the global manifold, one is still unlikely to
estimate the local manifold well with a simple base distribu-
tion such as a Gaussian. Thus, we still need to capture the data
in these local neighborhoods N with a flexible model pθ(· |
N). The choice of robust base conditional model is quite
flexible, with many possible choices including autoregres-
sive models (Oord, Kalchbrenner, and Kavukcuoglu 2016;
van den Oord et al. 2016), flow models (Dinh, Krueger,
and Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018), and variational autoencoders
(VAEs) (Kingma and Welling 2013). In fact, one may also
deviate from a likelihood based framework in favor of a dis-
criminative critic GAN approach (Goodfellow et al. 2014).
As our focus is on the methodology of injecting neighbor-
hood information into a generative approach, we explore this
with a particular choice of generative model, flow density
estimators. However, our approach easily extends to other
generative models. In addition, flow methods provide a few
advantages including: a tractable (normalized) likelihood, ro-
bustness to mode collapse (Grover, Dhar, and Ermon 2018),
and a meaningful latent space. We expound on the base flow
generative models below.

2.1 Flow based Models

The change of variable theorem, shown in (5), is the cor-
nerstone of flow generative models (Dinh, Krueger, and
Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018), where q is an invertible trans-
formation.

pX(x) =

∣∣∣∣det
dq

dx

∣∣∣∣ pZ(q(x)) (5)

In order to efficiently compute the determinant, the transfor-
mation q is often designed to have diagonal or triangular Jaco-
bian. Since this type of transformation is restricted, the flow
models often compose multiple transformations in a sequence
to get a flexible transformation, i.e. q = qm ◦ qm−1 ◦ . . . ◦ q1.
Here, the covariates flow through a chain of transformations,
substituting the last output variable as input for the next trans-
formation.

One family of this type of transformation is the so-called
coupling layer used in NICE (Dinh, Krueger, and Bengio
2014), RealNVP (Dinh, Sohl-Dickstein, and Bengio 2016)
and Glow (Kingma and Dhariwal 2018). The input x is di-
vided into two parts xA and xB , the first part is kept the
same, and the second part is transformed based on the first
part using an affine transformation,

yA = xA

yB = xB � s(xA) + t(xA),
(6)

where � represents the element-wise (Hadamard) product.
Such coupling layers are easy to invert and the Jacobian deter-
minant is easy to compute. Furthermore, since the Jacobian
determinant does not involve computing the Jacobian of s(·)
and t(·), they can potentially be any deterministic function,
such as a neural network.

Since one single coupling layer can only affect part of
the input covariates, earlier works swap A and B between
two coupling layers to ensure every dimension can affect
every other dimension. Recent work (Oliva et al. 2018;
Kingma and Dhariwal 2018) proposes to learn a linear layer
to better capture the correlations along dimensions. In order
to stabilize the training and ensure the whole process’s invert-
ibility, the RealNVP reformulates the batch normalization
into an invertible transformation. They also propose a multi-
scale architecture to capture spatial correlations in image
data.

In the end, the flow models transform inputs to a new space,
z = q(x), where covariates can be modeled using a simple
base distribution, see Fig. 2(a). Typically, we take pZ(z) to
be a Gaussian distribution. From another perspective, we use
a deep neural network to construct a series of flexible and
invertible operations to transform a simple distribution (e.g.
a Gaussian) into a complicated one (the data distribution).
Flow based generative models use the exact log-likelihood
log p(x) as the training criterion.

2.2 Neighbor Conditioned Flow Models

We impose the neighborhood information in neighbor condi-
tioned distributions (4) by conditioning a flow model. Flow
models can be divided into two parts, the transformation
of variables and the latent distribution. Both of these parts
can incorporate extraneous conditioning information. Con-
cretely, the transformation procedure can use neighborhood
information to decide how to transform the inputs, while the
latent distribution can have mean and variance depending on
conditioning variables. We explore two ways to inject neigh-
borhood information into the flow model. First, we propose
neighborhood conditioned likelihood (NCL), which speci-
fies the distribution of the latent covariates of a target point,
z = q(x), given its neighborhood N. Second, we propose
neighborhood conditioned transformations (NCT), which ad-
justs the latent space (transformation of variables) for a target
point x according to its neighborhood N, i.e., z = qN(x).

Neighborhood Conditioned Likelihood (NCL) We pro-
pose to directly estimate the density of the representation of
a target point x in the latent space, q(x), given its neighbor-
hood N. To do so, two mappings, gμ, and gσ, are learned to
estimate mean and variance parameters, �μ and �σ, respectively
from N. We disentangle the transformation of variables from
the relationship between the neighbors and the target by pass-
ing in transformed neighbors to gμ, gσ , i.e., we pass neighbor
images through the same flow transformations q. Then, we
use gμ and gσ to compute Gaussian means and variances
respectively. As in original flow models, we use a diagonal
matrix for the variance:

pZ(z) = N (z | gμ(q(N)), diag(g2σ(q(N)))), (7)
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(c) NCT

Figure 2: (a) Vanilla RealNVP model. The dashed box q indicates a series of invertible transformations, which transform images
x ∈ R

d (cyan blocks) into d standard Gaussian covariates (yellow circles). (b) Conditioning latent distribution on neighbors. Note
that the two dashed green boxes share the same group of parameters (same transformation for input images and corresponding
neighborhoods). gμ and gσ compute mean and variance based on the specified neighborhood respectively. (c) Using neighbors to
condition the transformations. Some or all transformations in q could depend on neighborhood N(x).

The model is illustrated in Fig. 2(b). To sample, we choose
a neighborhood N uniformly at random from the training
data. Then, we transform each neighbor image in N into the
latent space, and get the neighbor conditioned distribution
based on latent codes of neighbors. We then sample latent
codes, z ∼ N (· | gμ(q(N)), diag(g2σ(q(N)))), from this dis-
tribution and invert the flow transformation to get image
samples, x = q−1(z). In another point of view, our NCL
model resembles a KDE model in the latent space since we
are sampling from a Gaussian conditioned on a neighbor-
hood. However, as we are operating in a latent space and are
conditioning on the neighborhood according to the output of
a general mapping, the NCL is a strictly more general model.

Neighborhood Conditioned Transformations (NCT)
As mentioned, another component of flow models that is
amenable to conditioning information is the transformation
of variables. Although the NCL model allows the latent
covariates z to come from a distribution that depends on a
neighborhood N, the construction of z itself is uninformed
by N. We propose to inject neighborhood information
into flow transformations using neighborhood conditioned
transformations (NCT). The NCT model provides guidance
about how to effectively transform a local manifold through
neighbors. Here, we propose a neighborhood conditioned
coupling transformation:

yA = xA

yB = xB � s(xA,N) + t(xA,N).
(8)

The shift and scale functions s and t are implemented via a
concatenation operation on inputs. Replacing the coupling
layer in a standard flow model with the proposed neighbor
conditioned one gives rise to our NCT model. The transfor-
mations (8) can model both intra-pixel and intra-neighbor
dependencies. Furthermore, by conditioning the flow transfor-
mations throughout each of the composing coupling transfor-
mation, we are able to inject our conditioning neighborhood
information through the transformation of variables, rather
than only at the end. In cases of multi-scale architecture, like
the one used in RealNVP, xA could have different spatial
dimensions from N, thus we re-size the neighbors before
concatenating them.

We note that the NCL model can be interpreted as a special
case of NCT. One may view gμ and gσ as specifying a shift
and scale operation in the transformed space:

z =
q(x)− gμ(q(N))

gσ(q(N))
, (9)

where z now can be modeled as isotropic unit norm Gaussian.
However, as we specify gμ and gσ in terms of the transforma-
tion q, we get distinct models stemming from each approach.
The details about our neighbor conditioned flow models are
presented in the appendix 1.

2.3 Contrastive Training

A straight-forward way to train our neighbor conditioned
models is to directly optimize the neighbor conditioned likeli-

1please refer to https://arxiv.org/abs/1902.01435 for a full ver-
sion of this paper.
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hood. However, likelihood trained models are known to suffer
from out-of-distribution (OoD) issues (Nalisnick et al. 2018;
Choi and Jang 2018), which means such models may assign a
higher likelihood to data from a completely different distribu-
tion than data it is trained on. When deploying the models to
perform novelty/anomaly detection, the insensitivity to OoD
data can completely devastate the prediction. Inspired by the
noise contrastive estimation (NCE) (Gutmann and Hyvärinen
2010), we propose a contrastive training mechanism to in-
crease the sensitivity of our models to OoD data. A common
and major challenge with NCE is the choice of the noise dis-
tribution and how to obtain “negative” samples. Fortunately,
our neighborhood based paradigm provides a natural answer.
For a given neighborhood N, p(· | N) is to have support only
in the local manifold around N. Hence, we can take p(· | ¬N)
for a different neighborhood to be a noise distribution w.r.t.
p(· | N) and take x ∈ ¬N as negative samples.

That is, given xi and xj from two different neighborhoods
N(xi) and N(xj) respectively, we optimize the following
objective function:

Lθ = E
x∼p(·|N(xi))

E
x′∼p(·|N(xj))

[pθ(x | N(xi))

+max (0,m+ pθ(x
′ | N(xi))− pθ(x | N(xi)))],

(10)

where m represents a margin between in-neighborhood like-
lihood and out-of-neighborhood likelihood. Although the
original NCE objective uses an infinite margin, we find this
finite margin objective stabilizes the training.

3 Experiments

Following the exact preprocessing procedure in RealNVP, we
transform the pixels into logit space to alleviate the impact
of boundary effects. In order to conduct a fair comparison
with RealNVP, we use exactly the same network architecture
and hyperparameters as those in (Dinh, Sohl-Dickstein, and
Bengio 2016). We do not apply data augmentation for all
experiments, but we use early stopping to prevent overfitting.
We optimize the likelihood objective with contrastive training
in novelty detection experiments.

In order to avoid cheating, we pull neighbors only from
training set. Please refer to appendix for more information
about getting neighborhoods. To explore the sensitivity of
our methods to the choice of neighborhoods, we also inspect
the behavior of our models using far fewer neighborhoods,
where we cluster the training data into several neighborhoods,
see appendix for more details.

In addition to vanilla RealNVP, we also compare to a sim-
ple class label/attributes conditioned RealNVP model. We
model the latent space as a class/attributes conditioned Gaus-
sian distribution. We use one fully connected layer to derive
the Gaussian mean and variance respectively. In contrast to
the Glow model (Kingma and Dhariwal 2018), we do not
share the class conditioned Gaussian over spatial dimensions,
which we observed made our class conditioned model a much
stronger baseline.

When training based on the likelihood for a specific data
point xi, we optimize log likelihood values conditioned on
the respective neighborhood, i.e., log pθ(xi | N(xi)). While

Table 1: FID scores. GAN results are from (Lucic et al. 2018;
Heusel et al. 2017). Best scores are marked in bold.

Dataset GAN RNVP CC-RNVP NCL NCT

MNIST 6.7 10.4 8.3 11.2 8.2
SVHN 12.5 103.8 55.2 50.0 61.8
CIFAR-10 55.2 99.9 93.4 95.8 81.1
CelebA 30.0 39.2 32.5 33.0 30.9

the likelihood of the generative process is (4), optimizing
our neighborhood criteria encourages likelihoods to be con-
centrated around the respective conditioning neighborhood.
FID scores (Heusel et al. 2017) and precision-recall (PRD)
(Sajjadi et al. 2018) are used to quantitatively compare the
sample quality. As in (Sajjadi et al. 2018), we report (F8, F 1

8
)

pair to represent the recall and precision respectively. Models
are compared using 50K samples.

3.1 Results and Analysis

We show samples generated for all four datasets in Fig. 3. We
also show actual images in the first column for comparison.

On all datasets we see that our models produce coher-
ent samples with respect to the conditioned neighbors. For
example, on MNIST our neighbor based models allow fine-
grained control over properties of samples, such as writing
style and the brush width. In SVHN, the vanilla RealNVP
yields lesser quality samples, and the class conditioned Real-
NVP fails to generate samples concentrated around a single
class. In contrast, our neighborhood based samples capture
the attributes specified by their neighborhood very well. For
instance, the background, the font and the character width
closely match with the neighborhood. On CIFAR-10, our
model generates similar images to the specified neighbors,
while the vanilla RealNVP and class conditioned RealNVP
fail to generate any meaningful samples. We still observe de-
cent coherence with neighbors using our models even though
neighbors considered in this dataset are more diverse, espe-
cially in the background (due to the small dataset size of
CIFAR-10). We note that the CelebA dataset comes with
comprehensive attribute representations. Thus samples from
attributes conditioned model tend to align with the specified
attributes. However, our targeted sampling gives fine-grained
control over the sample properties without the expensive (to
collect) attribute labeling data. We can see that our samples
capture the high-level attributes of neighbors, such as the
orientation, the ornament, the hair style and the skin color.

Table 1 and Table 2 quantitatively compare the sample
quality using FID and PRD respectively. We also list the FID
scores of GANs for an additional comparison. We see consis-
tent improvement over the baseline RealNVP on both recall
and precision. That is, our methods utilize neighborhood as
memory recall to cover diverse data space and model local
manifold to better capture the data manifold. Our neighbor
based targeted sampling serves to bridge the gap between
non-adversarial and adversarial generative models.

Relative likelihood values can be found in Table. 3. We
report bits per dimension (bpd) (Papamakarios, Pavlakou, and
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Table 2: PRD scores. As in (Sajjadi et al. 2018), (F8, F 1
8
) pairs are reported here. GAN results are from (Sajjadi et al. 2018)

(marker B, i.e., the one with best precision and recall). Best scores for likelihood methods are in bold.

Dataset GAN RNVP CC-RNVP NCL NCT

MNIST (0.99, 0.99) (0.982, 0.982) (0.987, 0.973) (0.981, 0.970) (0.990, 0.982)
SVHN (—,—) (0.740, 0.731) (0.785, 0.920) (0.808, 0.928) (0.841, 0.841)
CIFAR-10 (0.77, 0.84) (0.322, 0.631) (0.360, 0.599) (0.451, 0.647) (0.568, 0.691)
CelebA (0.87, 0.85) (0.675, 0.766) (0.835, 0.786) (0.853, 0.806) (0.849, 0.821)

Table 3: Bits per dimension results for MNIST, SVHN,
CIFAR-10 and CelebA. Neighborhood conditioned likeli-
hoods p(· | N) are reported for our NCL and NCT models,
while likelihoods and class conditioned likelihoods are re-
ported for vanilla RealNVP (RNVP) and class conditioned
RealNVP (CC-RNVP) respectively.

Dataset RNVP CC-RNVP NCL NCT

MNIST 0.449 0.415 0.402 0.424
SVHN 2.270 2.209 2.204 2.285
CIFAR-10 3.547 3.544 3.552 3.543
CelebA 3.018 3.150 2.931 2.934

Murray 2017) for the models considered. Note that we are
not trying to compare conditional likelihoods with marginal
likelihoods. We report likelihoods here only as a justification
that our model is not trying to remember the training set.

Furthermore, it is interesting to note that an approximation
to the marginal likelihood for our model is typically close in
value to conditional neighborhood likelihoods, see appendix
for details. We also explore reducing the computational cost
of marginalization by using fewer neighborhoods. To do so,
we cluster the training data into several larger neighborhoods.
It is worth noting that our models are robust to the choice of
neighborhoods, and even with far fewer neighborhoods, we
observe consistent samples with the corresponding neighbor-
hood. Please refer to appendix for more details.

3.2 Novelty Detection

Generative models have shown potential for novelty/anomaly
detection, an important task in ML. Although OoD issues
can potentially limit the effectiveness of likelihood based
methods, we find that our neighbor based models can signifi-
cantly improve detection accuracy when combined with the
proposed contrastive training strategy.

Following the standard setup in (Perera, Nallapati, and Xi-
ang 2019), we create one-class novelty detection tasks form
MNIST dataset. We use the original training-testing split of
MNIST dataset. Training is conducted using data of a single
class from original training split. We test each model using
the whole testing split. Test data from a different class the
model is trained on are considered to be negative. To train our
neighbor based models, we pull neighbors by Euclidean dis-
tance on PCA features, 5 neighbors are used here. Following
previous works, we use Area Under the Curve (AUC) of Re-
cevier Operating Characteristic (ROC) to measure the perfor-

mance. We threshold the conditional likelihood p(x | N(x))
to get the ROC curve. In this experiment, we compare the
vanilla RealNVP and our proposed NCL model with or with-
out contrastive training. The margin in contrastive loss is set
to 0.5 bits per dimension. We also list results of PixelCNN
from (Perera, Nallapati, and Xiang 2019) for an additional
comparison. Results are shown in Table. 4. We can see that
the proposed contrastive training mechanism contributes a
huge improvement over NCL.

4 Related Works

Density Estimation and Generative Models: Nonparamet-
ric density estimation, such as kernel density estimation, of-
ten suffers from the curse of dimensionality and does not
perform well on high dimensional data like images. Recently,
deep neural networks have been employed to enable flexi-
ble density estimation. (Uria, Murray, and Larochelle 2013;
Uria et al. 2016; Germain et al. 2015; Gregor et al. 2013;
Oord, Kalchbrenner, and Kavukcuoglu 2016; van den Oord
et al. 2016) utilize neural networks to learn the condition-
als factorized by the chain rule. (Dinh, Krueger, and Bengio
2014; Dinh, Sohl-Dickstein, and Bengio 2016; Kingma and
Dhariwal 2018; Papamakarios, Pavlakou, and Murray 2017;
Oliva et al. 2018) construct a normalizing flow based on the
change of variables theorem. (Kingma and Welling 2013)
proposes and optimizes a variational lower bound for the
exact likelihood. GANs (Goodfellow et al. 2014) bypass ex-
plicit density estimation by adversarial training rooted in
game theory. All of the aforementioned approaches try to
model the whole data distribution in a single model. Our
method, however, proposes to divide and conquer the density
estimation using local neighborhoods. Our proposed model
can potentially be integrated into all the generative models
described above.

Neighbors based Generative Models: We expound on
some recent approaches that make use of neighbors for gen-
erative models below. For instance, (Bansal, Sheikh, and
Ramanan 2017) completes a low-resolution signal using com-
positions of nearest pixels in training images. (Li and Malik
2018) attempts to model a fixed code space by matching
initial noisy outputs to a nearest neighbor. Note that in con-
trast, in addition to providing a density, our method enables
targeted sampling by specifying a neighborhood.

Other Neighbor based Models: Outside of generative
models, neighbor based methods have been well studied. For
instance, (Weinberger and Saul 2009; Goldberger et al. 2005)
apply nearest neighbors to learn a distance metric. (Boiman,
Shechtman, and Irani 2008) extends classic KNN methods
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Figure 3: Samples generated form MNIST, SVHN, CIFAR-10 and CelebA. Columns in order are: real images, vanilla RealNVP
(RNVP) samples, class conditioned RealNVP (CC-RNVP, each column represents one class) samples, and our neighbor
conditioned models’ samples. The red boxes indicate representative neighbors. The columns following each neighborhood
column are samples from that neighborhood. The first column is from NCL, and the second one is from NCT.

Table 4: Novelty detection results on MNIST dataset. Performance are measured by AUC-ROC. Best scores are in bold.

0 1 2 3 4 5 6 7 8 9 Mean

PixelCNN 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.618
RNVP 0.417 0.996 0.528 0.547 0.726 0.598 0.665 0.814 0.420 0.703 0.641
NCL(w/o) 0.402 0.998 0.475 0.515 0.716 0.604 0.639 0.809 0.360 0.690 0.621
NCL(w) 0.800 0.997 0.661 0.794 0.796 0.701 0.891 0.893 0.571 0.908 0.801

to a Bayes setting to perform accurate image classification.
For a general discussion on nonparametric and neighborhood
based methods please refer to (Wasserman 2010).

5 Conclusion

In this work, we propose multiple ways of enhancing gen-
erative models with neighborhood information. Instead of
modeling the whole manifold using a single model, we divide
the support into smaller neighborhoods and model the simpler
local manifolds. Moreover, our approach jointly leverages
the data both to learn a latent feature space and to use as
neighbors to condition on a local manifold. This reduces the
burden on the network capacity as the model need not memo-
rize the manifold properties it is conditioned on. Furthermore,
our approach more closely resembles human learning, which

seamlessly leverages data to learn perceptual features and to
recall instances as memories.

We extend the recently proposed RealNVP and propose
two neighbor conditioned RealNVP architectures to model
the local distributions. The neighborhood conditioned like-
lihood (NCL) models the latent distribution as a Gaussian
conditioned on features of the neighborhood. In contrast,
neighborhood conditioned transformations (NCT) adjust the
latent space based on a neighborhood.

Empirical results show that the proposed neighborhood
conditioned models improve the sample quality both quantita-
tively and qualitatively. Our training procedure yields models
with a strong coherence between samples and neighborhoods,
allowing for use in targeted sampling tasks. Furthermore,
these models have the potential in neighborhood interpolation
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and style transfer as shown in our interpolation experiments
in the appendix. Our models have the ability to generate real-
istic images even using far fewer neighborhoods. Combined
with the contrastive training mechanism, our neighbor con-
ditioned model significantly improves the novelty detection
performance over the vanilla RealNVP.
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