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Abstract

Example weighting algorithm is an effective solution to the
training bias problem, however, most previous typical methods
are usually limited to human knowledge and require laborious
tuning of hyperparameters. In this paper, we propose a novel
example weighting framework called Learning to Auto Weight
(LAW). The proposed framework finds step-dependent weight-
ing policies adaptively, and can be jointly trained with target
networks without any assumptions or prior knowledge about
the dataset. It consists of three key components: Stage-based
Searching Strategy (3SM) is adopted to shrink the huge search-
ing space in a complete training process; Duplicate Network
Reward (DNR) gives more accurate supervision by removing
randomness during the searching process; Full Data Update
(FDU) further improves the updating efficiency. Experimental
results demonstrate the superiority of weighting policy ex-
plored by LAW over standard training pipeline. Compared
with baselines, LAW can find a better weighting schedule
which achieves much more superior accuracy on both biased
CIFAR and ImageNet.

Introduction

Although the quantity of training samples is critical for cur-
rent state-of-the-art deep neural networks (DNNs), the quality
of data also has significant impacts on exerting the powerful
capacity of DNNs on various tasks. For supervised learning,
it is a common hypothesis that both training and test exam-
ples are drawn i.i.d. from the same distribution. However,
during practical training, this assumption is not always valid,
therefore, the training bias problems, mainly including label
noise and class imbalance, are encountered frequently.

It is widely known that the sample weighting algorithm is
an effective solution to the training bias problem. Although
common techniques such as cost-sensitive learning (Lin
et al. 2017) and curriculum learning (Bengio et al. 2009;
Kumar, Packer, and Koller 2010) demonstrate the effective-
ness of example reweighting, they are usually predefined for
specific tasks with prior knowledge and require laborious tun-
ing of hyperparameters. To alleviate this problem adaptively,
a method of learning to auto-weight is probably effective,
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which searches weighting strategies for picking more valu-
able samples or filtering harmful samples. However, there
are some inherently severe challenges if we want to make the
searing process work well. The first challenge is the huge
searching space caused by numerous iterations during the
training process. Our objective is to search step dependent
weighting strategies for making the accuracy on validation
datasets as high as possible. Suppose a complete training pro-
cess involves thousands of steps N , the number of possible
weights for a sample is wn, the batch size is B (typical 128),
so the number of possible weights of a batch data in one step
is an = wB

n , the searching space of weights is aNn = wBN
n ,

which is an enormous number for searching a good strategy.
The second one is the randomness which is an implicit but
harmful problem for searching good weighting strategies. The
randomness can derive from different data combination, the
random augmentation, different initialization of parameters,
etc. Thus, given a strategy model for weighting strategies,
using accuracies on validation datasets to update the strategy
model may cause the searching process to fail easily. Last
but not least, collecting the training samples for learning
to auto weight is nontrivial. In practice, to obtain credible
feedback signals, we need to conduct complete training pro-
cesses, so that huge numbers of networks must be trained to
convergence. Therefore, the process of searching a weighting
strategy is time-consuming with low efficiency.

Based on the above analysis, in this paper, we propose
a novel example weighting strategies searching framework
to learn weighting strategies from data adaptively, which is
modeled by the strategy model. For the first challenge, we
simplify the searching process and divide the training process
into a small number of stages N ′ (typical 20) consisting of
successive iterations, so that the time steps for searching can
be significantly limited to the number of stages N ′ � N . We
call this method Stage-based Searching Strategy Method
(3SM), which can shrink the searching space and reduce time
costs significantly. Meanwhile, to solve the second challenge,
we design a novel feedback signal measurement, called Du-
plicate Networks Reward (DNR), where a reference network
is added to generate accuracy difference on the validation
dataset as the feedback signal to remove the randomness.
In this way, if we get a higher accuracy or lower accuracy,
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the searching algorithm could focus on the quality of the
weighting strategy, and the strategy model could be updated
for better ones. Besides, to raise the efficiency in the last
challenge, we utilize a data buffer to cache the samples for
updating the strategy model, and make full of all the data
in the buffer to optimize the strategy model for numbers
of epochs. We call this updating method Full Data Update
(FDU), which can improve the efficiency of updating the
strategy model significantly and accelerate the weighting
strategies searching. Experimental results demonstrate the su-
periority of weighting policy explored by LAW over standard
training pipeline. Especially, compared with baselines, LAW
can find a better weighting schedule which achieves much
more superior accuracy in the noisy or imbalance CIFAR and
ImageNet dataset.

Our contributions are listed as follows:

1) We propose a novel example weighting strategy search-
ing framework called LAW, which can learn weighting
policy from data adaptively. LAW can find good sample
weighting schedules that achieve higher accuracy in the
contaminated and imbalance datasets without any extra
information about the label noises.

2) We propose Stage-based Searching Strategy Method
(3SM) to shrink the huge searching space in a complete
training process.

3) We design novel Duplicate Networks Reward (DNR) that
removes the data randomness and make the process of
searching weighting strategies more effectively.

4) We propose Full Data Update (FDU) to make full use of
all the data in the buffer to make the searching strategy
process more efficient.

Related Work

Curriculum Learning: Inspired by that humans learn much
better when putting the examples in a meaningful order (like
from easy level to difficult level), (Bengio et al. 2009) formal-
izes a training strategy called curriculum learning which pro-
motes learning with examples of increasing difficulty. This
idea has been empirically verified and applied in a variety
of areas (Kumar, Packer, and Koller 2010; Lee and Grau-
man 2011; Supancic and Ramanan 2013; Jiang et al. 2014a;
Graves et al. 2017). Self-paced method (Kumar, Packer, and
Koller 2010) defines the curriculum by considering the easy
items with small losses in early stages and add items with
large losses in the later stages. (Peng, Li, and Wang 2019)
builds a more efficient batch selection method based on typ-
icality sampling, where the typicality is estimated by the
density of each sample. (Jiang et al. 2014b) formalizes the
curriculum with preference to both easy and diverse samples.
(Alain et al. 2015) reduces gradient variance by the sampling
proposal proportional to the L2-norm of the gradient. Cur-
riculums in the existing literature are usually determined by
heuristic rules and thus require laborious tuning of hyperpa-
rameters.

Weighting: The practice of weighting each training ex-
ample has been well investigated in the previous studies.
Weighting algorithms mainly solve two kinds of problems:

label noise and class imbalance. If models can converge to
the optimal solution on the training set with coarse labels,
there could be large performance gaps on the test set. This
phenomenon has also been explained in (Zhang et al. 2016;
Neyshabur et al. 2017; Arpit et al. 2017). Various regular-
ization terms on the example weights have been proposed
to prevent overfitting to on corrupted labels (Ma et al. 2017;
Jiang et al. 2015). Recently, Jiang et al. propose Mentor-
Net (Jiang et al. 2017), which provides a weighting scheme
for StudentNet to focus on the sample whose label is probably
correct. However, to acquire a proper MentorNet, it is neces-
sary to give extra information such as the correct labels on a
dataset during training. On the other hand, the class imbal-
ance is usually caused by the cost and difficulty in collecting
rarely seen classes. Kahn and Marshall (Kahn and Marshall
1953) propose importance sampling which assigns weights to
samples to match one distribution to another. Lin et al. (Lin
et al. 2017) propose focal loss to address the class imbalance
by adding a soft weighting scheme that emphasizes harder
examples. Other techniques such as cost-sensitive weight-
ing (Khan et al. 2018) are also useful for class imbalance
problems. Previous methods usually require prior-knowledge
to determine a specified weighting mechanism, the perfor-
mance will deteriorate if we cannot get accurate descriptions
of the dataset. To learn from the data, Ren et al. (Ren et al.
2018) propose a novel meta-learning algorithm that learns to
assign weights to training examples based on their gradient
directions.

Learning to Auto Weight

In this section, we first demonstrate the formulation of learn-
ing to auto weight as a problem of searching the best strategy
to pick valuable samples for training. It’s also a bilevel op-
timization problem of training a classification model and a
strategy model for weighting samples. Second, we explain
the framework to solve the optimization problem. In the end,
we describe the learning to search the best weighting strategy
in detail.

Problem Formulation

Unlike the standard SGD training process, which treats ev-
ery sample equally in all batches and all training stages,
LAW tries to find the best strategy to weight samples in dif-
ferent batches and steps for better accuracy on validation
datasets. In this paper, we model the strategy as a sample
weighting function K(f, θ) parameterized by θ, where the
f is the feature of one sample. In different training steps
t = 1, 2, 3, ...T , there are different weighting functions de-
noted by Kt(f, θt) of different weighting strategies. Given
an train dataset Xtrain = {(xi, yi)|i = 1, 2, 3...Ntrain} and
a validation dataset Xval = {(xi, yi)|i = 1, 2, 3...Nval}, we
need to train a networkM(·, w) parameterized by w for the
classification or other tasks. The purpose of LAW is to find a
weighting strategy making a training network achieve better
accuracy in all steps, and this can be realized by maximizing
the cumulative validation accuracy associated with the net-
workM(·, w), which is trained to minimize corresponding
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Figure 1: The sample weighting framework of LAW.

losses. Thus, the objective of LAW is:

max
θ
J (θ) =

∑

t

acc(w∗
t ) (1)

acc(w∗
t ) =

1

Nval

∑

(x̂,ŷ)∈Xval

δ(M(x̂, w∗
t ), ŷ) (2)

s.t. w∗
t = argmin

w

∑

(x,y)∈Xtrain

Kt(f, θt)L(M(x,w), y)

Ntrain
,

where the δ is an impulse function, whose value is 1 when
M(x̂, w∗

t ) is equal to ŷ and 0 otherwise, L denotes the loss
function. There are different weighting strategies for differ-
ent training steps. For example, in early steps, the network
may favor easy samples while in later stages, hard examples
may need be considered much more. To tackle this problem,
we sample weighting strategies according to the Kt(f, θt),
then train classification networks to obtain the best models
M(·, w∗). Next, the corresponding accuracies provide sig-
nals to optimize the Kt(f, θt). Thus, the weighting strategy
would be found under these two optimization processes inter-
actively.

Weighting Framework

Our framework is illustrated in Figure 1, where the left half
side constitutes the training procedure on classification net-
works and right side constitutes the weighting procedure by
the strategy model, named Weighting Strategy Model defined
as K(f, θ) in . In every training step, we sample a batch of
data consisting of n data items and feed them to two networks
with identical architectures, Reference Network and Target
Network. Reference Network is trained by a general training
procedure without any weighting strategy and Target Network
is trained by the weighting strategy from the Weighting Strat-
egy Model. We collect the training state of Target Network,
including Stage Step, Training Loss and Validation Accu-
racy (the details will be elaborated later) with some features
of data items like losses. Then Weighting Strategy Model
outputs weights for every data item. Thus, a weighted loss
mean is calculated by an element multiplication between the
losses and corresponding weights. In the end, the weighted

loss mean is utilized to optimize Target Network, which is
different from the optimization of Reference Network.

Stage-based Searching Strategy Method (3SM): For a
standard SGD training process, one iteration consists of a
forward and backward propagation based on the input mini-
batch of samples, and the whole training process usually
contains large numbers of successive iterations before get-
ting the final model. In this process, the weights of feeding
samples may have influences on the accuracy in the end, es-
pecially for biased training datasets. However, on account of
the thousands of iteration steps, it’s tricky and inefficiency to
search a strategy based on one iteration step. Therefore, we
uniformly divide the training process to a small number of
stages, where one weighting strategy keeps unchanged for all
iteration steps in one stage until the start of the next stage. To
clarify this, we use T = 1, 2, 3...Tmax to denote the stage,
and t = 1, 2, 3...tmax to denote iteration steps of training a
network inside one stage. So the number of total iteration
steps is Tmax × tmax. Weighting Strategy Model outputs
weights to weight all samples from t = 1 to t = (tmax − 1),
where there is no update for the strategy model. While at
t = tmax, we calculate feedback signals and update the
strategy model by the Full Data Update (the details will be
elaborated later). The 3SM is illustrated in Figure 2.

In the first step t = 1, we collect informations of the Target
Network as training phase descriptor sT in every stage, such
as current training stage T , smoothed historical training loss
lsmooth, smoothed historical validating accuracy accsmooth.
To improve the expression capacity, we embed the num-
ber of the current training stage to a d dimension vector:
T → eT ∈ Rd, which is initialized using Gaussian initializa-
tion and is optimized as a part of Weighting Strategy Model
in every searching step. When the current training stage is
T , we define an intermediate network as μ(sT |θμ) parame-
terized by θμ and the output of μ(sT |θμ) is the parameter
θT in KT (f, θT ), where f is items’ features descriptor. The
features we used are listed as follows:
Training Loss: One practicable descriptor is the training loss,
which is frequently utilized in the curriculum learning, hard
example mining and self-paced methods. The loss can be
used to describe the difficulty level of a sample and some-
times it would be helpful to drop out the samples with large
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Figure 2: Illustration of stage-based weighting strategy
searching. We conduct numbers of threads in parallel and
synchronize the gradients of the weighting strategy model.

losses when there are outliers.
Entropy: For classification tasks, the entropy of predicted
probabilities demonstrates the hardness of the input samples.
Hard examples tend to have large entropy while samples with
small and stable entropy are probably easy.
Density: The density of one item reveals how informative
or typical the sample is, which can be used to measure the
importance of samples. Obviously, samples with large den-
sity should be paid more attention to. To make it simple, we
calculate similarity matrices using samples’ logits Lo defined
as LoT Lo in one batch, and for each sample, we average it’s
similarities with other samples to approximate the density.
Label: We can also use the label on account of that the label
information would help to remove some bias in the dataset
like class imbalance.

In addition, we normalize the features to make the learning
process more stable and the learned strategy more general for
other datasets and networks. Once the features are extracted,
the weights of items are defined as:

KT (f, θT ) = 1 + tanh(θT f + b), (3)
θT = μ(sT |θμ), (4)
sT = [eT , lsmooth, accsmooth], (5)
f = [loss, entropy, density, label], (6)

For t = 0, 1, 2...tmax in stage T , the gradients of the loss
weighted by KT (f, θT ) will be propagated back to update
parameters of the Target NetworkM(·, w):

wt = wt−1 − η∇w[KT × Lb(wt−1, xb, yb)], (7)

where η is the learning rate for the network parameters, b
is the batch size, Lb denotes the batched loss which takes
three inputs: the current network parameters wt−1 and a mini-
batched data xb, yb.

Learning to Search Strategy

Considering that the validation accuracy is non-differentiable
with respect to θ in K(f, θ), it is a tricky problem to calcu-
late the gradient of validation accuracy with respect to θ. To
address this optimization problem, we utilize the method in

DDPG (Lillicrap et al. 2015) to solve the searching prob-
lem approximately. Specifically, we add an extra network
defined as Q(sT , θT |θQ) parameterized by θQ to estimate
the objective in Equation 1, where the θT is defined same as
KT (f, θT ). Thus, if the Q(sT , θT |θQ) estimates the objec-
tive precisely, we can choose θT to maximum the objective,
that is, improving the accuracy on validation datasets.

Duplicate Networks Reward (DNR): Randomness is an
implicit but harmful problem for searching good weighting
strategies. The randomness can be from the SGD optimizer,
different data combination in one batch, data orders between
batches, random augmentation of inputs, some random op-
eration like dropping out in a network architecture, different
initialization of parameters, and numerical precision in hard-
ware et al. The randomness above could disturb weighting
strategy searching because of too many factors that influ-
ence the accuracy in the end, so it’s hard for the learning
algorithm to decide what makes the accuracy higher. Thus,
the feedback signal (it’s also called reward) for updating the
strategy model, must be designed to remove the random-
ness so that the learning method can apply credits to those
better weighting strategies. Therefore, In each episode, we
train two networks, one for searching strategies called Target
Network and the other for comparison called Reference Net-
work. There are some issues should be noted: The first is that
the two network architectures is completely identical; The
second is that the initialization of parameters is completely
identical as we copy one network’s parameters to another
network directly; The third is that the data inputs at every
step are completely identical to remove data randomness.
In iteration steps updating the strategy model, we calculate
accuracies of the Target Network and Reference Network
on validation datasets and the reward is defined as the dif-
ference of accuracy between them. We call the reward from
two identical networks Duplicate Networks Reward (DNR).
In this way, if we get a higher accuracy or lower accuracy,
the searching algorithm could put enough credit on better
weighting strategies so that the strategy model could be up-
dated forward better ones. What’s more, Considering that
the reward is not important in early stages, we add different
weights from weakness to mightiness on rewards at different
stages:

reward = rw ∗ (acctarget − accreference), (8)

rw = exp(k ∗ ce

ne
) ∗ s, (9)

where ce is current epoch, ne is total number of epochs of
training process and k, s is the scale adjustment rate.

Full Data Update (FDU): Collecting the training sam-
ples for learning to auto weight is nontrivial. In practice,
only if conducting complete training processes, we can ob-
tain credible reward signals. In this way, huge numbers of
networks must be trained to convergence. Hence, for updat-
ing the strategy model, we utilize a buffer to cache transi-
tions data (Lillicrap et al. 2015), which is defined by a tuple
(sT , θT , rT , sT+1, Done), where T is the number of stage,
sT is defined in Equation 5, rT is the reward in stage T , and
Done is a bool flag indicating whether the training procedure
is finished or not. Since the time step is based on the stage,
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we calculate the reward and update the strategy model only
if the iteration step is tmax in one stage. Instead of sampling
a batch of transition data in one time step, we utilize all the
data in the buffer to update the strategy model for numbers
of epochs, so that the strategy model can take full advantage
of the cached data to learn useful knowledge. We call this
update method Full Data Update (FDU). FDU can improve
the efficiency of updating the strategy model significantly and
accelerate the weighting strategies searching. As illustrated
in Figure 2, Multiple classification networks and the strategy
models are trained in different threads in parallel simultane-
ously and the number of threads is Na. The parameters of
the strategy models are shared among all the threads, and we
synchronize gradients when updating the parameters of the
strategy model in the last step in one stage. On the contrary,
the parameters of the classification networks are optimized
independently without sharing with others.

Given μ(s|θμ) parameterized by θμ and Q(s, θ|θQ) pa-
rameterized by θQ, we have:

∇θQQ =
1

Na

Na∑

n=1

1

B

B∑

i=1

∇θQLQ(Q(si, θi)), (10)

LQ(Q(si, θi)) = (yi −Q(si, θi))
2, (11)

yi = ri + γQ(si+1, μ(si+1|θμ)), (12)

∇θμμ ≈ 1

Na

Na∑

n=1

1

B

B∑

i=1

∇θQ(si, θ|θQ)|θ=μ(si)∇θμμ(si|θμ),
(13)

where B is batch size. The algorithm to update the strategy
model is illustrated in Algorithm 1. The algorithm details of
LAW are list in the Algorithm 2.

Algorithm 1 LAW: Update the strategy model

Input:
the buffer R, number of epochs En, batch size B;
for e = 1, En do

Shuffle all the data in R
for each B transitions data do

Update Q(s, θ|θQ) one step as in Equation 10
Update μ(s|θμ) one step as in Equation 13

end for
end for

Experiments

Implementation Details

We demonstrate the effectiveness of LAW on image clas-
sification dataset CIFAR-10, CIFAR-100 (Krizhevsky and
Hinton 2009), and ImageNet (Deng et al. 2009).

CIFAR: CIFAR-10 and CIFAR-100 consist of 50,000
training and 10,000 validation color images of 32×32 reso-
lution with 10 classes and 100 classes receptively. They are
balanced datasets where each class holds the same number
of images. To search the weighting strategy, we use a part
of the training dataset like 20,000 for training and 5,000 for
validation. While for testing the strategy, we use all samples.

Algorithm 2 LAW:Learning to auto weight on one thread

Input: Training data D, batch size B, number of total train-
ing procedures L, number of total steps in one training
procedure N , number of steps in one stage K;
Randomly initialize θμ in μ(s|θμ) and θQ in Q(s, a|θQ);
for episode = 1, L do

Random initialize wt in Target Network Mt

Copy wt to wr in Reference Network Mr: wr ← wt

for t = 1, N do
if t mod K == 0 then

Calculate θt according to Equation 4
else
θt = θt−1

end if
Get data items’ weights according to Equation 3
Optimize Reference Network one step
Optimize Target Network one step according to Equa-
tion 7
if t mod K == 0 then

Compute the reward by Equation 8
if t ≥ K then

Cache the tuple (st−K , θt, rt, st, Done) in the
buffer

end if
Update the strategy model according to Algo-
rithm 1

end if
end for

end for
Output: The strategy model

General pre-processing steps are used in training, such as
zero-padding with 4 pixels, random crops with size 32×32,
random flips and standardizing the data. All the networks are
trained to convergence from scratch utilizing SGD optimizer
with a batch-size of 128. The weight decay is set to 2e − 5
and the momentum is set to 0.9. The initial learning rate is
0.1, and then the learning rate is divided by 10 when the stage
is 10,13 and 16. The total number of training epochs is 200,
thus the classification network would be harmed by biased
datasets if no weighting strategy was applied.

ImageNet: ImageNet dataset contains 1.28 million train-
ing images and 50,000 validation images with 1,000 classes.
We also sample a small part of the training dataset for search-
ing the weighting strategy. In detail, the sampled images
coverage all the classes, and contain 100 images per class.
That is, the total number of the sampled dataset is 100,000.
The process of training ImageNet follows the convention for
state-of-art ImageNet models. Concretely, the pre-processing
includes random flipping, random size crop to 224×224 and
standardization with mean channel subtraction. We use syn-
chronous SGD with a momentum rate of 0.9 and 2e − 5
weight decay. The step learning rate scheme that decreases
the initial learning rate 0.1 by a factor 0.1 every 30 epoch is
utilized. We also add a warmup stage of 2 epochs. The batch
size is set to 1024 and the number of total training epochs is
100.
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For Weight Strategy Model, the μ(s|θμ) and Q(s, θ|θQ)
are modeled using MLP with 4 layers, which is optimized
by Adam (Kingma and Ba 2014) with learning rates 10−5

and 10−4 respectively. We utilize 8 threads for searching
weighting strategies in parallel to make this process more
efficiently. Multiple threads can boost the searching process
and 8 is an empirical value. When the Na is 4, the computa-
tional complexity is lower, but the searching process slows
down compared with 8 threads. On the other hand, 16 threads
raise the computational complexity and the searching process
will be time-consuming. For every complete training, we
divide the total number of training epochs uniformly to 20
stages. What’s more, we set a warmup process considering
that weighting strategies of early training stages do not have
much impact on the accuracy in the end. That is, we don’t
utilize any weighting strategy in early training stages but train
networks in a general procedure which treats every sample
equally. After the warmup, the strategy model is optimized at
every stage to search proper strategies to focus on important
samples by weighting.

Results of effects on noisy labels compatibility

For noisy datasets, the label of each image in the training
dataset is independently changed to a uniform random class
with probability p, where p is set to 0.4. The labels of images
in the validation dataset remain unchanged for evaluation.

CIFAR Results: On the CIFAR-10 and CIFAR-100, we
evaluate two ResNet (He et al. 2016) networks, one small
18-layer ResNet, one large 101-layer ResNet and a medium
WRN-28-10 (Zagoruyko and Komodakis 2016) network.

And we illustrate the test accuracy of our LAW for differ-
ent networks on CIFAR in Table 1. The baseline is the base
model that treats every sample equally in every batch. Com-
pared with baseline models, our LAW exhibits a significant
accuracy improvements for all the networks, which reveals
that our LAW filters the noise data effectively.

To show the effectiveness on noisy datasets further, we also
perform experiments compared with popular methods with
WRN-28-10 utilizing human knowledge or meta-learning,
including Self-paced (Kumar, Packer, and Koller 2010), Men-
torNet (Jiang et al. 2017), L2RW (Ren et al. 2018), Focal
loss (Lin et al. 2017), and CO-teaching(Han et al. 2018). All
methods are evaluated under the same setting described in Im-
plementation Details except the number of total epochs is 120
and the learning rate is divided by 10 when the stage is 18 and
19. As shown in Table 2, our LAW obviously outperforms

Table 1: The top-1 accuracy on CIFAR with noise rate p =
0.4 of LAW for different networks.

Method CIFAR-10 CIFAR-100
ResNet-18(Base) 79.44 55.18
ResNet-18(LAW) 86.33 61.27

WRN-28-10(Base) 76.77 53.11
WRN-28-10(LAW) 89.73 68.23

ResNet-101(Base) 75.57 52.20
ResNet-101(LAW) 88.90 68.01

Table 2: The top-1 accuracy on noisy CIFAR with a 0.4 noise
fraction for WRN-28-10 compared with other methods.

Method CIFAR-
10-Noisy(%)

CIFAR-
100-Noisy(%)

Self-paced 86.21 46.23
MentorNet 87.56 65.56

L2RW 87.04 62.45
Focal Loss 74.12 50.71

Co-teaching 74.84 46.45
LAW 89.73 68.23

Table 3: The top-1 accuracy of on noisy ImageNet with noise
rate p = 0.4 of our LAW for different networks.

Method Noisy ImageNet(%)
ResNet-18(Base) 64.7
ResNet-18(LAW) 65.2

ResNet-34(Base) 65.4
ResNet-34(LAW) 66.5

ResNet-50(Base) 71.9
ResNet-50(LAW) 73.7

MobileNet-V2(Base) 59.3
MobileNet-V2(LAW) 60.3

any other methods.
ImageNet Results: We perform our LAW method on sev-

eral popular networks on ImageNets: ResNet-18, ResNet-34,
ResNet-50, and Mobilenetv2 (Sandler et al. 2018) to demon-
strate the effectiveness on large dataset. As the same with
CIFAR, we also construct a noisy dataset with probability
0.4. These networks including small, medium and heavy ar-
chitectures, are evaluated to illustrate the generalization of
our LAW method. Table 3 shows the top-1 test accuracy on
validation set. All the experiments are conducted following
the same setting and all the networks are trained from scratch.
Considering the high cost of training process on ImageNet,
we sample a small part of the dataset and train the weighting
model only on ResNet-18, and train the small dataset in one
GPU for searching the weighting strategies, then we transfer
the learned weighting strategies to other networks. To test the
learned strategy, we train the networks on ImageNet using
synchronous SGD. As can be seen in the table, on the noisy
ImageNet, our LAW improves the accuracy obviously. Sim-
ilar to the results on noisy CIFAR, we also find that it can
achieve more significant improvement when the network is
heavier.

Effects on imbalance data

To evaluate effects of our LAW on the imbalance data, On
CIFAR-10, we make an imbalance dataset by random discard-
ing 96% of samples with the label of 0 and 1, while keeping
the others the same as origin. That is, for the classes of 0
and 1, we only utilize 200 images on CIFAR-10 to train a
network while 5,000 for other classes. On CIFAR-100, for
the classes of 0 to 9, we utilize 50 images on CIFAR-100
to train a network while 500 for other classes. As for net-
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Table 4: The top-1 accuracy on imbalance CIFAR of our
LAW

Method CIFAR-10-
Imbalance(%)

CIFAR-100-
Imbalance(%)

Vgg-19(Base) 84.88 59.33
Vgg-19(LAW) 85.33 60.20

ResNet-18(Base) 85.93 60.24
ResNet-18(LAW) 88.44 61.94

works, we train VGG-19 (Simonyan and Zisserman 2014)
and ResNet-18 with the same setting described in Implemen-
tation Details above. It can be seen in the Table 4 that the
weighting strategies explored by LAW can deal with this
problem well.

To compare with other methods, we use Long-Tailed CI-
FAR dataset (Cui et al. 2019) and set the imbalance rate to
100, that is, the number of the largest class is 100 times the
number of the smallest class. Other popular methods include
Focal loss (Lin et al. 2017), Class-Balanced (Cui et al. 2019),
L2RW (Ren et al. 2018), and we conduct experiments with
ResNet-32 following the training schedule above except the
number of total epochs is 100 and the learning rate is divided
by 10 when the stage is 14 and 18.

Table 5: The top-1 accuracy of ResNet-32 on imbalance
CIFAR compared with other methods

Method CIFAR-10-
Imbalance(%)

CIFAR-100-
Imbalance(%)

Focal Loss 71.34 39.41
Class-Balanced 74.6 40.16

L2RW 74.25 41.23
LAW 76.34 43.61

Analysis

In this section, we perform several analyses to illustrate the
effectiveness of learned strategies by our LAW.

The curves of losses gap are shown in Figure 3, where
the loss gap is defined as the mean of items’ losses in one
batch between the network trained with the learned weight-
ing strategies and the network trained without any weighting
strategy. For noisy datasets, tendencies of loss gaps are amaz-
ingly consistent for all datasets. Figure 3a, Figure 3b and
Figure 3d illustrate loss gaps in noisy CIFAR-10, CIFAR-100
and ImageNet respectively. Apparently, the loss gaps are all
under zero, which demonstrates that the learned weighting
strategy from LAW can distinguish those data instances with
corrupted labels and reduces the weights of them. For both
CIFAR and ImageNet, the final accuracy of target networks
is significantly higher than that of reference networks. It
shows that LAW can find a much effective weighting sched-
ule to find noisy data instances and filter them. To make the
comparison more clearly, we also perform our LAW on the
clean ImageNet and draw the loss gap in Figure 3c. Figure 3c
demonstrates that the most of loss gap is near the 0 value
and above 0 value in the later stage, which is contrary to the

results on noisy ImageNet. That is, our LAW can find the
noisy samples effectively and filter them in the early stages
so that the damage from noise can be eliminated.
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Figure 3: The loss mean gap between target network and
reference network in random three episodes.

On imbalance datasets, we calculate the weight mean of
samples from classes with a small number of images and the
weight mean of other classes in one batch along with training
steps. As showed in Figure 4a and 4b, on both datasets, the
weights of the samples of label 0 is obvious larger than the
samples of other labels. What interesting is that in early steps,
the weights of small classes and other classes are close to
each other, but in the later stage, the difference of two weight
becomes larger. Our LAW can find samples of small classes
and increase their weights. The policy explored by LAW can
deal with imbalance problems well.

(a) CIFAR10-Imbalance (b) CIFAR100-Imbalance

Figure 4: The weight means of classes with a small number
of images (Weight Mean 0) and other classes with an original
number of images (Weight Mean Others) on CIFAR.

Conclusion

In this paper, we propose a novel example weighting frame-
work called LAW, which can learn weighting policy from
data adaptively. Experimental results demonstrate the supe-
riority of weighting policy explored by LAW over standard
training pipeline.
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