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Abstract

With the rapid development of mobile devices, people are
generating huge volumes of images data every day for shar-
ing on social media, which draws much research attention to
understanding the contents of images. Image clustering plays
an important role in image understanding systems. Often,
most of the existing image clustering algorithms flatten digi-
tal images that are originally represented by matrices into 1D
vectors as the image representation for the subsequent learn-
ing. The drawbacks of vector-based algorithms include lim-
ited consideration of spatial relationship between pixels and
computational complexity, both of which blame to the simple
vectorized representation. To overcome the drawbacks, we
propose a novel image clustering framework that can work
directly on matrices of images instead of flattened vectors.
Specifically, the proposed algorithm simultaneously learn the
clustering results and preserve the original correlation infor-
mation within the image matrix. To solve the challenging ob-
jective function, we propose a fast iterative solution. Exten-
sive experiments have been conducted on various benchmark
datasets. The experimental results confirm the superiority of
the proposed algorithm.

Introduction

Clustering has attracted increasingly interests in the fields of
computer vision and machine learning. Its goal is to parti-
tion data points into disjoint groups such that the data points
in the same group close to each other and those in different
groups far apart (Jain and Dubes 1988; Chang et al. 2015;
Abassi and Boukhris 2019). To effectively index, retrieve
and organize the explosively increasing multimedia data, re-
searchers have employed many clustering algorithms for im-
age clustering (Datta et al. 2008; Xia et al. 2016; Caron et
al. 2018).

To improve the performance of automatic image annota-
tion systems, image clustering algorithms have been adopted
in various ways (Wang et al. 2018; Peng et al. 2018). For
example, Li et al. propose to first cluster personal album
images represented by bags of weighted vectors, learn the
conceptual categories for the clusters using a web-based an-
notation approach, and then obtain the conceptual categories
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of the whole dataset in a semi-supervised learning fashion.
Researchers have also successfully applied image clustering
algorithms in content based image retrieval (CBIR) systems.
In (Gordon, Greenspan, and Goldberger 2003), Gordon et
al. utilize the traditional clustering algorithm, k-means, as
a preprocessing approach. To represent the diverse views of
the landmarks, Kennedy et al. employ the clustering algo-
rithms to select the most discriminative images (Kennedy
and Naaman 2008).

Most of the existing clustering algorithms, however, only
work well when the sample’s dimensionality is low. Due
to the curse of dimensionality, the clustering performance
of thse algorithms is not guaranteed. For example, classi-
cal k-means clustering algorithm iteratively assigns each
sample to the cluster with the closest centroid based well-
defined metric learning method and updates the centroid
of the data points in each cluster. However, it is challeng-
ing for the metric learning method to be accurate, which
tends to deteriorate subsequent clustering performance. In-
spired by the fact that high-dimensional data may exhibit
dense grouping in a low-dimensional subspace (Chang et al.
2016), researchers seek to project the high-dimensional data
into a low-dimensional subspace using some subspace learn-
ing algorithms, and then perform clustering with the learned
low-dimensional representation. An intuitive way is to em-
ploy principal components analysis (PCA) for dimension re-
duction, and classical k-means for clustering in the lower-
dimensional space (Xu and II 2005). Some researchers, how-
ever, claim that linear discriminant analysis (LDA) is more
suitable than PCA for clustering because LDA is capable
of encoding discriminant information (Ding and Li 2007).
They show that better performance is obtained when inte-
grating k-means and LDA into a single framework.

Another direction of clustering is to consider the manifold
structure of data. The representative algorithms are spec-
tral clustering (SC) algorithm, normalized cut (NCut), and
k-way NCut (Yu and Shi 2003), which have demonstrated
their superiority in terms of image segmentation and other
real-world applications. These clustering algorithms rely on
the graph construction, which is computed with the simi-
larities among the data points. Therefore, these algorithms
are sensitive to the bandwidth parameter. To solve this prob-
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lem, researchers have proposed different variants of spec-
tral clustering algorithms. For example, Wu et al. propose to
learn a Laplacian matrix using local learning based cluster-
ing (LLC), which is built on the assumption that the clus-
ter label of each data point is close to the one predicted by
the local regression model. Self-tuning spectral clustering
(Zelnik-Manor and Perona 2004) is capable of learning the
best parameters automatically in an unsupervised setting.

Although most existing clustering algorithms have
achieved promising performance, they require that an im-
age be represented by a vector. The researchers usually con-
catenate each row/column of an image matrix, resulting in
a vectorized representation. This process has some inher-
ent limitations. First, it erases the spatial relationship of the
image. Second, the computational burden increases dramat-
ically since the dimensionality increases when the matrix
representation is transformed into the vector representation.
An intuitive way to solve this problem is to work with data
in a matrix representation, which is able to preserve the orig-
inal spatial information and reduce the computational com-
plexity. Although much progress has been made on two-
dimensional dimensionality reduction (Chang et al. 2016;
Hou et al. 2017; Ma et al. 2013), few attention has been paid
to two-dimensional clustering (Luo, Huang, and Ding 2011).

Inspired by the progress of clustering analysis and two-
dimensional learning, we propose a novel clustering algo-
rithm for image matrices. The proposed method is able
to work directly on matrices of images instead of flat-
tened vectors. It simultaneously learns the clustering results
and preserves the original structure information within the
image matrix. We name the new method Adaptive Two-
Dimensional Embedded Image Clustering (A2DEIC). The
main contributions of this work are summarized as follows

• To the best of our knowledge, we proposed the first clus-
tering algorithm that can directly deal with matrix represen-
tations. In this way, we can preserve the spatial correlations
within the original data.

• Since the objective function is non-smooth and difficult
to solve, we propose a fast iterative solution to optimize it.
The experimental results confirm that the objective function
generally converges within 10 steps.

• We conduct extensive experiments on several benchmark
datasets, and confirmed the superiority of the proposed algo-
rithm, which demonstrates the benefits of two-dimensional
embedding for improving the performance of image cluster-
ing.

Related Work

In this section, we briefly review related works on vector-
based image clustering approaches and two-dimensional
feature analysis.

Vector-based Image Clustering

Currently, vector-based clustering methods have been ap-
plied in many Content Based Image Retrieval (CBIR) ap-
plications to improve performance. Conventionally, 2D im-
ages are flattened into 1D vectors and packed together to

form a large matrix followed by learning procedure. Because
of simplicity, k-means has been pervasively utilized for im-
age clustering by the computer vision community. For im-
ages represented by 1D vectors, K-means iteratively calcu-
lates distances between image vectors and all the centroids,
and assigns the closest cluster label to each image, followed
by updating the new centroids for each cluster. However,
in such a big data era, high-definition images have larger
vector representations, which results in high computational
cost. The performance downturn of k-means clustering al-
gorithm and its variants that are performed in the original
feature space are inevitable. To tackle this problem, one line
of research introduce subspace learning that transforms the
original features onto a lower dimensional subspace to ex-
ploit distinctive features without sacrificing the effectiveness
and efficiency of learning performance. One typical solu-
tion is to apply principal component analysis (PCA) convert-
ing high dimensional data into lower dimensional data and
then perform k-means clustering in the lower dimensional
subspace. Another representative algorithms that learn a
low dimensional subspace in a linear manner include lin-
ear discriminant analysis (LDA) (Belhumeur, Hespanha, and
Kriegman 1997), have been studied in (Ding and Li 2007;
Ye, Zhao, and Wu 2008) and proved be superior to a com-
bination of PCA and k-means regarding data clustering in
the learned subspace. To enhance of robustness of aforemen-
tioned subspace learning algorithms, non-Euclidian mea-
sures, such as �1-norm and its generalized version, �p-
norm, have been well studied in (Zhong and Zhang 2013;
Zhong, Zhang, and Li 2014; Lu, Zou, and Wang 2016;
Kwak 2014; Oh and Kwak 2013) to deal with outliers effec-
tively. Although the conventional algorithms are widely used
for image clustering, the nature of two dimension within im-
ages can not be preserved because of the vector-based image
representation.

Two-Dimensional Feature Analysis

To capture the 2D nature of images, 2D-based subspace
methods have aroused broad interests in the fields of pattern
recognition and machine learning. Yang et al. (Yang et al.
2004) propose 2DPCA performing feature analysis on a 2D
image matrix rather than a flattened 1D image vector, pre-
serving the topology structures between pixels. As 2DPCA
can only take advantage of the variations between rows,
which ignores important information between columns, bi-
lateral projection-based 2DPCA (B2DPCA) (Kong et al.
2005; Zhang and Zhou 2005; Yang and Liu 2007; Wang et
al. 2017), 2DSVD (Ding and Ye 2005) and its high order
version (HOSVD) (Luo, Huang, and Ding 2011) have been
developed to analyze features both in rows and columns.
(Zhang et al. 2015) have pointed that the squared F-norm
based 2DPCA and related variants are not robust to out-
liers. To handle this problem, L1-norm has been studied in
(Li, Pang, and Yuan 2010; Wang et al. 2015) as the distance
metric in the criterion function, as well as the nuclear norm
(N-2DPCA and N-B2DPCA) (Zhang et al. 2015). Compar-
ing to the family of two-dimensional PCA feature analy-
sis methods, another type of representative two-dimensional
feature analysis algorithms, 2DLDA (Ye, Janardan, and Li
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2005) and its variants (Yan et al. 2007; Li et al. 2008;
Luo, Ding, and Huang 2009; Chang et al. 2016) aim to maxi-
mize the ratio of between-class to within-class scatter matri-
ces as a matrix-based discriminant criterion. Inspired by the
�1-norm 2DPCA technique, L1-norm based 2DLDA algo-
rithms (Chen, Yang, and Jin 2014; Li, Shao, and Deng 2015)
have been developed for two-dimensional feature analysis
in the sense that measurement of outliers can be obviously
detrimental to the objective function with the squared F-
norm metric.

Clustering Image Matrices

In this section, we first describe the details of the proposed
algorithm, followed by an efficient iterative approach to
solve the objective function.

Problem Formulation

Our work is built on the intuition that an image’s 2D struc-
ture should be better represented by a matrix form (Chang et
al. 2016; Hou et al. 2017; Ma et al. 2013). Inspired by recent
progress on two-dimensional feature learning, we propose a
two-dimensional embedded clustering algorithm for image
matrices.

To facilitate the later presentation, we first give the nota-
tions that will be used in this work. Given an image dataset
X = {X1, X2, . . . , Xn}, Xi ∈ R

w×h (1 ≤ i ≤ n) is the i-
th image, w and d are the width and height of an image, and
n is the total numbe of images in this dataset. The goal of im-
age clustering is to partition X into c cluters. Let us define
the cluster assignment matrix by Y = {y1, y2, . . . , yn} ∈
R

n×c, where yi ∈ {0, 1}c×1 (1 ≤ i ≤ n) denotes the cluster
indicator vector the the image Xi. The j-th element of yi is
1 if the image Xi is partitioned into the j-th cluster, and 0
otherwise.

Given the image dataset X , two-dimensional clustering
algorithm minimizes the following objective function:

min
U,V,C

n∑
i=1

c∑
j=1

‖UTXiV − Cj‖2F , (1)

s.t. UTU = I, V TV = I

where U ∈ R
w×w1 and V ∈ R

h×h1 are projection matrices
which map the original data points into a lower dimensional
subspace Rw1×h1 . Cj is the centroid matrix of the j-th clus-
ter in the lower-dimensional subspace.

By incorporating the cluster assignment matrix Y , the ob-
jective function arrives at:

min
U,V,C,Y

n∑
i=1

c∑
j=1

yij‖UTXiV − Cj‖2F , (2)

s.t. UTU = I, V TV = I, Y ∈ Ind

where Y is used to weight the overall loss.
Meanwhile, we maximize the covariance in the projected

space by the following objective function:

max
U,V

n∑
i=1

‖UT (Xi − X̄)V ‖2F (3)

s.t. UTU = I, V TV = I

Combining Equation (2) and Equation (3), the objective
function arrives at:

min
U,V,Y,C

n∑
i=1

c∑
j=1

yij‖UTXiV − Cj‖2F

− λ

n∑
i=1

‖UT (Xi − X̄)V ‖2F (4)

s.t. UTU = I, V TV = I, Y ∈ Ind

where λ is a parameter to balance the two terms.

Optimization

In this section, we propose an iterative approach to optimize
the proposed objective function in Equation (4).
(1) Fixing Y, and optimizing U , V and C:

Setting the derivative of the objective function w.r.t. C to
zero, we get:

Cj =

∑n
i=1 yijU

TXiV∑n
i=1 yij

(5)

By incorporating Equation (5) into the original objective
function, we arrive at:

min
U,V

n∑
i=1

c∑
j=1

yij‖UT (Xi − X̄j)V ‖2F

− λ

n∑
i=1

‖UT (Xi − X̄)V ‖2F (6)

s.t. UTU = I, V TV = I

where

X̄j =

∑n
i=1 yijXi∑n
i=1 yij

(7)

We rewrite the objective function as follows:

min
U,V

‖UTMV ‖2F , s.t. UTU = I, V TV = I (8)

where

M =

n∑
i=1

c∑
j=1

yij(Xi − X̄j)− λ

n∑
i=1

(Xi − X̄) (9)

By fixing U , the objective function becomes:

min
V

tr(V TMTUUTMV ), s.t. V TV = I, (10)
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Algorithm 1: Optimization Algorithm for A2DEIC
1 Input: Xi ∈ R, λ
2 Output: U , V , Y , C
3 Compute the image mean X̄
4 Initialize the indicator matrix Y ∈ R

n×n

5 repeat

6 Compute X̄j according to Equation (7)
7 Compute Cj according to Equation (5)
8 Compute M according to Equation (9)
9 Compute V by eigen-decomposition of MTUUTM

10 Compute U by eigen-decomposition of MV V TMT

11 Compute Y by solving Equation (12)
12 until convergence;

where tr(·) denotes the trace operator. The objective func-
tion of Equation (10) can be solved by eigen-decomposition
of MTUUTM .

Similarly, by fixing V , the objective function becomes:

min
U

tr(UTMV V TMTU), s.t. UTU = I (11)

The objective function of Equation (11) can be solved by
eigen-decomposition of MV V TMT .
(2) Fixing U, V, C, and optimizing Y : The objective func-
tion arrives at:

min
Y ∈Ind

n∑
i=1

c∑
j=1

yij‖UTXiV − Cj‖2F (12)

This equation can be easily solved and result in the optimal
Y .

The optimization of C, U , V , and Y is iterated until con-
vergence. We summarize the detailed iteration process in Al-
gorithm 1.

Convergence Analysis

In this subsection, we prove the convergence of Algorithm
1. By the following theorem, we can verify that the proposed
iterative approach in Algorithm 1 converges and the optimal
solution of U , V , C, and Y are achieved.

Theorem 1. The value of the proposed objective function in
Equation (4) monotonically decreases in each iteration until
convergence using the iterative approach in Algorithm 1.

Lemma 1. By fixing Y , we get the optimal solutions for
U , V and C. Similarly, by fixing U , V , and C, we get the
optimal solutions for Y .

Proof. By fixing Y , we have obtained the optimal C by
setting the derivative of the objective function w.r.t. C to
zero. Then the optimal U and V are obtained by eigen-
decomposition, respectively. Finally, the optimal Y is ob-
tained by solving the objective function Equation (12).

Next, we prove Theorem 1 as follows:

Proof. Suppose after the t-th iteration, we get Y (t), U (t),
V (t), and C(t). In the next iteration, we fix Y as Y (t),
and solve for U (t+1), V (t+1), and C(t+1). According to
Lemma 1, we obtain:

n∑
i=1

c∑
j=1

y
(t)
ij ‖U (t+1)TXiV

(t+1) − C
(t+1)
j ‖2F

− λ

n∑
i=1

‖U (t+1)T (Xi − X̄)V (t+1)‖2F

≤
n∑

i=1

c∑
j=1

y
(t)
ij ‖U (t)TXiV

(t) − C
(t)
j ‖2F (13)

− λ

n∑
i=1

‖U (t)T (Xi − X̄)V (t)‖2F

Similarly, when we fix U as U (t), V as V (t) and C as
C(t), the following inequality hods:

n∑
i=1

c∑
j=1

y
(t+1)
ij ‖U (t)TXiV

(t) − C
(t)
j ‖2F

− λ

n∑
i=1

‖U (t+1)T (Xi − X̄)V (t+1)‖2F

≤
n∑

i=1

c∑
j=1

y
(t)
ij ‖U (t)TXiV

(t) − C
(t)
j ‖2F (14)

− λ

n∑
i=1

‖U (t)T (Xi − X̄)V (t)‖2F

By integrating Equation (13) and Equation (14), we arrive
at:

n∑
i=1

c∑
j=1

y
(t+1)
ij ‖U (t+1)TXiV

(t+1) − C
(t+1)
j ‖2F

− λ

n∑
i=1

‖U (t+1)T (Xi − X̄)V (t+1)‖2F

≤
n∑

i=1

c∑
j=1

y
(t)
ij ‖U (t)TXiV

(t) − C
(t)
j ‖2F (15)

− λ

n∑
i=1

‖U (t)T (Xi − X̄)V (t)‖2F

Equation (15) demonstrates that after each iteration, the
value of the proposed objective function decreases. Thus,
Theorem 1 has been proved.

Experiment

In this section, we perform extensive experiments on several
widely used benchmark datasets to confirm the superiority
of the proposed algorithm.
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Table 1: We evaluate the performance of all the compared algorithms in terms of clustering accuracy (ACC±Standard Devia-
tion). Performance is reported in percentages.

ACC

UUIm CVL Pointing’04 (tilt) Pointing’04 (pan) USPS Coil20

k-means 84.49±1.46 73.64±2.16 41.85±1.85 26.38±1.69 90.04±1.62 60.68±1.58
DKM 87.12±1.84 75.82±1.68 43.26±1.83 27.85±2.17 91.52±2.16 63.24±1.63

SC 86.45±1.82 76.06±2.41 42.72±1.54 28.16±2.08 92.37±1.85 62.83±1.84
SSC 88.83±1.69 77.85±1.66 44.36±1.83 29.44±1.84 92.24±2.23 64.19±1.36
BKM 87.01±1.13 77.68±1.45 45.01±1.94 28.63±1.66 93.48±2.07 65.88±1.69
BCLR 88.96±1.75 76.59±1.82 46.80±1.88 30.15±1.95 94.43±1.78 67.34±1.62

SSC [a] 86.15±1.60 76.94±1.85 44.85±1.98 28.68±2.16 92.85±1.88 64.92±1.68
DGSC [b] 88.54±1.92 78.25±1.72 46.82±2.17 30.52±1.85 94.26±1.60 66.26±1.74

Sep. 2D proj. & Cluster. 86.82±1.95 77.21±2.08 44.82±1.92 27.96±2.21 92.64±1.95 63.16±1.88
A2DEIC 90.14±1.88 79.74±1.56 48.76±2.05 32.68±1.86 96.15±1.97 67.16±1.95

Dataset Description

We evaluate the performance of the proposed algorithm on
the following datasets.

– UUIm Head Post and Gaze dataset (Weidenbacher et al.
2007): This dataset has been widely used to test the perfor-
mance in terms of head pose and gaze recognition. There
are 2,220 images in this dataset, which can be grouped to 10
different people. Each image has been resized to 24 × 32.

– CVL handwritten dataset (Mouchère et al. 2013): We use
this dataset to evaluate the performance in terms of hand-
written digit recognition. This dataset has 21,780 handwrit-
ten digital images. All the images in this dataset are resized
to 32 × 32.

– Pointing’04 Head Pose dataset (Gourier, Hall, and Crow-
ley 2004): This dataset has been widely used for head pose
estimation. The dataset contains 2,790 images, which is cap-
tured from 15 different persons. In this work, each image
was resized to 40 × 30. We report the experimental results
in terms of tilt and pan angles.

– USPS handwritten digit dataset: This dataset is used to
evaluate the performance of handwritten digit recognition
of the proposed algorithm. This dataset constitutes of 9,298
images. We resize each image to 16 × 16.

– Coil20 object dataset (Nene, Nayar, and Murase 1996):
There are 1,440 images in this dataset, which can be grouped
into 20 objects. We resize all the images to 32 × 32.

Experimental Setup

We compare the proposed algorithm with k-means (KM),
Discriminative k-means (DKM) (Ye, Zhao, and Wu 2007),
Spectral Clustering (SC) (Chen et al. 2011), Spectral Shrunk
Clustering (SSC) (Chang et al. 2015), Balanced k-means
(BKM) (Malinen and Fränti 2014) and Balanced Cluster-
ing with Least Square Regression (BCLSR) (Liu et al.
2017). For fair comparison, we tune the parameters of all
the compared algorithms by grid search, from the range of
{10−3, 10−2, 10−1, 100, 101, 102, 103}.

Following previous works (Chang et al. 2015; Liu et al.
2017), we employ clustering accuracy (ACC) and normal-
ized mutual information (NMI) as the evaluation metrics.

Let qi represent the clustering label result from a clus-
tering algorithm and pi represent the corresponding ground
truth label of an arbitrary data point xi. Then ACC is de-
fined as follows:

ACC =

∑n
i=1 δ(pi,map(qi))

n
, (16)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates better clustering
performance.

For any two arbitrary variables P and Q, NMI is defined
as follows:

NMI =
I(P,Q)√
H(P )H(Q)

, (17)

where I(P,Q) computes the mutual information between P
and Q, and H(P ) and H(Q) are the entropies of P and Q.
Let tl represent the number of data in the cluster Cl(1 ≤ l ≤
c) generated by a clustering algorithm and t̃h represent the
number of data points from the h-th ground truth class. NMI
metric is then computed as follows:

NMI =

∑c
l=1

∑c
h=1 tl,hlog(

n×tl,h
tl ˜th

)√
(
∑c

l=1 tl log
tl
n )(

∑c
h=1 t̃h log

˜th
n )

, (18)

where tl,h is the number of data samples that lie in the inter-
section between Cl and h-th ground truth class. Similarly, a
larger NMI indicates better clustering performance.

Experimental Results

We report the experimental results in Tables 1 and 2. The
performance is reported in percentages. From the experi-
mental results, we can see that the proposed method consis-
tently performs better than the other compared algorithms
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Table 2: We evaluate the performance of all the compared algorithms in terms of normalized mutual information
(NMI±Standard Deviation). Performance is reported in percentages.

NMI

UUIm CVL Pointing’04 (tilt) Pointing’04 (pan) USPS Coil20

k-means 63.58±2.36 58.72±1.95 33.83±1.75 18.78±2.28 83.95±1.86 48.74±1.64
DKM 66.91±2.52 60.24±1.58 35.52±2.05 19.85±1.82 84.37±2.18 50.18±1.87

SC 66.54±2.16 62.41±2.05 34.96±1.82 21.49±2.07 84.96±2.35 52.27±1.82
SSC 68.02±1.95 64.83±1.89 36.28±1.96 20.88±2.25 88.01±1.98 51.86±1.96
BKM 69.38±1.87 63.98±2.06 38.04±2.12 22.29±1.98 89.67±2.16 53.95±1.82
BCLR 70.40±1.92 65.12±2.68 37.72±2.36 23.02±1.87 88.75±1.79 54.82±2.14

SSC [a] 68.25±1.82 64.96±1.82 36.42±2.05 21.12±1.99 88.24±1.86 52.04±2.04
DGSC [b] 70.14±1.97 64.86±2.04 38.08±1.86 23.04±2.06 89.17±2.21 53.75±1.86

Sep. 2D proj. & Cluster. 67.28±2.06 62.97±2.18 36.46±1.96 21.42±1.85 87.87±1.92 52.09±1.84
A2DEIC 72.86±1.88 67.46±2.44 40.18±2.29 25.16±2.14 91.42±1.78 56.78±2.06
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Figure 1: We show the clustering performance variations of the proposed algorithm w.r.t. various parameters. We use clustering
accuracy as the evaluation metric. From the experimental results, we observe that the proposed algorithm has a consistent
preference on parameter setting, which makes it uncomplicated to get optimal parameter value in practice.

in terms of both evaluation metrics. We have the following
observations:
– The spectral clustering performs better than the classi-
cal k-means and its variants. From this observation we can
see the advantage of exploring the pairwise similarity infor-
mation between all data points from a weighted graph adja-
cency matrix.
– BCLR is the second best algorithm. This is because it
employs a balance constraint to regularize the clustering
model, and gets a balanced clustering result.

– The proposed algorithm generally achieves the best re-
sults of clustering in terms of both clustering accuracy and
normalized mutual information, which demonstrates the su-
periority of two-dimensional embedding for image cluster-
ing.

Sensitivity Analysis

In this subsection, we conduct extensive experiments to an-
alyze the sensitivity of the proposed algorithm w.r.t. the pa-
rameter λ in the objective function, and report the results in
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Figure 2: The convergence curves of the proposed algorithm on all the used datasets. From these figures, we can observe that
the objective function generally converges within 10 steps, which is very efficient.

Figure 1. Clustering accuracy is used as an example in this
subsection. From the experimental results we can see that
the performance of the proposed algorithm varies when we
tune the parameter λ. However, we also observe that the pro-
posed algorithm consistently has a better performance when
λ is in the range of {10−2, 10−1, 100}, which makes it not
complicated to get the optimal parameter in the practical ap-
plications. We also have similar observations when normal-
ized mutual information (NMI) is used.

Convergence Study

In the previous section, we have proved the convergence of
the proposed algorithm. In this subsection, we conduct ex-
tensive experiments to demonstrate the convergence of the
proposed algorithm. Following (Chang et al. 2015), we fix
the parameter λ at 1. The experimental results are shown in
Figure 2. From the experimental results we can observe that
the objective function value converges very quickly, which
is generally within 10 steps. The convergence speed demon-
strates the effectiveness of the proposed algorithm.

Conclusion
In this paper, we have proposed a novel adaptive two-
dimensional embedded image clustering algorithm. Our
work is built on the intuition that an image’s 2D structure
should be better represented by a matrix form. To solve
the challenging objective function, we propose a fast iter-
ative solution. We have conducted extensive experiments

to validate the superiority of the proposed algorithm in
terms of clustering accuracy using five different datasets.
In the future, we plan to apply the proposed algorithm
for other related applications, i.e. image segmentation, co-
segmentation, etc.
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