
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Differentiable Algorithm for Marginalising Changepoints

Hyoungjin Lim, Gwonsoo Che, Wonyeol Lee, Hongseok Yang
School of Computing
KAIST, South Korea

{lmkmkr, gche, wonyeol, hongseok.yang}@kaist.ac.kr

Abstract

We present an algorithm for marginalising changepoints in
time-series models that assume a fixed number of unknown
changepoints. Our algorithm is differentiable with respect to
its inputs, which are the values of latent random variables
other than changepoints. Also, it runs in time O(mn) where
n is the number of time steps and m the number of change-
points, an improvement over a naive marginalisation method
with O(nm) time complexity. We derive the algorithm by
identifying quantities related to this marginalisation problem,
showing that these quantities satisfy recursive relationships,
and transforming the relationships to an algorithm via dy-
namic programming. Since our algorithm is differentiable,
it can be applied to convert a model non-differentiable due
to changepoints to a differentiable one, so that the resulting
models can be analysed using gradient-based inference or
learning techniques. We empirically show the effectiveness
of our algorithm in this application by tackling the posterior
inference problem on synthetic and real-world data.

1 Introduction
Time-series data from, for instance, econometrics, medi-
cal science, and political science (Erdman and Emerson
2008; Lio and Vannucci 2000; Spokoiny and others 2009;
Haynes, Eckley, and Fearnhead 2017; Reeves et al. 2007;
Lung-Yut-Fong, Lévy-Leduc, and Cappé 2012) often show
abrupt regime shifts, so that analysing those data commonly
requires reasoning about the moments of these shifts, called
changepoints. Two popular reasoning tasks are inferring the
number of changepoints and detecting the specific values or
distributions of the changepoints. Information found from
these tasks enables the use of different statistical models for
different segments of the data, identified by changepoints,
which leads to accurate analysis of the data. However, due
to the discrete nature of changepoints, developing efficient
algorithms for the tasks is tricky, and often requires an in-
sight into the structure of a class of models used.

In the paper, we study the problem of marginalising
changepoints, which has been under-explored compared
with the two tasks mentioned above. We present a differen-
tiable algorithm for marginalising changepoints for a class

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of time-series models that assume a fixed number of change-
points. Our algorithm runs in O(mn) time where m is the
number of changepoints and n the number of time steps.
We do not know of any O(mn)-time algorithm that directly
solves this changepoint-marginalisation problem. The class
of models handled by our algorithm is broad, including non-
Markovian time-series models.

Our marginalisation algorithm is differentiable with re-
spect to its inputs, which enables the use of gradient-based
algorithms for posterior inference and parameter learn-
ing on changepoint models. Since changepoints are dis-
crete, gradient-based algorithms cannot be applied to these
models, unless changepoints are marginalised out. In fact,
marginalising discrete variables, such as changepoints, is
a trick commonly adopted by the users of the Hamilto-
nian Monte Carlo algorithm or its variant (Stan Develop-
ment Team 2018). Our algorithm makes the trick a viable
option for changepoint models. Its O(mn) time complex-
ity ensures low marginalisation overhead. Its differentiabil-
ity implies that the gradients of marginalised terms can be
computed by off-the-shelf automated differentiation tools
(Paszke et al. 2017; Abadi et al. 2016). In the paper, we
demonstrate these benefits of our algorithm for posterior in-
ference.

The key insight of our algorithm is that the likelihood of
latent variables with changepoints marginalised out can be
expressed in terms of quantities that satisfy recursive rela-
tionships. The algorithm employs dynamic programming to
compute these quantities efficiently. Its O(mn) time com-
plexity comes from this dynamic programming scheme, and
its differentiability comes from the fact that dynamic pro-
gramming uses only differentiable operations. In our experi-
ments with an inference problem, the algorithm outperforms
existing alternatives.

The rest of the paper is organised as follows. In §2, we de-
scribe our algorithm and its theoretical properties, and in §3,
we explain how this algorithm can be used to learn model
parameters from given data. In §4, we describe our experi-
ments where we apply the algorithm to a posterior-inference
problem. In §5, we put our results in the context of existing
work on changepoint models and differentiable algorithms,
and conclude the paper.

4828

2 Marginalisation Algorithm

Let n,m be positive integers with n ≥ m, and R+ be the set
of positive real numbers. We consider a probabilistic model
for n-step time-series data with m+1 changepoints, which
has the following form. Let X ⊆ Rk and Z ⊆ Rl.

x1:n ∈ Xn — data points over n time steps.
w1:n ∈ Rn

+ — wt expresses a relative chance of the
step t becoming a changepoint. wn = 1.

z1:m ∈ Zm — latent parameters deciding the distribution
of the data points x1:n.

τ0:m ∈ Nm+1 — changepoints. 0= τ0 <τ1 < · · ·<τm =n.

P (τ0:m |w1:n) �
1

W

m−1∏
i=1

wτi where W =
∑
τ0:m

m−1∏
i=1

wτi ,

P (x1:n, z1:m, τ0:m |w1:n) �

P (z1:m)P (τ0:m |w1:n)
m∏
i=1

τi∏
(j=τi−1+1)

P (xj |x1:j−1, zi).

For simplicity, we assume for now that w1:n is fixed and
its normalising constant W is known. In §2.1, we will show
how the assumption can be removed safely.

Our goal is to find an efficient algorithm for computing the
likelihood of the data x1:n for the latent z1:m, which involves
marginalising the changepoints τ0:m as shown below:

P (x1:n | z1:m, w1:n)=
∑
τ0:m

P (x1:n, τ0:m | z1:m, w1:n). (1)

Note that summing the terms in (1) naively is not a viable
option because the number of the terms grows exponentially
in the number of changepoints (i.e., O(nm−1)).

Our algorithm computes the sum in (1) in O(mn) time.
Two key ideas behind the algorithm are to rewrite the sum in
terms of recursively expressible quantities, and to compute
these quantities efficiently using dynamic programming.

For integers k, t with 1 ≤ k < m and m− 1 ≤ t < n, let

Tk,t � {τ0:m | τ0:m changepoints, τm−1 = t, and
1 + τi = τi+1 for all i with k≤ i<m−1},

L0,t � 0, Lk,t �
∑

τ0:m∈Tk,t

P (x1:n, τ0:m | z1:m, w1:n),

Rm,t � 1, b(k, t) � t− ((m− 1)− k),

Rk,t �
m−1∏
j=k

P (xb(j,t)+1 |x1:b(j,t), zj)× wb(j,t)+1

P (xb(j,t)+1 |x1:b(j,t), zj+1)× wb(j,t)
.

The first Tk,t consists of changepoints τ0:m such that τm−1

ends at t and (τk, τk+1, . . . , τm−1) are consecutive. The next
Lk,t selects the summands in (1) whose changepoints τ0:m
are in Tk,t. It then sums the selected terms. The b(k, t) com-
putes the value of the k-th changepoint for 1 ≤ k < m
when the changepoints τk, τk+1, . . . , τm−1 are consecu-
tive and the value of τm−1 is t. The last Rk,t is the ra-
tio of the probabilities of the segment xb(k,t)+1:b(m−1,t)+1

Figure 1: Visualisation of a case split used in Theorem 2.

(= xb(k,t)+1:t+1) and the changepoints τk:m−1 under two
different assumptions. The numerator assumes that τj =
b(j, t) + 1 for all k ≤ j < m, whereas the denominator
assumes that τj = b(j, t) for all those j. A good heuristic
is to view Rk,t as the change in the probability of the seg-
ment xb(k,t)+1:t+1 and the changepoints τk:m−1 when those
changepoints are shifted one step to the right.

The next three results formally state what we have
promised: the Lk,t can be used to express the sum in (1),
and the Lk,t and the Rk,t satisfy recursive relationships.

Proposition 1.
∑

τ0:m
P (x1:n, τ0:m | z1:m, w1:n) in (1) is

equal to
∑n−1

t=m−1 Lm−1,t.

Proof. Because {Tm−1,t | m−1 ≤ t < n} is a partition of
the set of all changepoints τ0:m.

Thus, we can marginalise changepoints by computing∑n−1
t=m−1 Lm−1,t. This begs the question of how to compute

the Lm−1,t’s. The next two results give an answer.

Theorem 2. For all k, t with 1 ≤ k < m and m ≤ t < n,

Lk,m−1 = P (x1:n | z1:m, τ0:m=(0, 1, . . . ,m−1, n))
× P (τ0:m=(0, 1, . . . ,m−1, n) |w1:n) ,

Lk,t = Lk−1,t + Lk,t−1 ×Rk,t−1 .

Figure 1 visualises a case split used in the second equa-
tion. Lk,t is the quantity about changepoints with τk:m−1 =
(b(k, t), . . . , t). The figure shows that such changepoints can
be partitioned into those with τk−1 = b(k−1, t) and the rest.
The first summand Lk−1,t computes the contribution of the
changepoints in the first partition, and the other summand of
the equation that of the changepoints in the second partition.

Proof. By definition, Tk,m−1 is the singleton set {τ0:m |
τ0:m = (0, 1, . . . ,m− 1, n)}. The first equality in the theo-
rem follows from this and the definition of Lk,m−1. For the
second equality, consider k, t that satisfy the condition in the
theorem. We will prove the following two equations:

Lk,t−1 ×Rk,t−1 =
∑

τ0:m∈Tk,t

τk−1 �=b(k−1,t)

P (x1:n, τ0:m | z1:m, w1:n) , (2)

4829

Lk−1,t =
∑

τ0:m∈Tk,t

τk−1=b(k−1,t)

P (x1:n, τ0:m | z1:m, w1:n) . (3)

The desired conclusion follows from these two equations:

Lk−1,t + Lk,t−1 ×Rk,t−1

=
∑

τ0:m∈Tk,t

P (x1:n, τ0:m | z1:m, w1:n) = Lk,t .

Equation (3) holds since Tk−1,t = {τ0:m ∈ Tk,t |
τk−1 = b(k−1, t)}. Equation (2) is proved as follows. Let

T̂k,t � {τ0:m ∈ Tk,t|τk−1 �= b(k − 1, t)},
τ ′0:m � (τ0:k−1, τk − 1, ..., τm−1 − 1, n) for τ0:m ∈ T̂k,t.

Then, {τ ′0:m|τ0:m ∈ T̂k,t} = Tk,t−1. For every τ0:m ∈ T̂k,t,

P (x1:n, τ0:m|z1:m, w1:n)

P (x1:n, τ ′0:m|z1:m, w1:n)

=
P (τ0:m|w1:n)

P (τ ′0:m|w1:n)
× P (x1:n|τ0:m, z1:m)

P (x1:n|τ ′0:m, z1:m)

=
m−1∏
i=k

wτi

wτ ′
i

×
m−1∏
i=k

P (xτi |x1:τi−1, zi)

P (xτ ′
i+1|x1:τ ′

i
, zi+1)

=
m−1∏
i=k

wb(i,t)

wb(i,t)−1
×

m−1∏
i=k

P (xb(i,t)|x1:b(i,t)−1, zi)

P (xb(i,t)|x1:b(i,t)−1, zi+1)

= Rk,t−1.

Therefore,∑
τ0:m∈̂Tk,t

P (x1:n, τ0:m | z1:m, w1:n)

=
∑

τ0:m∈̂Tk,t

P (x1:n, τ
′
0:m | z1:m, w1:n)×Rk,t−1

=
∑

τ0:m∈Tk,t−1

P (x1:n, τ0:m | z1:m, w1:n)×Rk,t−1

= Lk,t−1 ×Rk,t−1.

Proposition 3. For all k, t with 1 ≤ k < m and m − 1 ≤
t < n,

Rk,t = Rk+1,t ×
P (xb(k,t)+1 |x1:b(k,t), zk)× wb(k,t)+1

P (xb(k,t)+1 |x1:b(k,t), zk+1)× wb(k,t)
.

Proof. Immediate from the definition of Rk,t.

When combined with the idea of dynamic programming,
the recursive formulas in the propositions and the theorem
give rise to an O(mn) algorithm for marginalising change-
points. We spell out this algorithm in Algorithm 1.
Theorem 4. Algorithm 1 computes P (x1:n | z1:m, w1:n),
where m is the number of changepoints and n is the num-
ber of steps in given data. Moreover, the algorithm runs in
O(mn) time, if computing P (xj |x1:j−1, zi) for all 1 ≤ i ≤
m and 2 ≤ j ≤ n takesO(mn) time (i.e., P (xj |x1:j−1, zi)
can be computed in O(1) amortised time).

Algorithm 1 Algorithm for marginalising changepoints.

Input: (i) integer m; (ii) weights w1:n with wn =1; (iii)
normalising constant W for P (τ0:m|w1:n); (iv) latent
variables z1:m; (v) time-series data x1:n with 1≤m≤n

Output: likelihood P (x1:n | z1:m, w1:n) where change-
points τ0:m are marginalised

1: for t← m− 1 to n− 1 do
2: L0,t ← 0; Rm,t ← 1

3: L1,m−1 ← P (x1:n|z1:m, τ0:m=(0, 1, . . . ,m−1, n))
× P (τ0:m=(0, 1, . . . ,m− 1, n)|w1:n)

4: for k ← 2 to m− 1 do
5: Lk,m−1 ← L1,m−1

6: Pi,j ← P (xj |x1:j−1, zi) for 1 ≤ i ≤ m and 2 ≤ j ≤ n
7: for t← m− 1 to n− 1 do
8: for k ← m− 1 downto 1 do

9: Rk,t ← Rk+1,t × Pb(k,t)+1,k ×wb(k,t)+1

Pb(k,t)+1,k+1 ×wb(k,t)

10: for t← m to n− 1 do
11: for k ← 1 to m− 1 do
12: Lk,t ← Lk−1,t + Lk,t−1 ×Rk,t−1

13: L← 0
14: for t← m− 1 to n− 1 do
15: L← L+ Lm−1,t

return L

Proof. The correctness follows from Propositions 1 and 3
and Theorem 2. We analyse the run time as follows. The line
3 computes the RHS in O(n). The line 6 runs in O(mn) by
the assumption. In the rest of the algorithm, nested loops and
other loops iterate O(mn) times, and each line inside the
loops runs in O(1). So, the algorithm runs in O(mn).

Theorem 5. When P (xj |x1:j−1, zi) is differentiable with
respect to x1:j and zi, the result of Algorithm 1 is also differ-
entiable with respect to x1:n and z1:m, and can be computed
by applying automated differentiation to the algorithm.

Proof. When P (xj |x1:j−1, zi) is differentiable with re-
spect to x1:j and zi, the likelihood P (x1:n | z1:m, w1:n) is
differentiable with respect to x1:n and z1:m. So, the correct-
ness of Algorithm 1 in Theorem 4 implies the claimed dif-
ferentiability. The other claim about the use of automated
differentiation holds because Algorithm 1 does not use any
non-differentiable operations such as if statements.

2.1 Computation of normalising constant W

So far we have assumed that weights w1:n are fixed and the
normalising constant W for P (τ0:m |w1:n) is known. We
now discharge the assumption. We present an algorithm for
computing W for given w1:n. The algorithm uses dynamic
programming, runs inO(mn) time, and is differentiable: the
gradient of W with respect to w1:n can be computed by ap-
plying automated differentiation to the algorithm.

For all k and t with 1 ≤ k < m and 0 ≤ t < n,
let Sk,t �

∑
τ0:k, τk≤t

∏k
i=1 wτi and S0,t � 1. Note that

W = Sm−1,n−1. So, it suffices to design an algorithm for
computing Sk,t. The next proposition describes how to do it.

4830

Proposition 6. For all k, t with 1 ≤ k < m and k ≤ t < n,
we have Sk,t = Sk,t−1 + Sk−1,t−1 × wt and Sk,k−1 = 0.

The recurrence relation for Sk,t in Proposition 6 yields
a dynamic-programming algorithm for computing W that
runs inO(mn) time. The standard implementation of the al-
gorithm does not use any non-differentiable operations. So,
its gradient can be computed by automated differentiation.

With this result at hand, we remove the assumption that
weights w1:n are fixed and the normalising constant W for
P (τ0:m |w1:n) is known a priori. Algorithm 1 no longer re-
ceives W as its input. It instead uses the algorithm described
above and computes W from given w1:n before starting
line 1. Since the computation of W takes O(mn) time and
can be differentiated by automated differentiation, all the
aforementioned results on Algorithm 1 (Theorems 4 and 5)
still hold, and can be extended to cover the differentiability
of Algorithm 1 with respect to w1:n.

3 Learning Model Parameters

Our algorithm can extend the scope of gradient-based
methods for posterior inference and model learning such
that they apply to changepoint models despite their non-
differentiability. In this section, we explain the model-
learning application. We consider state-space models with
changepoints that use neural networks. The goal is to learn
appropriate neural-network parameters from given data.

We consider a special case of the model described in §2
that satisfies the following conditions.
1. The latent parameter zi at i ∈ {1, . . . ,m} has the fixed

value ei in {0, 1}m that has 1 at the i-th position and
0 everywhere else. Formally, this means that the prior
P (z1:m) is the Dirac distribution at (e1, e2, . . . , em).

2. The random variable xj at j ∈ {1, . . . , n} consists of two
parts, xS

j ∈ XS for the latent state and xO
j ∈ XO for the

observed value. Thus, xj = (xS
j , x

O
j) and X = XS×XO.

3. The probability distribution Pφ(xj |x1:j−1, zi) is param-
eterised by φ ∈ Rp for some p, and has the form

Pφ(xj |x1:j−1, zi) = Pφ(x
O
j |xS

j , zi)Pφ(x
S
j |xS

1:j−1, zi).

Typically, Pφ is defined using a neural network, and φ
denotes the weights of the network.

When the model satisfies these conditions, we have

Pφ(x1:n |w1:n) =
∑
z1:m

Pφ(x1:n, z1:m |w1:n)

=
∑
z1:m

P (z1:m)Pφ(x1:n | z1:m, w1:n)

= Pφ(x1:n | (z1:m = e1:m), w1:n). (4)

By the learning of model parameters, we mean the prob-
lem of finding φ for given observations xO

1:n that makes the
log probability of the observations logPφ(x

O
1:n |w1:n) large.

A popular approach (Kingma and Welling 2014) is to max-
imise a lower bound of this log probability, called ELBO,
approximately using a version of gradient ascent:

ELBOφ,θ � EQθ(xS
1:n|xO

1:n)

[
log

Pφ(x
S
1:n, x

O
1:n|w1:n)

Qθ(xS
1:n|xO

1:n)

]
(5)

where Qθ is an approximating distribution for the posterior
Pφ(x

S
1:n |xO

1:n, w1:n) and θ ∈ Rq denotes the parameters of
this distribution, typically the weights of a neural network
used to implement Qθ.

Our marginalisation algorithm makes it possible to op-
timise ELBOθ,φ in (5) by an efficient stochastic gradient-
ascent method based on the so called reparameterisation
trick (Kingma and Welling 2014; Rezende, Mohamed, and
Wierstra 2014; Kucukelbir et al. 2017). Here we use our al-
gorithm with fixed m,w1:n after setting z1:m to e1:m.1 So,
only the x1:n = (xS

1:n, x
O
1:n) part of its input may vary. To

emphasise this, we write ALG(φ, xS
1:n, x

O
1:n) for the result

of the algorithm. Also, we make the usual assumption of
the reparameterisation trick: there are a θ-independent dis-
tribution Q(ε) and a differentiable function Tθ(ε, x

O
1:n) such

that Tθ(ε, x
O
1:n) for ε ∼ Q(ε) is distributed according to

Qθ(x
S
1:n |xO

1:n). The next theorem shows that the gradient of
ELBO can be estimated by computing the gradient through
the execution of our algorithm via automated differentiation.

Theorem 7. If Pφ(xj |x1:j−1, zi) is differentiable with re-
spect to x1:j and φ, so is ALG(φ, xS

1:n, x
O
1:n). In that case,

the gradient can be computed by automated differentiation.

Proof. When Pφ(xj |x1:j−1, zi) is differentiable with re-
spect to x1:j and φ, the likelihood Pφ(x1:n | z1:m, w1:n) is
differentiable with respect to x1:n and φ. Thus, the correct-
ness of Algorithm 1 in Theorem 4 implies the claimed dif-
ferentiability. The other claim about the use of automated
differentiation comes from the fact that Algorithm 1 does
not use any non-differentiable operations.

Theorem 8. When Pφ(xj |x1:j−1, zi) is differentiable with
respect to x1:j and φ for all j and i,

M̂Rep � ∇φ,θ log
ALG(φ, Tθ(ε, x

O
1:n), x

O
1:n)

Qθ(Tθ(ε, xO
1:n) |xO

1:n)
for ε ∼ Q(ε)

is an unbiased estimate for∇φ,θELBOφ,θ, and can be com-
puted via automated differentiation.

Proof. Pφ(x
S
1:n, x

O
1:n|w1:n) = Pφ(x1:n|(z1:m=e1:m), w1:n)

by (4). The RHS of the equation equals ALG(φ, xS
1:n, x

O
1:n)

by Theorem 4 and the definition of ALG. So, ELBOφ,θ =

EQθ(xS
1:n|xO

1:n)

[
log

ALG(φ,xS
1:n,x

O
1:n)

Qθ(xS
1:n | xO

1:n)

]
. The usual unbiased-

ness argument of the reparameterisation trick and the dif-
ferentiability of ALG(φ, xS

1:n, x
O
1:n) with respect to x1:n and

φ (Theorem 7) give the claimed conclusion.

4 Experimental Evaluation

As mentioned, another important application of our al-
gorithm is posterior inference. In this section, we report
the findings from our experiments with this application,
which show the benefits of having an efficient differentiable
marginalisation algorithm for posterior inference.

1W is computed by the extension of our algorithm in §2.1. In
fact, using the same extension, we can even treat w1:n as a part of
φ, and learn appropriate values for w1:n.

4831

(a) Time per sample vs. m
when n = 50.

(b) Time per sample vs. n
when m = 2.

Figure 2: Computation time of HMCnaive and HMCours for
different m and n. The x- and y-axes are in log-scale.

Hamiltonian Monte Carlo (HMC) (Duane et al. 1987;
Neal 2011) is one of the most effective algorithms for sam-
pling from posterior distributions, especially on high dimen-
sional spaces. However, it cannot be applied to models with
changepoints directly. This is because HMC requires that a
model have a differentiable density, but changepoint models
do not meet this requirement due to discrete changepoints.

One way of addressing this non-differentiability issue is to
use our algorithm and marginalise changepoints. Since our
algorithm is differentiable, the resulting models have differ-
entiable densities, and we can analyse their posteriors using
HMC. We tested this approach experimentally, aiming at an-
swering the following questions:

• RQ1 (Speed): How fast is our marginalisation algorithm
when used for HMC?

• RQ2 (Sample quality): Is HMC with our marginalisation
algorithm better at generating good posterior samples than
other Markov Chain Monte Carlo (MCMC) algorithms
that do not use gradients nor marginalisation?

We evaluated different inference algorithms on synthetic
and real-world data for X = R. The synthetic data were
generated as follows: we fixed parameters (n,m∗, μ∗

1:m∗ ,
σ∗
1:m∗ , τ∗0:m∗), and then sampled each data point xj (1 ≤

j ≤ n) in the i-th segment (i.e., τ∗i−1 < j ≤ τ∗i) in-
dependently from a Gaussian distribution with mean μ∗

i
and standard deviation σ∗

i . The changepoint model for
analysing the synthetic data is: m = m∗, Z = R × R+,
w1:n = (1, . . . , 1), P (zi =(μi, σi)) = Normal(μi|5, 10) ×
LogNormal(σi|0, 2), and P (xj |x1:j−1, zi =(μi, σi)) =
Normal(xj |μi, σi). For the real-world application, we used
well-log data (Fearnhead 2006), whose data points repre-
sent some physical quantity measured by a probe diving in
a wellbore. We took a part of the well-log data by remov-
ing outliers and choosing 1000 consecutive data points (Fig-
ure 3b). The changepoint model for the well-log data is the
same as the above except: m = 13 and P (zi =(μi, σi)) =
Normal(μi|120000, 20000)× LogNormal(σi|8.5, 0.5).

Our goal is to infer the posterior distribution of latent
parameters z1:m and changepoints τ0:m. For this task, we
compared four posterior-inference algorithms: HMCnaive,
HMCours, IPMCMC, and LMH. HMCnaive (resp. HMCours)
generates samples as follows: it forms a probabilistic model
P (x1:n, z1:m |w1:n) where τ0:m are marginalised out by
a naive marginalisation scheme (resp. by our marginali-

(a) Synthetic data.

(b) Part of well-log data.

Figure 3: Synthetic and real-world data for RQ2. The x-axis
represents time steps.

sation algorithm); samples z1:m from P (z1:m |w1:n, x1,n)
by running HMC on P (x1:n, z1:m | w1:n); finally samples
τ0:m from P (τ0:m |w1:n, x1:n, z1:m) using dynamic pro-
gramming. IPMCMC and LMH jointly sample z1:m and
τ0:m from P (z1:m, τ0:m |w1:n, x1:n) by running the vari-
ants of the Metropolis-Hastings algorithm called interact-
ing particle MCMC (IPMCMC) (Rainforth et al. 2016)
and lightweight Metropolis-Hastings (LMH) (Wingate,
Stuhlmüller, and Goodman 2011), respectively. IPMCMC
and LMH are applicable to models with discrete or non-
differentiable random variables. They neither exploit gradi-
ents nor marginalise out any random variables.

For HMCnaive and HMCours, we used the No-U-Turn
Sampler (NUTS) (Hoffman and Gelman 2014) in PyStan
(Carpenter et al. 2017) with default hyper-parameters, ex-
cept for adapt delta=0.95. For IPMCMC and LMH, we
used the implementations in Anglican (Wood, van de Meent,
and Mansinghka 2014; Tolpin et al. 2016) with default
hyper-parameters, except for the following IPMCMC setup:
number-of-nodes=8 for both the synthetic and well-log
data, and pool=8 for the well-log data.

For RQ1, we compared the time taken to generate a single
posterior sample by HMCnaive and HMCours. For RQ2, we
compared the quality of posterior samples from HMCours,
IPMCMC, and LMH, by means of the following quanti-
ties: estimates of the first and second moments, the Gelman-
Rubin convergence statistic (R̂) (Gelman, Rubin, and others
1992; Brooks and Gelman 1998), and effective sample size
(ESS). The experiments were performed on a Ubuntu 16.04
machine with Intel i7-7700 CPU with 16GB of memory.

Results for RQ1. We measured the average time per sam-
ple taken by HMCnaive and HMCours for different numbers
of changepoints and time steps: for fixed n = 50, we varied
m∗ = m from 1 to 5, and for fixed m∗ = m = 2, we varied
n ∈ {200, 400, 600, 800}. The details of the parameter val-
ues we used appear in the extended version of the paper on
arXiv. We ran five independent runs of the NUTS algorithm,
and averaged the time spent without burn-in samples.

Figures 2a and 2b show how the time depends on m and
n, respectively, in the two approaches. In the log-log plots,
log(time) of HMCours is linear in both logm and log n, due

4832

0 6000 12000 18000 24000 30000

Number of samples (HMCours)

600

800

1000

E
st
im

at
io
n

0 50000 100000 150000 200000 250000

Number of samples (IPMCMC)

0 40000 80000 120000 160000 200000

Number of samples (LMH)

Figure 4: Convergence plots for estimating the sum of
the first moments for synthetic data, with HMCours (red),
IPMCMC (blue), and LMH (green). Each x-axis represents
the number of samples generated by the corresponding pro-
cedure, and the y-axis denotes estimated values. Each darker
line shows the mean value at each point, and the correspond-
ing error band around it shows the standard deviation.

to its time complexityO(mn). On the other hand, log(time)
of HMCnaive is exponential in logm, and linear in log n yet
with a slope nearly two times larger than that for HMCours,
because of its time complexity O(nm). Overall, the results
show that HMCnaive quickly becomes infeasible as the num-
ber of changepoints or time steps grows, but HMCours avoids
such an upsurge by virtue of having the linear relationship
between the two varying factors and the time per sample.

Results for RQ2. Figure 3 shows the synthetic and real-
world data used in answering RQ2. The synthetic data was
generated with parameters n = 300, m∗ = 6, μ∗

1:m∗ = (10,
2, 10, 2, 10, 2), σ∗

1:m∗ = (1.8, 1.1, 1.7, 1.5, 1.2, 1.3), and
τ∗0:m∗ = (0, 50, 100, 150, 200, 250, 300).

For each chain of HMCours, we generated 30K samples
with random initialisation (when possible) after burning in
1K samples. We computed R̂ and ESS for each latent pa-
rameter and changepoint using three chains, and repeated
this five times as the R̂ and ESS results varied across dif-
ferent runs. We also estimated the sum of the first moments
of (z1:m, τ1:m−1) and that of the second moments of them
using the same 15 chains.2 The same setup was applied to
IPMCMC and LMH except the following: since they sam-
ple faster than HMCours, we let IPMCMC and LMH gener-
ate 270K (resp. 1855K) and 200K (resp. 1750K) samples,
respectively, for synthetic data (resp. well-log data) so that
every run of them spends more time than the corresponding
slowest HMCours run.

We first discuss results on synthetic data. Figure 4 shows
the estimates for the sum of the first moments by HMCours,
IPMCMC, and LMH. HMCours shows a gradual trend to-
wards convergence, while IPMCMC and LMH exhibit sub-
stantial variation across runs without convergence. We ob-

2Concretely, we estimated EP (z1:m,τ1:m | x1:n)

[(∑m
i=1 μi +

σi+τi
)−n

]
and EP (z1:m,τ1:m | x1:n)

[(∑m
i=1 μ

2
i +σ2

i +τ2
i

)−n2
]
.

Table 1: The ranges of the time (sec) taken by the three ap-
proaches and the ranges of the estimates computed by them,
for synthetic data. For the estimated sum of the first/second
moments (i.e., the third/fourth row), we computed the val-
ues at 510.8 sec (the minimum time taken among all the
runs) from each Markov chain, assuming that generating
each sample (in a chain) took an equal amount of time.

HMCours IPMCMC LMH
Time [510.8, 1043.9] [1053.2, 1170.6] [1092.2, 1105.2]

1st [746.9, 794.2] [651.3, 993.8] [415.4, 1164.0]

2nd [1.28E+05,
1.39E+05]

[1.12E+05,
1.89E+05]

[3.56E+04,
2.62E+05]

tained similar results for the sum of the second moments
(see the extended paper on arXiv). Table 1 shows the ranges
of the time taken by the Markov chains in Figure 6, and the
ranges of the estimates from the chains.

Figure 5a shows the R̂ values from HMCours, IPMCMC,
and LMH. Three out of five experiments with HMCours were
satisfactory in the sense that the R̂ statistics for all the la-
tent (z1:m, τ1:m−1) were between 0.9 and 1.1. Though the R̂
statistics for some of the latent were over 1.1 in the other two
experiments, most of the R̂ values were less than or close
to 1.1. On the other hand, none of the IPMCMC and LMH
experiments placed R̂ values for all the latent, within the in-
terval. Also the values were farther from the interval.

Figure 5b shows ln(ESS) from HMCours, IPMCMC, and
LMH in a similar manner. HMCours produced significantly
higher ESS values than LMH, demonstrating that HMCours
draws samples more effectively than LMH within a fixed
amount of time. However, HMCours was not superior in ESS
to IPMCMC despite the excellence in R̂. We conjecture that
this is due to IPMCMC running eight parallel nodes inde-
pendently, each with two particles to propose samples.

For well-log data, HMCours similarly outperformed the
other two in terms of convergence, R̂, and ESS; R̂ for all the
latent (z1:m, τ1:m−1) were between 0.9 and 1.1 in all five
experiments. One exception is that IPMCMC showed much
higher ESS than HMCours, although it failed to converge
(Figure 6). We think that this is again due to IPMCMC’s
tendency of generating independent samples. The full results
are in the extended paper on arXiv.

We remark that HMCours performed poorly on well-log
data with the same model but smaller m (e.g., 6 instead
of 13). According to our manual inspection, this was be-
cause HMCours in this case got stuck at some modes, fail-
ing to generate samples from other modes. We think that in-
creasing m (up to some point) lessens the barriers between
modes in the marginal space; for large enough m, only a
small amount of P (z1:m |x1:n, w1:n) should be reduced to
change some of z1:m. One practical lesson is that having
enough changepoints may help analyse real-world data us-
ing Bayesian inference and changepoint models.

4833

μ1 μ2 μ3 μ4 μ5 μ6 σ1 σ2 σ3 σ4 σ5 σ6 τ1 τ2 τ3 τ4 τ5
1

2

3

R̂

HMCours

IPMCMC

LMH

(a) R̂.

μ1 μ2 μ3 μ4 μ5 μ6 σ1 σ2 σ3 σ4 σ5 σ6 τ1 τ2 τ3 τ4 τ5

5

10

ln
(E
S
S
) HMCours

IPMCMC

LMH

(b) ln(ESS).

Figure 5: R̂ and ESS from HMCours (red), IPMCMC (blue), and LMH (green) for synthetic data.
The x-axis denotes the latent parameters and changepoints, and the y-axis R̂ or ln(ESS) values.

0 6000 12000 18000 24000 30000

Number of samples (HMCours)

1650000

1700000

E
st
im

at
io
n

0 400000 800000 1200000 1600000

Number of samples (IPMCMC)

0 400000 800000 1200000 1600000

Number of samples (LMH)

Figure 6: Convergence plots for estimating the sum of the
first moments for well-log data. See the caption of Figure 4
for details.

5 Related Work and Conclusion

Related work. Modelling and reasoning about time-series
data with changepoints is a well-established topic in statis-
tics and machine learning (Eckley, Fearnhead, and Killick
2011; Truong, Oudre, and Vayatis 2018). We discuss two
lines of research most relevant to ours. The first is the
work by Fearnhead and his colleagues (Fearnhead 2006;
2005; Fearnhead and Liu 2007), which is further extended to
multi-dimensional time-series data (Xuan 2007). Fearnhead
(2006) proposed an O(n2)-time algorithm for generating
changepoint positions from the posterior of a given change-
point model in a particular form, where n is the number of
time steps. Their algorithm also uses a form of dynamic pro-
gramming on certain recursive formulas, but it does not tar-
get at marginalisation. Its conversion for marginalisation is
possible, but inherits this O(n2) time complexity. The other
work is Chib (1995)’s technique for estimating the model
evidence of changepoint models (Chib 1998), whose prop-

erties, such as sensitivity on chosen parameters, is analysed
by Bauwens and Rombouts (2012). The technique is based
on Gibbs sampling, and it is unclear whether the technique
leads to a differentiable algorithmic component that can be
used in the context of gradient-based algorithms.

The observation that the summation version of dynamic
programming is differentiable is a folklore. For instance,
Eisner (2016) points out the differentiability of the inside
algorithm, which is a classic dynamic-programming-based
algorithm in natural language processing (NLP). He then ex-
plains how to derive several well-known NLP algorithms by
differentiating the inside algorithm or its variants. However,
we do not know of existing work that uses such dynamic pro-
gramming algorithms for the type of application we consider
in the paper: converting non-differentiable models to differ-
entiable models via marginalisation in the context of poste-
rior inference and model learning. The optimisation version
of dynamic programming is not differentiable, and its dif-
ferentiable relaxation has been studied recently (Corro and
Titov 2019; Mensch and Blondel 2018).

Conclusion. We presented a differentiable O(mn)-time
algorithm for marginalising changepoints in time-series
models, where m is the number of changepoints and n the
number of time steps. The algorithm can be used to convert
a class of non-differentiable time-series models to differen-
tiable ones, so that the resulting models can be analysed by
gradient-based techniques. We described two applications of
this conversion, posterior inference with HMC and model-
parameter learning with reparameterisation gradient estima-
tor, and experimentally showed the benefits of using the al-
gorithm in the former posterior-inference application.

Acknowledgements. The authors were supported by the
Engineering Research Center Program through the National
Research Foundation of Korea (NRF) funded by the Ko-
rean Government MSIT (NRF-2018R1A5A1059921), and
also by Next-Generation Information Computing Develop-

4834

ment Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science, ICT
(2017M3C4A7068177).

References

Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur,
M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.;
Steiner, B.; Tucker, P. A.; Vasudevan, V.; Warden, P.; Wicke,
M.; Yu, Y.; and Zheng, X. 2016. Tensorflow: A system for
large-scale machine learning. In OSDI, 265–283.
Bauwens, L., and Rombouts, J. V. 2012. On marginal like-
lihood computation in change-point models. Computational
Statistics & Data Analysis 56(11):3415–3429.
Brooks, S. P., and Gelman, A. 1998. General methods for
monitoring convergence of iterative simulations. J. Comput.
Graph. Stat. 7(4):434–455.
Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.;
Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.;
and Riddell, A. 2017. Stan: A probabilistic programming
language. Journal of Statistical Software 76(1).
Chib, S. 1995. Marginal likelihood from the gibbs output.
J. Am. Stat. Assoc. 90(432):1313–1321.
Chib, S. 1998. Estimation and comparison of multiple
change-point models. J. Econometrics. 86(2):221–241.
Corro, C., and Titov, I. 2019. Differentiable perturb-and-
parse: Semi-supervised parsing with a structured variational
autoencoder. In ICLR.
Duane, S.; Kennedy, A. D.; Pendleton, B. J.; and Roweth, D.
1987. Hybrid Monte Carlo. Physics Letters B 195:216–222.
Eckley, I. A.; Fearnhead, P.; and Killick, R. 2011. Analysis
of changepoint models. In Barber, D.; Cemgil, A. T.; and
Chiappa, S., eds., Bayesian Time Series Models. Cambridge
University Press. chapter 10, 205—224.
Eisner, J. 2016. Inside-outside and forward-backward al-
gorithms are just backprop (tutorial paper). In Workshop on
Structured Prediction for NLP@EMNLP, 1–17.
Erdman, C., and Emerson, J. W. 2008. A fast bayesian
change point analysis for the segmentation of microarray
data. Bioinformatics 24(19):2143–2148.
Fearnhead, P., and Liu, Z. 2007. On-line inference for mul-
tiple changepoint problems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 69(4):589–605.
Fearnhead, P. 2005. Exact bayesian curve fitting and sig-
nal segmentation. IEEE Transactions on Signal Processing
53(6):2160–2166.
Fearnhead, P. 2006. Exact and efficient bayesian inference
for multiple changepoint problems. Statistics and Comput-
ing 16(2):203–213.
Gelman, A.; Rubin, D. B.; et al. 1992. Inference from itera-
tive simulation using multiple sequences. Statistical Science
7(4):457–472.
Haynes, K.; Eckley, I. A.; and Fearnhead, P. 2017. Com-
putationally efficient changepoint detection for a range of
penalties. J. Comput. Graph. Stat. 26(1):134–143.

Hoffman, M. D., and Gelman, A. 2014. The no-u-turn sam-
pler: adaptively setting path lengths in hamiltonian monte
carlo. JMLR 15(1):1593–1623.
Kingma, D. P., and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In ICLR.
Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; and
Blei, D. M. 2017. Automatic differentiation variational in-
ference. JMLR 18(1):430–474.
Lio, P., and Vannucci, M. 2000. Wavelet change-
point prediction of transmembrane proteins. Bioinformatics
16(4):376–382.
Lung-Yut-Fong, A.; Lévy-Leduc, C.; and Cappé, O. 2012.
Distributed detection/localization of change-points in high-
dimensional network traffic data. Statistics and Computing
22(2):485–496.
Mensch, A., and Blondel, M. 2018. Differentiable dy-
namic programming for structured prediction and attention.
In ICML, 3459–3468.
Neal, R. M. 2011. MCMC using Hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo 2(11):2.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop.
Rainforth, T.; Naesseth, C.; Lindsten, F.; Paige, B.; Vande-
meent, J.-W.; Doucet, A.; and Wood, F. 2016. Interacting
particle markov chain monte carlo. In ICML, 2616–2625.
Reeves, J.; Chen, J.; Wang, X. L.; Lund, R.; and Lu, Q. Q.
2007. A review and comparison of changepoint detection
techniques for climate data. Journal of Applied Meteorology
and Climatology 46(6):900–915.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic Backpropagation and Approximate Inference in
Deep Generative Models. In ICML, 1278–1286.
Spokoiny, V., et al. 2009. Multiscale local change point
detection with applications to value-at-risk. The Annals of
Statistics 37(3):1405–1436.
Stan Development Team. 2018. Stan Modeling Language
Users Guide and Reference Manual. Version 2.18.0.
Tolpin, D.; van de Meent, J.-W.; Yang, H.; and Wood, F.
2016. Design and implementation of probabilistic program-
ming language anglican. In IFL, 6:1–6:12.
Truong, C.; Oudre, L.; and Vayatis, N. 2018. Selective
review of offline change point detection methods. ArXiv
abs/1801.00718.
Wingate, D.; Stuhlmüller, A.; and Goodman, N. 2011.
Lightweight implementations of probabilistic programming
languages via transformational compilation. In AISTATS.
Wood, F.; van de Meent, J. W.; and Mansinghka, V. 2014.
A new approach to probabilistic programming inference. In
AISTATS, 1024–1032.
Xuan, X. 2007. Bayesian inference on change point prob-
lems. Master’s thesis, The University of British Columbia,
Vancouver, Canada.

4835

