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Abstract

In this paper, we propose a fast surrogate leverage weighted
sampling strategy to generate refined random Fourier features
for kernel approximation. Compared to the current state-of-
the-art method that uses the leverage weighted scheme (Li et
al. 2019), our new strategy is simpler and more effective. It
uses kernel alignment to guide the sampling process and it
can avoid the matrix inversion operator when we compute the
leverage function. Given n observations and s random features,
our strategy can reduce the time complexity for sampling from
O(ns2+s3) to O(ns2), while achieving comparable (or even
slightly better) prediction performance when applied to kernel
ridge regression (KRR). In addition, we provide theoretical
guarantees on the generalization performance of our approach,
and in particular characterize the number of random features
required to achieve statistical guarantees in KRR. Experiments
on several benchmark datasets demonstrate that our algorithm
achieves comparable prediction performance and takes less
time cost when compared to (Li et al. 2019).

1 Introduction

Kernel methods (Schölkopf and Smola 2003) are one of
the most important and powerful tools in statistical learn-
ing. However, kernel methods often suffer from scalability
issues in large-scale problems due to high space and time
complexities. For example, given n observations in the orig-
inal d-dimensional space X , kernel ridge regression (KRR)
requires O(n3) training time and O(n2) space to store the
kernel matrix, which becomes intractable when n is large.

One of the most popular approaches for scaling up kernel
methods is random Fourier features (RFF) (Rahimi and Recht
2007), which approximates the original kernel by mapping
input features into a new space spanned by a small number
of Fourier basis. Specifically, suppose a given kernel k(·, ·) :
X × X → R satisfies 1) positive definiteness and 2) shift-
invariance, i.e., k(x,x′) = k(x−x′). By Bochner’s theorem
(Bochner 2005), there exists a finite Borel measure p(w) (the
Fourier transform associated with k) such that

k(x− x′) =
∫
Rd

p(w) exp
(
iw�(x− x′)

)
dw . (1)
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(Typically, the kernel is real-valued and thus the imagi-
nary part in Eq. (1) can be discarded.) One can then use
Monte Carlo sampling to approximate k(x,x′) by the low-
dimensional kernel k̃p(x,x′) = ϕp(x)

�ϕp(x
′) with the ex-

plicit mapping

ϕp(x) :=
1√
s

[
exp(−iw�

1x), · · · , exp(−iw�
sx)]

� , (2)

where {wi}si=1 are sampled from p(w) independently
of the training set. For notational simplicity, here we
write zp(wi,xj) := 1/

√
s exp(−iw�

i xj) such that
ϕp(x) = [zp(w1,x), · · · , zp(ws,x)]

�. Note that we
have k(x,x′) = Ew∼p[ϕp(x)

�ϕp(x
′)] ≈ k̃p(x,x

′) =∑s
i=1 zp(wi,x)zp(wi,x

′). Consequently, the original ker-
nel matrix K = [k(xi,xj)]n×n on the n observations
X = {xi}ni=1 can be approximated by K ≈ K̃p = ZpZ

�
p ,

where Zp = [ϕp(x1), · · · , ϕp(xn)]
� ∈ R

n×s. With s ran-
dom features, this approximation applied to KRR only re-
quires O(ns2) time and O(ns) memory, hence achieving a
substantial computational saving when s� n.

Since RFF uses the Monte Carlo estimates that are in-
dependent of the training set, a large number of random
features are often required to achieve competitive approxi-
mation and generalization performance. To improve perfor-
mance, recent works (Sun, Gilbert, and Tewari 2018; Li et al.
2019) consider using the ridge leverage function (Bach 2017;
Avron et al. 2017) defined with respect to the training data.
For a given random feature wi, this function is defined as

lλ(wi) = p(wi)z
�
p,wi

(X)(K + nλI)−1zp,wi
(X) , (3)

where λ is the regularization parameter in KRR and
zp,wi

(X) ∈ R
n is the i-th column of Zp given by

(zp,wi
(X))j := zp(wi,xj). Observe that q∗(w) :=

lλ(w)∫
lλ(w)dw can be viewed as a probability density function,

and hence is referred to as the Empirical Ridge Leverage
Score (ERLS) distribution (Avron et al. 2017). Therefore, one
can sample the features {wi}si=1 according to q∗(w), which
is an importance weighted sampling strategy. Compared to
standard Monte Carlo sampling for RFF, q∗(w)-based sam-
pling requires fewer Fourier features and enjoys theoretical
guarantees (Avron et al. 2017; Li et al. 2019).
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However, computing the ridge leverage scores and the
ERLS distribution may be intractable when n is large, as we
need to invert the kernel matrix in Eq. (3). An alternative
way in (Sun, Gilbert, and Tewari 2018; Li et al. 2019) is to
use the subset of data to approximate K, but this scheme
still needsO(ns2 + s3) time to generate random features. To
address these computational difficulties, we design a simple
but effective leverage function to replace the original one. For
a given w, our leverage function is defined as

Lλ(w) = p(w)z�p,w(X)

(
1

n2λ

(
yy� + nI

))
zp,w(X) ,

(4)
where the matrix yy� is an ideal kernel that directly fits the
training data with 100% accuracy in classification tasks, and
thus can be used to guide kernel learning tasks as in kernel
alignment (Cortes, Mohri, and Rostamizadeh 2012). It can
be found that, our surrogate function avoids the matrix inver-
sion operator so as to further accelerate kernel approximation.
Note that, we introduce the additional term nI and the coeffi-
cient 1/(n2λ) in Eq. (4) to ensure, Lλ is a surrogate function
that upper bounds lλ in Eq. (3) for theoretical guarantees.
This can be achieved due to Lλ(wi) ≥ lλ(wi)

1. In this way,
our method with the surrogate function requires less com-
putational time while achieving comparable generalization
performance, as demonstrated by our theoretical results and
experimental validations.

Specifically, the main contributions of this paper are:

• We propose a surrogate ridge leverage function based on
kernel alignment and derive its associated fast surrogate
ERLS distribution. This distribution is simple in form and
has intuitive physical meanings. Our theoretical analysis
provides a lower bound on the number of random features
that guarantees no loss in the learning accuracy in KRR.

• By sampling from the surrogate ERLS distribution, our
data-dependent algorithm takes O(ns2) time to generate
random features, which is the same as RFF and less than
theO(ns2+s3) time in (Li et al. 2019). We further provide
theoretical guarantees on the generalization performance
of our algorithm equipped with the KRR estimator.

• Experiments on various benchmark datasets demonstrate
that our method performs better than standard random
Fourier features based algorithms. Specifically, our algo-
rithm achieves comparable (or even better) accuracy and
uses less time when compared to (Li et al. 2019).

The remainder of the paper is organized as follows. Section 2
briefly reviews the related work on random features for kernel
approximation. Our surrogate leverage weighted sampling
strategy for RFF is presented in Section 3, and related theo-
retical results are given in Section 4. In section 5, we provide
experimental evaluation for our algorithm and compare with
other representative random features based methods on popu-
lar benchmarks. The paper is concluded in Section 6.

1It holds by (K + nλI)−1 � (nλI)−1 � 1
n2λ

(yy� + nI),
where the notation 0 � A denotes that A is semi-positive definite.

2 Related Works

Recent research on random Fourier features focuses on con-
structing the mapping

ϕ(x) :=
1√
s

[
a1 exp(−iw�

1x), · · · , as exp(−iw�
sx)]

� .

The key question is how to select the points wi and weights ai
so as to uniformly approximate the integral in Eq. (1). In stan-
dard RFF, {wi}si=1 are randomly sampled from p(w) and the
weights are equal, i.e., ai ≡ 1. To reduce the approximation
variance, Yu et al. (2016) proposes the orthogonal random
features (ORF) approach, which incorporates an orthogonal-
ity constraint when sampling {wi}si=1 from p(w). Sampling
theory Niederreiter (1992) suggests that the convergence of
Monte-Carlo used in RFF and ORF can be significantly im-
proved by choosing a deterministic sequence {wi} instead
of sampling randomly. Therefore, a possible middle-ground
method is Quasi-Monte Carlo sampling (Avron et al. 2016),
which uses a low-discrepancy sequence {wi} rather than the
fully random Monte Carlo samples. Other deterministic ap-
proaches based on numerical quadrature are considered in
(Evans 1993). Bach (2017) analyzes the relationship between
random features and quadrature, which allows one to use
deterministic numerical integration methods such as Gaus-
sian quadrature (Dao, De Sa, and Ré 2017), spherical-radial
quadrature rules (Munkhoeva et al. 2018), and sparse quadra-
tures (Gauthier and Suykens 2018) for kernel approximation.

The above methods are all data-independent, i.e., the se-
lection of points and weights is independent of the train-
ing data. Another line of work considers data-dependent
algorithms, which use the training data to guide the gen-
eration of random Fourier features by using, e.g., kernel
alignment (Sinha and Duchi 2016), feature compression
(Agrawal et al. 2019), or the ridge leverage function (Avron
et al. 2017; Sun, Gilbert, and Tewari 2018; Li et al. 2019;
Fanuel, Schreurs, and Suykens 2019). Since our method
builds on the leverage function lλ(w), we detail this approach
here. From Eq. (3), the integral of lλ(w) is∫

Rd

lλ(w)dw = Tr
[
K(K + nλI)−1

]
=: dλK . (5)

The quantity dλK � n determines the number of independent
parameters in a learning problem and hence is referred to
as the number of effective degrees of freedom (Bach 2013).
Li et al. (2019) provides the sharpest bound on the required
number of random features; in particular, with Ω(

√
n log dλK)

features, no loss is incurred in learning accuracy of kernel
ridge regression. Albeit elegant, sampling according to q∗(w)
is often intractable in practice. The alternative approach pro-
posed in (Li et al. 2019) takes O(ns2 + s3) time, which is
larger than O(ns2) in the standard RFF.

3 Surrogate Leverage Weighted RFF

3.1 Problem setting

Consider a standard supervised learning setting, where X is
a compact metric space of features, and Y ⊆ R (in regres-
sion) or Y = {−1, 1} (in classification) is the label space.
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We assume that a sample set {(xi, yi)}ni=1 is drawn from a
non-degenerate Borel probability measure ρ on X × Y . The
target function of ρ is defined by fρ(x) :=

∫
Y ydρ(y|x) for

each x ∈ X , where ρ(·|x) is the conditional distribution of
ρ at x. Given a kernel function k and its associated repro-
ducing kernel Hilbert space (RKHS)H, the goal is to find a
hypothesis f : X → Y in H such that f(x) is a good esti-
mate of the label y ∈ Y for a new instance x ∈ X . By virtue
of the representer theorem (Schölkopf and Smola 2003), an
empirical risk minimization problem can be formulated as

f̂λ := argmin
f∈H

1

n

n∑
i=1

� (yi, f(xi)) + λα�Kα , (6)

where f =
∑n

i=1 αik(xi, ·) with α ∈ R
n and the con-

vex loss � : Y × Y → R quantifies the quality of the es-
timate f(x) w.r.t. the true y. In this paper, we focus on learn-
ing with the squared loss, i.e., �(y, f(x)) = (y − f(x))2.
Hence, the expected risk in KRR is defined as E(f) =∫
X×Y(f(x)− y)2dρ, with the corresponding empirical risk

defined on the sample, i.e., Ê(f) = 1
n

∑n
i=1

(
f(xi)− yi

)2
.

In standard learning theory, the optimal hypothesis fρ is de-
fined as fρ(x) =

∫
Y
ydρ(y|x), x ∈ X , where ρ(·|x) is

the conditional distribution of ρ at x ∈ X . The regularization
parameter λ in Eq. (6) should depend on the sample size;
in particular, λ ≡ λ(n) with limn→∞ λ(n) = 0. Following
(Rudi, Camoriano, and Rosasco 2017; Li et al. 2019), we
pick λ ∈ O(n−1/2).

As shown in (Li et al. 2019), when using random features,
the empirical risk minimization problem (6) can be expressed
as

βλ := argmin
β∈Rs

1

n
‖y −Zqβ‖22 + λ‖β‖22 , (7)

where y = [y1, y2, · · · , yn]� is the label vector and Zq =
[ϕq(x1), · · · , ϕq(xn)]

� ∈ R
n×s is the random feature ma-

trix, with ϕq(x) as defined in Eq. (2) and {wi}si=1 sampled
from a distribution q(w). Eq. (7) is a linear ridge regres-
sion problem in the space spanned by the random features
(Suykens et al. 2002; Mall and Suykens 2015), and the opti-
mal hypothesis is given by fλ

β = Zqβλ, with

βλ = (Z�
q Zq + nλI)−1Z�

q y . (8)

Note that the distribution q(w) determines the feature map-
ping matrix and hence has a significant impact on the general-
ization performance. Our main goal in the sequel is to design
a good q(w), and to understand the relationship between
q(w) and the expected risk. In particular, we would like to
characterize the number s of random features needed when
sampling from q(w) in order to achieve a certain convergence
rate of the risk.

3.2 Surrogate leverage weighted sampling

Let q(w) be a probability density function to be designed.
Given the points {wi}si=1 sampled from q(w), we define the
mapping

ϕq(x) =
1√
s

(√
p (w1)

q (w1)
e−iw�

1 x, · · · ,
√

p (ws)

q (ws)
e−iw�

s x

)�
.

(9)

We again have k(x,x′) = Ew∼q[ϕq(x)
�ϕq(x

′)] ≈
k̃q(x,x

′) =
∑s

i=1 zq(wi,x)zq(wi,x
′), where

zq(wi,xj) :=
√
p(wi)/q(wi)zp(wi,xj). Accordingly, the

kernel matrix K can be approximated by Kq = ZqZ
�
q ,

where Zq := [ϕq(x1), · · · , ϕq(xn)]
� ∈ R

n×s. Denoting
by zq,wi(X) the i-th column of Zq, we have K =
Ew∼p[zp,w(X)z�p,w(X)] = Ew∼q[zq,w(X)z�q,w(X)].
Note that this scheme can be regarded as a form of
importance sampling.

Our surrogate empirical ridge leverage score distribution
Lλ(w) is given by Eq. (4). The integral of Lλ(w) is∫

Rd

Lλ(w)dw =
1

n2λ
Tr

[(
yy�+ nI

)
K

]
:= Dλ

K . (10)

Combining Eq. (4) and Eq. (10), we can compute the surro-
gate empirical ridge leverage score distribution by

q(w) :=
Lλ(w)∫

Rd Lλ(w)dw
=

Lλ(w)

Dλ
K

. (11)

The random features {wi}si=1 can then be sampled from the
above q(w). We refer to this sampling strategy as surrogate
leverage weighted RFF. Compared to the standard lλ and its
associated ERLS distribution, the proposed Lλ(w) and Dλ

K
are simpler: it does not require inverting the kernel matrix
and thus accelerates the generation of random features.

Since the distribution q(w) involves the kernel matrix
K that is defined on the entire training dataset, we need
to approximate K by random features, and then calcu-
late/approximate q(w). To be specific, we firstly sample
{wi}li=1 with l ≥ s from the spectral measure p(w) and
form the feature matrix Zl ∈ R

n×l. We have K ≈ K̃p =
ZlZ

�
l , and thus the distribution q(w) can be approximated

by

q̃(w) =
p(w)z�p,w(X)

(
yy� + nI

)
zp,w(X)

‖y�Zl‖22 + n‖Zl‖2F
. (12)

Hence, we can then sample from q̃(w) to generate the refined
random features by importance sampling.

Note that the term nI in Eq. (4) and Eq. (12) is indepen-
dent of the sample set X . If we discard this term in our
algorithm implementation, Lλ(w) in Eq. (4) can be trans-
formed as

L′
λ(w) = p(w)z�p,w(X)

(
1

n2λ
yy�

)
zp,w(X) , (13)

and further q̃(w) in Eq. (12) can be simplified to

q̃′(w) =
p(w)z�p,w(X)

(
yy�

)
zp,w(X)

‖y�Zl‖22
. (14)

For each feature wi ∼ q̃′(w), its re-sampling probability pi
is associated with the approximate empirical ridge leverage
score in Eq. (13). To be specific, it can be represented as

pi ∝
(
y�(Zl)i

)2
=

∣∣∣∣
n∑

j=1

yjzp(wi,xj)

∣∣∣∣
2

, i = 1, 2, · · · , l .

(15)
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Algorithm 1: The Surrogate Leverage Weighted RFF
Algorithm in KRR

Input: the training data {(xi, yi)}ni=1, the shift-invariant
kernel k, the number of random features s, and
the regularization parameter λ

Output: the random feature mapping ϕ(·) and the
optimization variable βλ in KRR

1 Sample random features {wi}li=1 from p(w) with l ≥ s,
and form the feature matrix Zl ∈ R

n×l.
2 associate with each feature wi a real number pi such that

pi is proportional to

pi ∝
(
y�(Zl)i

)2
, i = 1, 2, · · · , l .

3 Re-sample s features from {wi}li=1 using the
multinomial distribution given by the vector
(p1/L, p2/L, · · · , pl/L) with L←∑l

i=1 pi.
4 Create the feature mapping ϕ(x) for an example x by

Eq. (9).
5 Obtain βλ solved by Eq. (8).

It has intuitive physical meanings. From Eq. (15), it measures
the correlation between the label yj and the mapping output
zp(wi,xj). Therefore, pi quantifies the contribution of wi,
which defines the i-th dimension of the feature mapping ϕ(·),
for fitting the training data. In this view, if pi is large, wi is
more important than the other features, and will be given the
priority in the above importance sampling scheme. Based on
this, we re-sample s features from {w}li=1 to generate the re-
fined random features. Our surrogate leverage weighted RFF
algorithm applied to KRR is summarized in Algorithm 1.

Also note that if the following condition holds

y�
∑n

j=1(Zs)j(Zs)
�
j y

y�(Zs)i(Zs)�i y
≈

∑n
j=1 ‖(Zs)j‖22
‖(Zs)i‖22

,

then sampling from q̃(w) or q̃′(w) does not have distinct
differences. This condition is satisfied if ‖(Zs)i‖2 does not
dramatically fluctuate for each column. in which sampling
from q̃(w) or q̃′(w) may be used.

The method in (Li et al. 2019) samples {wi}si=1 from
q∗(w) := lλ(w)/dλK , while ours samples from q(w) :=
Lλ(w)/Dλ

K . In comparison, our surrogate ERLS distribu-
tion is much simpler as it avoids inverting the matrix Z�

s Zs.
Hence, generating s random features by Algorithm 1 takes
O(ns2) time to do the sampling. It is the same as the standard
RFF and less than the O(ns2 + s3) time needed by (Li et al.
2019) which requiresO(ns2) for the multiplication of Z�

s Zs

and O(s3) for inverting Z�
s Zs.

4 Theoretical Analysis

In this section, we analyze the generalization properties of
kernel ridge regression when using random Fourier features
sampled from our q(w). Our analysis includes two parts.
We first study how many features sampled from q(w) are
needed to incur no loss of learning accuracy in KRR. We
then characterize the convergence rate of the expected risk of

KRR when combined with Algorithm 1. Our proofs follow
the framework in (Li et al. 2019) and in particular involve the
same set of assumptions.

4.1 Expected risk for sampling from q(w)

The theorem below characterizes the relationship between
the expected risk in KRR and the total number of random
features used.

Theorem 1. Given a shift-invariant and positive definite
kernel function k, denote the eigenvalues of the kernel ma-
trix K as λ1 ≥ · · · ≥ λn. Suppose that the regularization
parameter λ satisfies 0 ≤ nλ ≤ λ1, |y| ≤ y0 is bounded
with y0 > 0, and {wi}si=1 are sampled independently from
the surrogate empirical ridge leverage score distribution
q(w) = Lλ(w)/Dλ

K . If the unit ball ofH contains the opti-
mal hypothesis fρ and

s ≥ 5Dλ
K log

(
16dλK

)
/δ ,

then for 0 < δ < 1, with probability 1− δ, the excess risk of
fλ
β can be upper bounded as

E (fλ
β

)−E (fρ) ≤ 2λ+O(1/√n)+E(f̂λ
)−E (fρ) , (16)

where E(f̂λ
) − E (fρ) is the excess risk for the standard

kernel ridge regression estimator.

Theorem 1 shows that if the total number of random fea-
tures sampled from q(w) satisfies s ≥ 5Dλ

K log
(
16dλK

)
/δ,

we incur no loss in the learning accuracy of kernel ridge
regression. In particular, with the standard choice λ =
O(n−1/2), the estimator fλ

β attains the minimax rate of ker-
nel ridge regression.

To illustrate the lower bound in Theorem 1 on the number
of features, we consider three cases regarding the eigenvalue
decay of K: i) the exponential decay λi ∝ ne−ci with c > 0,
ii) the polynomial decay λi ∝ ni−2t with t ≥ 1, and iii) the
slowest decay with λi ∝ n/i (see (Bach 2013) for details).
In all three cases, direct calculation shows

Dλ
K =

1

n2λ
Tr

[
(yy� + nI)K

] ≤ 2

nλ
Tr(K) ∈ O(√n) .

Moreover, dλK satisfies dλK ∈ O(log n) in the exponential
decay case, dλK ∈ O(n1/(4t)) in the polynomial decay case,
and dλK ∈ O(√n) in the slowest case. Combining these
bounds gives the number s of random features sufficient for
no loss in the learning accuracy of KRR; these results are
reported in Tab. 1. It can be seen that sampling from q∗(w)
(Li et al. 2019) sometimes requires fewer random features
than our method. This is actually reasonable as the design of
our surrogate ERLS distribution follows in a simple fashion
and we directly relax Dλ

K to O(√n). It does not strictly
follow with the continuous generalization of the leverage
scores used in the analysis of linear methods (Alaoui and
Mahoney 2015; Cohen, Musco, and Musco 2017; Avron et
al. 2017). Actually, with a more careful argument, this bound
can be further improved and made tight, which we leave to
future works. Nevertheless, our theoretical analysis actually
provides the worst case estimation for the lower bound of
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Table 1: Comparisons of the number s of features required
by two sampling schemes.

Eigenvalue decay (Li et al. 2019) Ours

λi ∝ ne−ci, c > 0 s ≥ log2 n s ≥ √n log log n

λi ∝ ni−2t, t ≥ 1 s ≥ n1/(4t) log n s ≥ √n log n
λi ∝ n/i s ≥ √n log n s ≥ √n log n

s. In practical uses, our algorithm would not require the
considerable number of random features to achieve a good
prediction performance. Specifically, our experimental results
in Section 5 demonstrate that when using the same s, there is
no distinct difference between (Li et al. 2019) and our method
in terms of prediction performance. But our approach costs
less time to generate the refined random features, achieving a
substantial computational saving when the total number of
random features is relatively large.

To prove Theorem 1, we need the following lemma.
Lemma 1. Under the same assumptions from Theorem 1, let
ε ≥√

m/s+ 2L/3s with constants m and L given by

m := Dλ
K

λ1

λ1 + nλ
L := sup

i

lλ(wi)

q(wi)
, ∀i = 1, 2, · · · , s .

If the number of random features satisfies

s ≥ Dλ
K

(
1

ε2
+

2

3ε

)
log

16dλK
δ

, (17)

then for 0 < δ < 1, with probability 1− δ, we have

−εI � (K+nλI)−
1
2 (K̃q−K)(K+nλI)−

1
2 � εI . (18)

Proof. Following the proof of Lemma 4 in (Li et al. 2019),
by the matrix Bernstein concentration inequality (Tropp and
others 2015) and lλ(w) ≤ Lλ(w), we conclude the proof.

Based on Lemma 1, as well as the previous results includ-
ing Lemma 2, Lemma 5, Lemma 6, Theorem 5 in (Li et al.
2019), we can immediately prove Theorem 1.

4.2 Expected risk for Algorithm 1

In the above analysis, our results are based on the random fea-
tures {wi}si=1 sampled from q(w). In Algorithm 1, {wi}si=1
are actually drawn from q̃(w) or q̃′(w). In this section, we
present the convergence rates for the expected risk of Algo-
rithm 1.
Theorem 2. Under the same assumptions from Theorem 1,
denote by f̃λ∗

the KRR estimator obtained using a regular-
ization parameter λ∗ and the features {wi}si=1 sampled via
Algorithm 1. If the number of random features satisfies

s ≥ max

{
7z20 log

(
16dλK

)
λδ

, 5Dλ∗
K

log
(
16dλ

∗
K

)
δ

}
,

with |zp(w,x)| < z0, then for 0 < δ < 1, with probability
1− δ, the excess risk of f̃λ∗

can be estimated by

E(f̃λ∗
)− E (fρ) ≤ 2λ+ 2λ∗ +O(1/√n) . (19)

Proof. According to Theorem 1 and Corollary 2 in (Li
et al. 2019), if the number of random features satisfies
s ≥ 7z20 log

(
16dλK

)
/(λδ), then for any 0 < δ < 1, with

confidence 1− δ, the excess risk of fλ
α can be bounded by

E(fλ
α)− E (fρ) ≤ 2λ+O(1/√n) . (20)

Let fH̃ be the function in H̃ spanned by the approxi-
mated kernel that achieves the minimal risk, i.e., E(fH̃) =
inff∈H̃ E(f). Hence, we re-sample {wi}si=1 according to
q(w) as defined in Eq. (11), in which the kernel matrix is
indicated by the actual kernel k̃ spanned in H̃. Denote our
KRR estimator with the regularization parameter λ∗ and the
learning function f̃λ∗

, and according to Theorem 1, if the

number of random features s satisfies s ≥ 5Dλ∗
K

log
(
16dλ∗

K

)

δ ,
then for 0 < δ < 1, with confidence 1− δ, the excess risk of
f̃λ∗

can be estimated by

E(f̃λ∗)− E (fH̃) ≤ 2λ∗ +O(1/√n) . (21)

Since fH̃ achieves the minimal risk overH, we can conclude
that E(fH̃) ≤ E(fλ

α). Combining Eq. (20) and Eq. (21), we
obtain the final excess risk of E(f̃λ∗

).

Theorem 2 provides the upper bound of the expected risk
in KRR estimator over random features generated by Algo-
rithm 1. Note that, in our implementation, the number of
random features used to approximate the kernel matrix is
also set to s for simplicity, which shares the similar way with
the implementation in (Li et al. 2019).

5 Experiments

In this section, we empirically evaluate the performance of
our method equipped with KRR for classification tasks on
several benchmark datasets. All experiments are implemented
in MATLAB and carried out on a PC with Intel� i5-6500
CPU (3.20 GHz) and 16 GB RAM. The source code of our
implementation can be found in http://www.lfhsgre.org.

5.1 Experimental settings

We choose the popular shift-invariant Gaussian/RBF kernel
for experimental validation, i.e., k(x,x′) = exp(−‖x −
x′‖2/σ2). Following (Avron et al. 2017), we use a fixed
bandwidth σ = 1 in our experiments. This is without loss
of generality since we can rescale the points and adjust the
bounding interval. The regularization parameter λ is tuned via
5-fold inner cross validation over a grid of {0.05, 0.1, 0.5, 1}.

Datasets: We consider four classification datasets includ-
ing EEG, cod-RNA, covtype and magic04; see Tab. 2 for
an overview of these datasets. These datasets can be down-
loaded from https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
datasets/ or the UCI Machine Learning Repository2. All
datasets are normalized to [0, 1]d before the experiments. We
use the given training/test partitions on the cod-RNA dataset.
For the other three datasets, we randomly pick half of the
data for training and the rest for testing. All experiments

2https://archive.ics.uci.edu/ml/datasets.html.
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(a) Relative error (b) Test accuracy (c) Time cost

Figure 1: Comparison of various algorithms on approximation error in (a), test accuracy in (b), and time cost for generating
random features in (c) versus the number of random features s on the EEG dataset.

are repeated 10 times and we report the average classifica-
tion accuracy as well as the time cost for generating random
features.

Table 2: Dataset statistics.

datasets #feature dimension #traing examples #test examples

EEG 14 7,490 7,490
cod-RNA 8 59,535 157,413
covtype 54 290,506 290,506
magic04 10 9510 9510

Compared methods: We compare the proposed surrogate
leverage weighted sampling strategy with the following three
random features based algorithms:

• RFF (Rahimi and Recht 2007): The feature mapping ϕp(x)
is given by Eq. (2), in which the random features {wi}si=1
are sampled from p(w).

• QMC (Avron et al. 2016): The feature mapping ϕp(x) is
also given by Eq. (2), but the random features {wi}si=1
are constructed by a deterministic scheme, e.g., a low-
discrepancy Halton sequence.

• leverage-RFF (Li et al. 2019): The data-dependent random
features {wi}si=1 are sampled from q∗(w). The kernel
matrix in q∗(w) is approximated using random features
pre-sampled from p(w).

In our method, we consider sampling from q̃′(w) in Algo-
rithm 1 for simplicity.

5.2 Comparison results

High-level comparison: We compare the empirical per-
formance of the aforementioned random features mapping
based algorithms. In Fig. 1, we consider the EEG dataset
and plot the relative kernel matrix approximation error, the
test classification accuracy and the time cost for generating
random features versus different values of s. Note that since
we cannot compute the kernel matrix K on the entire dataset,
we randomly sample 1,000 datapoints to construct the feature

matrix ZsZ
�
s , and then calculate the relative approximation

error, i.e., err =
‖K−ZsZ

�
s ‖2

‖K‖2
.

Fig. 1(a) shows the mean of the approximation errors
across 10 trials (with one standard deviation denoted by error
bars) under different random features dimensionality. We find
that QMC achieves the best approximation performance when
compared to RFF, leverage-RFF, and our proposed method.
Fig. 1(b) shows the test classification accuracy. We find that
as the number of random features increases, leverage-RFF
and our method significantly outperform RFF and QMC .

From the above experimental results, we find that, admit-
tedly, QMC achieves lower approximation error to some
extent, but it does not translate to better classification per-
formance when compared to leverage-RFF and our method.
The reason may be that the original kernel derived by the
point-wise distance might not be suitable, and the approxi-
mated kernel is not optimal for classification/regression tasks,
as discussed in (Avron et al. 2017; Munkhoeva et al. 2018;
Zhang et al. 2019). As the ultimate goal of kernel approxima-
tion is to achieve better prediction performance, in the sequel
we omit the approximation performance of these methods.

In terms of time cost for generating random features,
Fig. 1(c) shows that leverage-RFF is quite time-consuming
when the total number of random features is large. In contrast,
our algorithm achieves comparable computational efficiency
with RFF and QMC. These results demonstrate the supe-
riority of our surrogate weighted sampling strategy, which
reduces the time cost.

Detailed comparisons: Tab. 3 reports the detailed classifi-
cation accuracy and time cost for generating random features
of all algorithms on the four datasets. Observe that by using
a data-dependent sampling strategy, leverage-RFF and our
method achieve better classification accuracy than RFF and
QMC on the EEG and cod-RNA dataset when the dimension-
ality of random features increases. In particular, on the EEG
dataset, when s ranges from 2d to 128d, the test accuracy of
leverage-RFF and our method is better than RFF and QMC
by around 1% to nearly 11%. On the cod-RNA dataset, the
performance of RFF and QMC is worse than our method
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Table 3: Comparison results of various algorithms for varying s in terms of classification accuracy (mean±std. deviation %) and time cost for
generating random features (mean±std. deviation sec.). The higher test accuracy means better. Notation “•” indicates that leverage-RFF and
our method are significantly better than the other two baseline methods via paired t-test.

Dataset s
RFF QMC leverage-RFF Ours

Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.) Acc:% (time:sec.)

EEG

d 68.45±0.89 (0.01±0.00) 67.83±0.73 (0.02±0.03) 68.78±0.97 (0.01±0.01) 68.62±0.89 (0.01±0.00)
2d 71.44±1.22 (0.02±0.00) 70.89±0.72 (0.03±0.03) 72.59±1.51 (0.03±0.01) 72.72±1.35 (0.02±0.00)
4d 74.70±0.94 (0.03±0.01) 74.66±0.42 (0.04±0.03) 79.06±0.73 (0.05±0.01)• 79.72±0.58 (0.03±0.01)•
8d 76.96±0.96 (0.06±0.02) 77.01±0.40 (0.07±0.03) 83.95±0.58 (0.10±0.01)• 84.97±0.50 (0.07±0.02)•
16d 78.54±0.63 (0.11±0.00) 78.71±0.29 (0.12±0.03) 86.29±0.50 (0.20±0.01)• 87.23±0.41 (0.13±0.01)•
32d 78.96±0.44 (0.22±0.02) 78.83±0.59 (0.24±0.06) 88.05±0.31 (0.49±0.03)• 89.38±0.32 (0.26±0.03)•
64d 79.97±0.62 (0.45±0.01) 79.71±0.40 (0.47±0.05) 89.12±0.36 (1.21±0.05)• 90.36±0.31 (0.53±0.02)•
128d 79.79±0.49 (0.82±0.05) 79.51±0.47 (0.84±0.06) 90.01±0.27 (3.91±0.09)• 91.02±0.32 (0.96±0.03)•

cod-RNA

d 87.02±0.29 (0.06±0.01) 87.20±0.00 (0.07±0.03) 88.62±0.92 (0.09±0.02) 89.64±0.87 (0.07±0.01)•
2d 87.12±0.19 (0.12±0.01) 87.65±0.00 (0.16±0.02) 90.42±1.15 (0.17±0.01)• 90.12±0.95 (0.13±0.01)•
4d 87.19±0.08 (0.24±0.01) 87.44±0.00 (0.25±0.02) 92.65±0.38 (0.35±0.02)• 92.83±0.33 (0.27±0.01)•
8d 87.27±0.11 (0.47±0.02) 87.29±0.00 (0.49±0.02) 93.41±0.07 (0.69±0.02)• 93.49±0.15 (0.53±0.02)•
16d 87.29±0.08 (0.91±0.02) 87.30±0.00 (0.94±0.04) 93.71±0.06 (1.39±0.05)• 93.74±0.05 (0.99±0.02)•
32d 87.27±0.05 (1.80±0.02) 87.33±0.00 (1.77±0.01) 93.76±0.02 (2.82±0.08)• 93.71±0.07 (1.95±0.03)•
64d 87.30±0.03 (3.48±0.15) 87.32±0.00 (3.54±0.10) 93.73±0.03 (6.54±0.53)• 93.99±0.06 (4.05±0.08)•
128d 87.30±0.03 (6.79±0.39) 87.32±0.00 (6.62±0.08) 93.66±0.03 (13.3±0.23)• 93.48±0.04 (7.78±0.09)•

covtype1

d 73.70±0.79 (1.90±0.03) 74.71±0.07 (1.88±0.11) 73.99±0.85 (2.96±0.09) 73.99±0.63 (2.00±0.05)
2d 77.09±0.25 (3.31±0.21) 77.04±0.06 (3.37±0.29) 77.04±0.35 (5.25±0.09) 77.02±0.29 (3.44±0.10)
4d 79.10±0.13 (6.27±0.35) 79.07±0.07 (6.12±0.17) 79.18±0.17 (10.2±0.15) 79.05±0.14 (6.58±0.19)
8d 81.04±0.12 (12.3±0.71) 80.90±0.05 (12.1±0.45) 81.09±0.07 (21.1±0.72) 80.79±0.11 (13.2±0.34)
16d 82.42±0.10 (24.5±1.02) 82.37±0.07 (24.3±1.56) 82.90±0.12 (46.5±2.20) 82.18±0.10 (28.6±1.58)

magic04

d 73.62±0.68 (0.01±0.00) 71.74±0.40 (0.02±0.04) 73.62±0.68 (0.01±0.01) 73.61±0.68 (0.01±0.00)
2d 75.89±0.80 (0.01±0.01) 75.98±0.36 (0.03±0.03) 75.91±0.77 (0.03±0.01) 75.88±0.77 (0.02±0.00)
4d 77.78±0.45 (0.03±0.01) 77.27±0.33 (0.04±0.03) 77.78±0.45 (0.05±0.01) 77.77±0.43 (0.03±0.00)
8d 78.97±0.34 (0.05±0.00) 79.07±0.17 (0.07±0.03) 79.15±0.40 (0.09±0.01) 79.12±0.34 (0.06±0.01)
16d 80.04±0.34 (0.10±0.01) 79.95±0.37 (0.11±0.03) 80.80±0.40 (0.19±0.01) 80.74±0.42 (0.11±0.01)
32d 80.61±0.43 (0.19±0.01) 80.65±0.31 (0.21±0.04) 82.00±0.32 (0.41±0.03)• 82.02±0.32 (0.22±0.01)•
64d 80.91±0.28 (0.38±0.03) 80.85±0.27 (0.41±0.05) 82.39±0.32 (0.93±0.05)• 82.37±0.25 (0.44±0.03)•
128d 81.10±0.37 (0.73±0.03) 81.08±0.29 (0.76±0.04) 82.59±0.29 (2.61±0.15)• 82.55±0.55 (0.87±0.02)•

1 Due to the memory limit, we cannot conduct the experiment on the covtype dataset when s ≥ 32d.

by over 6% when s ≥ 4d. On the covtype dataset, all four
methods achieve similar the classification accuracy. Instead,
on the magic04 dataset, our algorithm and leverage-RFF per-
form better than RFF and QMC on the final classification
accuracy if more random features are considered.

In terms of computational efficiency on these four datasets,
albeit data-dependent, our method still takes about the simi-
lar time cost with the data-independent RFF and QMC for
generating random features. Specifically, when compared to
leverage-RFF, our method achieves a substantial computa-
tional saving.

6 Conclusion

In this work, we have proposed an effective data-dependent
sampling strategy for generating fast random features for
kernel approximation. Our method can significantly improve
the generalization performance while achieving the same
time complexity when compared to the standard RFF. Our
theoretical results and experimental validation have demon-
strated the superiority of our method when compared to other
representative random Fourier features based algorithms on
several classification benchmark datasets.
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