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Abstract

Inferring effective connectivity between different brain re-
gions from functional magnetic resonance imaging (fMRI)
data is an important advanced study in neuroinformatics in
recent years. However, current methods have limited usage in
effective connectivity studies due to the high noise and small
sample size of fMRI data. In this paper, we propose a novel
framework for inferring effective connectivity based on gen-
erative adversarial networks (GAN), named as EC-GAN. The
proposed framework EC-GAN infers effective connectivity
via an adversarial process, in which we simultaneously train
two models: a generator and a discriminator. The generator
consists of a set of effective connectivity generators based on
structural equation models which can generate the fMRI time
series of each brain region via effective connectivity. Mean-
while, the discriminator is employed to distinguish between
the joint distributions of the real and generated fMRI time
series. Experimental results on simulated data show that EC-
GAN can better infer effective connectivity compared to other
state-of-the-art methods. The real-world experiments indicate
that EC-GAN can provide a new and reliable perspective an-
alyzing the effective connectivity of fMRI data.

Introduction

Brain effective connectivity (EC), defined as the neural in-
fluence that one brain region exerts over another (Friston
1994), is important for the assessment of normal brain func-
tion (Hein et al. 2016), and its impairment is associated with
neurodegenerative diseases, e.g., Alzheimer’s disease (AD)
(Rytsar et al. 2011). Naturally, inferring brain effective con-
nectivity can be considered as a problem of searching or con-
structing a directed graph structure (causal discovery) in the
human brain. Due to the critical impact on brain research
and disease diagnosis, the study of brain EC networks has
become a frontier subject.

Machine learning and data mining methods have enor-
mous potential in effective connectivity network construc-
tion, because effective connectivity network construction is
similar to graph construction. More precisely, inferring ef-
fective connectivity can be represented as a problem of con-
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structing a directed graph structure from neuroimaging data,
e.g., functional magnetic resonance imaging (fMRI) data.
In other words, a brain effective connectivity network is
a causal graph (directed graph) where nodes denote brain
regions, the directed arcs denote effective connectivity be-
tween brain regions.

In the last decade, there has been a growing interest in the
use of machine learning and data mining methods for brain
effective connectivity network construction (Shimizu et al.
2006; Seth, Barrett, and Barnett 2015; Wang et al. 2017;
Sanchez-Romero et al. 2019a; Liu et al. 2019). However,
these methods have their own limitations and cannot accu-
rately infer effective connectivity in some cases due to the
characteristic of fMRI data (Smith et al. 2011). For instance,
Linear non-Gaussian acyclic model (LiNGAM) uses tempo-
ral Independent component analysis (ICA) to infer effective
connectivity from data. However, ICA requires a large num-
ber of data points, so it performs poorly when the fMRI data
sample is small (Shimizu et al. 2006). Besides, LiNGAM
also needs some prior assumptions on data generation and
data disturbance. Granger causality (GC) methods infer ef-
fective connectivity in fMRI time series by the multiple re-
gression of time-indexed variables on lagged values of vari-
ables and require the time series to be wide-sense stationary
and have a zero mean (Seth, Barrett, and Barnett 2015).
Bayesian network (BN) methods search for effective con-
nectivity under the assumption that the true effective connec-
tivity network forms a directed acyclic graph (DAG), which
entails that there are no cycles in the networks. Because
BN is represented by a DAG, it is not possible to model
cyclic or bidirectional connections of the effective connec-
tivity network with a BN method (Ramsey et al. 2010; Smith
et al. 2011; Meek 2013; Liu et al. 2016; Zhou et al. 2016;
Liu et al. 2019). Thus according to the related works, cyclic
or bidirectional structure, non-stationary information, and
small samples are the main factors that affect the perfor-
mance of current methods. Therefore, it is necessary to de-
velop novel methods for inferring effective connectivity net-
works from fMRI time series data, which can overcome the
above problems.

Recently, generative adversarial networks (GANs)
(Goodfellow et al. 2014) have demonstrated impres-
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sive performance for unsupervised learning tasks,
and have been widely successful in several appli-
cations including image generation, image synthe-
sis, image-to-image translation, time series imputa-
tion, and causal discovery (Kocaoglu et al. 2017;
Kalainathan et al. 2018; Wang et al. 2018;
Li et al. 2019). Motivated by the immense success of
GANs in generating small sample and high noise simulated
data that highly resembles real-world samples, we present a
novel GAN-based framework to infer effective connectivity
from fMRI data, named as EC-GAN. Similar to the original
GANs, our framework is also based on a two-player game
that involves a generator and a discriminator. Naturally, the
generator we used consists of a lot of generated models (the
number of the generated models is equal to the number of
brain regions), and each generated model employs effective
connectivity generators based on structural equation model
(SEM) (Bühlmann, Peters, and Ernest 2014) to generate the
fMRI time series of each brain region. The discriminator
is employed to measure the difference between generated
fMRI data and real fMRI data, and the generator aims to
produce fMRI data indistinguishable by the discriminator
from another given real fMRI data. When the generated
fMRI data is similar to real fMRI data, then we can get
the effective connectivity from the causal parameters of the
effective connectivity generators. Thus the key difference
between our framework and other GAN-based methods
is that the goal of the framework is to infer the effective
connectivity during the process of generating the fMRI
data. The experimental results on both simulated fMRI data
and real-world fMRI data show that our framework is more
effective for inferring effective connectivity.

In a nutshell, the main contributions of our paper can be
summarized as follows:
• To the best of our knowledge, the proposed EC-GAN

is the first work that applies generative adversarial net-
works to the effective connectivity analysis of fMRI data,
and can accurately infer brain effective connectivity from
fMRI data.

• The framework of EC-GAN employs GANs with SEM
to accurately infer the effective connectivity, which can
model cyclic or bidirectional connections of the effective
connectivity networks, and has no restrictive assumption
on the underlying causal mechanisms and data distribu-
tions.

• Systematic experiments have been conducted to verify the
proposed GAN-based framework (EC-GAN). The exper-
imental results show that EC-GAN achieves better perfor-
mance compared with other state-of-the-art methods.

Notation and Problem Formulation

We first give the notation in our paper, and then develop a
mathematical definition of “effective connectivity”.

In this paper, we employ capital letters, i.e., Xi, Xj to
represent nodes (brain regions), and the bold letters Xi to
indicate the time series of the brain region Xi. PA(Xi) rep-
resents the parent nodes of brain region Xi. Xi |= Xj and
Xi �|= Xj represent independence and dependence between

the two corresponding brain regions Xi and Xj , respec-
tively.

According to the definition of effective connectivity (the
neural influence that one brain region exerts over another),
we can use a directed arc to model the effective connectivity
and then employ a directed graph (causal graph) to model
the effective connectivity network. Let G denote a directed
graph, D denote the fMRI data set, and P denote the distri-
bution of the data. Therefore, a brain effective connectivity
network can be expressed as a directed graph G =< V,E >,
where V is a set of nodes with each node Xi ∈ V represent-
ing a brain region or region of interest (ROI); and E is a set
of arcs with each arc Xi → Xj ∈ E describing an effective
connectivity from brain regions (ROIs) Xi to Xj .

Inferring brain effective connectivity via

Generative Adversarial Networks

In this section, we present our adversarial framework, i.e.,
EC-GAN for inferring effective connectivity from fMRI
data. Different from other GAN-based frameworks, our goal
is to infer the effective connectivity during the process of
generating fMRI data. We first give an overview of the pro-
posed EC-GAN, then describe the details of the main com-
ponents.

EC-GAN Architecture

Our proposed framework EC-GAN is made up of a genera-
tor (G) and a discriminator (D). The generator takes noise
variable and real fMRI time series data as input, and gener-
ates the samples which are similar to the realistic fMRI time
series data. The discriminator takes the real fMRI time se-
ries data and samples generated by the generator as inputs
and tries to find a mapping that tells us the input data’s prob-
ability of being real.

When we design the detailed structure of the EC-GAN,
we first utilize a generator to generate time series data of
all brain regions at once, however, it does not perform well.
Therefore, we adopt a set of effective connectivity genera-
tors as a generator to generate samples (the number of ef-
fective connectivity generators is the same as the number of
brain regions). Each effective connectivity generator is em-
ployed to generate the fMRI time series of one brain region
based on the causal parameters between one brain region and
another brain region. If the samples generated by the genera-
tor are very similar to the real input data, then we can get the
effective connectivity from the causal parameters. The ef-
fective connectivity generator is designed based on the SEM
model. We employ the SEM model because SEM has shown
a strong estimation ability in identifying effective connec-
tivity. The value of noise variable ε that we used as input is
drawn from N (0, 1). The discriminators adopted are feed-
forward fully connected neural networks with dropout, and
all the effective connectivity generators share with one dis-
criminator. The objective of the discriminators is to distin-
guish the real fMRI data and the generated data.

We use the following example to further illustrate the
structure of the EC-GAN: suppose we want to infer the ef-
fective connectivity of five brain regions (ROIs) Xi(i =
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Figure 1: An example of inferring effective connectivity with EC-GAN. The input of the framework is the fMRI time series
of the corresponding five brain regions, and the output of the framework is the effective connectivity networks (parameters
in the effective connectivity generators). The generator consists of five effective connectivity generators, and all the effective
connectivity generators share one discriminator.

1, ..., 5) from fMRI data. We first process the original fMRI
data and get the time series of the corresponding five brain
regions (ROIs). Then we need to employ five effective con-
nectivity generators to generate each variable Xi. When the
model is well-trained, and the generated samples Xgen of
each brain region are very similar to real data Xreal. We
can get the causal parameters from the effective connectiv-
ity generators. Finally, we can infer the effective connectiv-
ity network by the causal parameters. Figure. 1 shows the
example of EC-GAN for inferring an effective connectivity
network with five brain regions.

Effective Connectivity Generators based on
Structural Equation Models

To infer effective connectivity and learn the distribution and
characteristic of the original fMRI time series data, we de-
velop a set of effective connectivity generators as a generator
based on the SEM. Suppose we have n nodes (brain regions)
Xi (i = 1, ..., n). We can use a SEM model to present each
node as:

Xi = fi(PA(Xi), εi), for i = 1, ..., n, (1)

where PA(Xi) denotes the set of parents for node Xi, fi is a
function from R

|PA(Xi)|+1 → R, and ε1, ..., εn are random
noise in nodes Xi (i = 1, ..., n), which are mutually inde-
pendent. Thus a SEM is specified by a causal structure in
terms of a directed graph G, with the functions fi(·) and the
noise variable of the distribution of εi (i = 1, ..., n). More
specifically, if εi follows Gaussian distribution, we can re-
write the SEM model as:

Xi =
∑

j∈PA(Xi)

fij(Xj) + εi, for i = 1, ..., n, (2)

where εi ∼ N (0, σ2
i ), σ

2
i > 0, and the function fij is the

causal relationship between node Xi and its parents nodes

(smooth function from R → R). Thus fij(·) �= 0 if there
is a directed arcs Xj → Xi in G. For data D with n nodes,
we can use a parameter set θ to represent the directed graph
(causal relationships) of all nodes, that is,

θD = (f12, f13, ..., f1n, f21, ..., f2n, ..., fn1, ..., fn(n−1)).
(3)

Furthermore, the n brain regions can be represented as
a set of time series Xi = (xi1, xi2, ..., xit) (i = 1, ..., n),
where t is the length of the time series Xi. Thus data D with
n brain regions can be represented as:

D ={X1,X2, ...,Xn}
=(X1,X2, ...,Xn)

� ∈ R
t×n.

(4)

Given data D and a SEM model, if we have all f(·) (θD)
and the noise variable ε, we can estimate the time series of
each brain region:

X̂i =
∑

j∈PA(Xi)

f̂ij(Xj) + εi,

=
n∑

j=1

AijXj + εi,

(5)

where Aij is the causal parameter from brain region Xj to
Xi. In particular, Aij = 0 means Xj |= Xi and there is no
directed arcs from Xj to Xi (i.e., Xj � Xi). Besides, we
do not consider the effective connectivity of a brain region
itself, thus if i = j Aij = 0. Naturally, the effective con-
nectivity between two brain regions, e.g., Xi and Xj , can
be inferred by the decision of the causal parameters Aij and
Aji.

Then we develop a set of effective connectivity genera-
tors, which can generate the synthetic fMRI data by Eq.(5).
In particular, the number of effective connectivity genera-
tors is the same as the number of brain regions. To generate
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one brain region’s synthetic fMRI time series data, the ef-
fective connectivity generators take three inputs, which are
the causal parameter A, the other brain regions’ fMRI time
series data from real data D, and the ε ∼ N (0, 1). As the
SEM is a linear model, it may ignore the nonlinear charac-
teristics of fMRI data. We add multilayer neural networks
with tanh as the activation function into Eq.(5). To sum up,
the effective connective generator (for brain region Xi) con-
sists of causal parameter Aij (j ∈ PA(Xi)) and εi followed
by a fully connected multilayer neural network with a tanh
activation.

When the effective connectivity generators are well-
trained and the generated data is similar to the real fMRI
data, the causal parameter A can reflect the causal relation-
ships between the brain regions. In detail, if Aij is close to
zero (Aij ≈ 0), it means there is no effective connectivity
from brain region Xj to Xi. If Aij is larger than the thresh-
old, which is determined by the maximum number of par-
ents nodes MaxP , there should be an effective connectivity
Xj → Xi. Since the brain effective connectivity networks
are not necessarily directed acyclic graphs (DAGs), we do
not impose acyclic constraints on the effective connectiv-
ity generators. Therefore, if both Aij and Aji are larger
than the threshold, we think that there should be a bidi-
rectional connection (effective connectivity) in the network,
i.e., Xi ↔ Xj .

EC-GAN Loss Function

To overcome overfitting and infer sparse effective connec-
tivity networks, we present a new loss function by adding
a sparsity penalty to the effective connectivity generators.
First we define the sparsity penalty as:

Lp =
λ

2
log t ‖A‖ , (6)

where t is the length of time series, λ is the hyper-parameter
that controls the sparsity, and ‖A‖ denotes the network com-
plexity, that is, the sum of causal parameters A for the effec-
tive connectivity network and is calculated as:

‖A‖ =
n∑

i=1,j=1

Aij , (7)

where n is the number of nodes (brain regions). In particu-
lar, if i = j, we set Aij = 0 (not considering the effective
connectivity for one brain region itself), thus the trace of the
matrix is zero, tr(A) = 0.

Finally, EC-GAN Loss Function is defined as:

min
G

max
D

V (G,D) = EX∼PD(X)[logD(X)]

+

n∑

i=1

EX̃i∼PD(X̃i), ε∼P(ε)[log(1−D(Gi(X̃i, ε)))]

+Lp,
(8)

where n is the number of brain regions, and X̃i is the subset
of real fMRI time series set X without Xi (X̃i = X\Xi).

Inferring Effective Connectivity by EC-GAN

When using EC-GAN for inferring effective connectivity in
practice, we first need to determine the hyperparameters of
the network structure (the number of units for the hidden
layer, the learning rate of generator and discriminator, and
the regularization coefficient). Then we can use the fMRI
time series data with known ground-truth of the effective
connectivity network to select the hyperparameters with the
best performance.

After the hyperparameters are determined, we can use the
EC-GAN to infer effective connectivity from fMRI time se-
ries data. Algorithm 1 shows the full details of the proposed
EC-GAN.

Algorithm 1: EC-GAN: Inferring effective connectivity
with Generative Adversarial Networks

Input: fMRI time series data.
Output: Effective connectivity network.

1 Initialization:
2 Initialize Generator G and Discriminator D;
3 Initialize causal parameters A;
4 Set Maximum number of parent nodes MaxP ;
5 Model Training:
6 for number of training iterations do
7 for each brain region Xi do
8 Training Discriminator:
9 Use the current Gi to generate k negative

samples of brain region Xi;
10 Get k positive samples from input data;
11 Train the Discriminator D using the k pairs of

samples;
12 Update the discriminator by ascending its

stochastic gradient.
13 Training Generator:
14 Generate a sample of brain region Xi by Gi

based on causal parameters A.
15 Update the generator by descending its

stochastic gradient.
16 end

17 end
18 Return: Effective connectivity network (causal

parameters A).

Experimental Setup

To assess the performance of EC-GAN, we first use a
common evaluation method, which is to test the proposed
method and other comparison methods on some simulated
fMRI datasets generated from known ground-truth net-
works. And then, to illustrate the application potential of
EC-GAN, we apply it to two real fMRI datasets, i.e., resting-
state fMRI dataset and task fMRI dataset.

Data Description

Benchmark Simulation Dataset The benchmark simula-
tion datasets we used are generated by (Smith et al. 2011)
and (Sanchez-Romero et al. 2019a), which are widely used

4855



for detecting methods’ performance on inferring effective
connectivity. In our experiments, we aim to test the differ-
ent abilities of methods, i.e., the performance of methods on
the data with small samples data (run on every single sub-
ject), or with non-stationary connection strengths, or with
bidirectional structural networks.

The Smith simulated fMRI data are generated based on
the dynamic causal modeling (DCM), where the regions
of interests (ROIs) are nodes embedded in a directed net-
work. In our experiments, we employ the Simulation 22
in the Smith datasets. We select this simulation dataset
mainly because this dataset contains non-stationary connec-
tion strengths, and almost all methods perform poorly in this
dataset (Ramsey, Sanchez-Romero, and Glymour 2014).
Smith datasets were obtained from (Smith et al. 2011).

We chose Simulation 1 in Sanchez simulated dataset
because we want to detect the performance of different
methods on inferring the bidirectional structure of effec-
tive connectivity networks. The ground-truth networks of the
Sanchez simulated fMRI data contain different bidirectional
structures with different degrees of complexity (Sanchez-
Romero et al. 2019a). The detailed description of the two
datasets we used is shown in Table 1.

Table 1: Description of the benchmark simulation data.
Dataset Nodes TR (s) Data points Subjects

Smith 5 3.00 200 50
Sanchez 5 1.20 500 60

Real Resting-state fMRI Dataset The real resting-state
fMRI dataset used in this paper are obtained from (Shah
et al. 2017). The resting-state fMRI data are acquired at TR
(Repetition Time) = 1s, 7 min fMRI sessions for each sub-
ject, the number of data points is 421, and the number of
subjects is 23. We consider the following seven ROIs from
the medial temporal lobe, which is referred to (Sanchez-
Romero et al. 2019a). The detail information of ROIs is
shown in Table 2.

Table 2: The ROIs of the real resting-state fMRI dataset.
NO. ROIs Detailed descriptions

1 CA1 Cornu Ammonis 1
2 CA23DG CA2, CA3 and Dentate Gyrus
3 SUB Subiculum
4 ERC Entorhinal Cortex
5 BA35 Brodmann Areas 35
6 BA36 Brodmann Areas 36
7 PHC Parahippocampal Cortex

Real Task fMRI Dataset We also use real task fMRI
dataset by (Ramsey et al. 2010) to test the performance of
the EC-GAN. The real task fMRI data are acquired with a 3T
scanner, TR = 2s, and the number of data points is 160, and

the number of subjects is 9. For our analysis and compari-
son, we consider 8 ROIs which include: left and right occip-
ital cortex (LOCC, ROCC), left and right anterior cingulate
cortex (LACC, RACC), left and right inferior frontal gyrus
(LIFG, RIFG), and left and right inferior parietal (LIPL,
RIPL).

Comparison Methods for Evaluation

To intuitively show the competitiveness of the EC-GAN, we
compare EC-GAN with the other seven methods, some of
them are classical methods, and some of them are state-
of-the-art methods. In particular, all baseline methods are
proposed for inferring effective connectivity (or haven used
widely for inferring effective connectivity). These methods
include: Peter and Clark (PC) (Meek 2013), Greedy equiv-
alence search (GES) (Ramsey et al. 2010), Linear non-
Gaussian acyclic model (LiNGAM) (Shimizu et al. 2006),
Granger causality (GC) (Seth, Barrett, and Barnett 2015),
Group iterative multiple model estimation (GIMME) (Gates
and Molenaar 2012), Patel’s conditional dependence mea-
sure (Patel) (Wang et al. 2017), and Ant colony optimization
combining with voxel activation information (VACOEC)
(Liu et al. 2019), respectively.

The parameters of the baseline methods under compari-
son are selected according to the existed literature, and all
codes are from the authors (literature). (Smith et al. 2011;
Gates and Molenaar 2012; Liu et al. 2019). The default pa-
rameter configurations of the corresponding methods are as
follows. PC runs with Alpha = 0.05. The parameters of
GES is set as PenaltyDiscount = 1.0. LiNGAM uses
the parameters where Prune Factor = 1.0. GC is set as
max lag ∈ [1, 30], Alpha = 0.05. GIMME is performed
with groupcutoff = 0.8, subcutoff = 0.5. Patel runs
with bin = 0.75. VACOEC uses the parameters where α =
1, β = 2, ρ = 0.2, q0 = 0.8, n = 10, p = 0.6, K = 0.2.

Evaluation metrics

We compared the learned result to ground-truths on the four
most common graph metrics (Cai et al. 2018; Chikahara
and Fujino 2018; Huang et al. 2018): 1) Precision, 2) Re-
call, 3) F1-measure (F1), and 4) Structural Hamming dis-
tance (SHD). In detail, Precision and Recall range from 0 to
1, and F1 value combines the effects of Precision and Re-
call. If F1 is equal to 1, that indicates the method correctly
infers all arcs. SHD is the total number of edge additions
(extra arcs), and deletions (missing arcs) needed to convert
the learned effective connectivity network into the ground
truth network. If SHD is equal to 0, which means that the
method correctly infers all arcs.

Model Configuration

Before conducting the comparative experiments, we first
generated some simulated data with known ground-truth to
select the hyper-parameters of the EC-GAN. The genera-
tion model of simulations is referenced to the method in
(Smith et al. 2011), which used the dynamic causal mod-
eling (DCM) to generate the fMRI time series data. In our
experiments, the EC-GAN employs n effective connectivity
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Table 3: The mean and the standard deviation results of 8 methods on benchmark simulation dataset.

Data Metrics Methods

PC GES LiNGAM GC GIMME Patel VACOEC EC-GAN

Smith Precision 0.31±0.02 0.61±0.03 0.48±0.04 0.48±0.04 0.48±0.02 0.56±0.02 0.65±0.02 0.64±0.01
Recall 0.26±0.03 0.46±0.02 0.26±0.03 0.28±0.02 0.46±0.01 0.54±0.01 0.48±0.02 0.76±0.02

F1 0.28±0.02 0.52±0.03 0.34±0.03 0.35±0.03 0.46±0.02 0.55±0.01 0.55±0.02 0.70±0.01
SHD 6.50±0.18 3.90±0.20 5.40±0.21 5.70±0.39 5.20±0.15 4.50±0.07 4.30±0.14 3.40±0.11

Sanchez Precision 0.48±0.01 0.58±0.02 0.52±0.02 0.52±0.01 0.53±0.01 0.57±0.01 0.67±0.02 0.72±0.01
Recall 0.49±0.01 0.67±0.02 0.54±0.02 0.48±0.01 0.70±0.01 0.55±0.02 0.75±0.02 0.84±0.01

F1 0.48±0.01 0.62±0.02 0.53±0.02 0.49±0.01 0.60±0.01 0.55±0.01 0.70±0.02 0.77±0.01
SHD 4.70±0.10 3.30±0.15 4.70±0.14 5.70±0.12 4.20±0.08 4.70±0.18 3.40±0.21 2.20±0.11

generators, and each of them has one hidden layer of m neu-
rons with tanh as the activation function. The discriminator
has two hidden layers of m Sigmod units on each layer. For
a five nodes fMRI time series data, the hyper-parameters of
EC-GAN are set as: the learning rate of generator and dis-
criminator are 0.1, the number of units m is 100, sparsity
parameter λ is 5. The threshold of causal parameters (A) is
determined by the maximum number of parents MaxP , and
it is the same for all nodes. The selection of the threshold
depends on the number of nodes and how sparse networks
we want to get. For the two simulated fMRI datasets (five
nodes effective connectivity networks), we set MaxP = 2.
And for the two real fMRI datasets (eight and nine nodes ef-
fective connectivity networks), all hyper-parameters are the
same with the simulated datasets but set MaxP = 5.

Experimental Results

Results on Benchmark Simulated fMRI Dataset

In the experiments, we randomly select 20 subjects from
Smith dataset and Sanchez dataset, and show the mean and
the standard deviation results of 8 methods using single sub-
jects. The results on Smith dataset and Sanchez dataset are
shown in Table 3 (Each method runs on single subjects, so
we show the mean μ and the standard deviation σ results
over all subjects). In our experiments, we use single subjects
(with 200 or 500 data points), mainly because we want to
test the performance of different methods on a small sample
size of fMRI data. In particular, an algorithm performs well
when it gets higher values of precision, recall, F1, and lower
value of SHD.

The Smith dataset we used is generated with non-
stationarity connection strength between brain regions, and
the connection strength is modulated over time by additional
random processes. Besides, the data points of each subject
in this dataset are really small, only 200 data points per
subject. In this situation, current methods always perform
worse and unable to accurately identify effective connec-
tivity. From Table 3 we can find that most baseline meth-
ods perform worse, however, our proposed framework EC-
GAN achieves the best performance in Precision, Recall, F1
and SHD. It is worth to note that the Recall and F1 of EC-
GAN are much higher than other methods, which indicates
that EC-GAN can infer more reliable effective connectivity
than other compared methods. Besides, the SHD value of

Figure 2: The effective connectivity networks inferred by
EC-GAN from the left hemisphere medial temporal lobe (a)
and the right hemisphere medial temporal lobe (b).

EC is smaller than all other methods, which means that EC
has fewer error arcs compared to other methods. Results on
Smith simulated dataset show that EC-GAN has better per-
formance under the situations of non-stationarity connection
strength and small sample size of fMRI data.

As described in the experimental setup section, the
ground-truth of Sanchez simulated dataset is a five nodes
graph with one bidirectional arc. Thus, this dataset is em-
ployed to test whether a method can infer the bidirectional
structure of effective connectivity network. From Table 3 we
can find that the EC-GAN achieves the best performance
on Precision, Recall, F1 and SHD. Therefore, EC-GAN per-
forms better than the seven comparison methods on the sim-
ulated datasets. We will show its performance in real fMRI
data in the following section.

Results on Real Resting-state fMRI Dataset

Different from the simulated data, we do not have a fully
defined ground-truth to exactly assess the performance of
different methods from real fMRI (Sanchez-Romero et al.
2019a). Instead, we have partial knowledge about the pres-
ence of structural connections between brain regions on the
medial temporal lobe from some current works. Thus we
evaluate the performance of EC-GAN on the medial tem-
poral lobe data from the left and right hemispheres of the
brain. In the real-world data experiments, we run our pro-
posed framework EC-GAN on one repetition of all 23 sub-
jects concatenated (23 subjects × 421 time points = 9683
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Figure 3: The brain effective connectivity networks inferred by EC-GAN, LiNGAM, GES, and ACOEC on the task fMRI data.
The outermost rings represent the brain regions and the center is a representation of brain effective connectivity. The color of
the arrows is the same as the parent nodes.

data points) from Shah resting-state fMRI data (Shah et al.
2017). The data contains 7 ROIs from the medial temporal
lobe (left hemisphere and right hemisphere are analyzed sep-
arately). Figure. 2 illustrates the effective connectivity net-
works inferred by EC-GAN from the left hemisphere medial
temporal lobe and right hemisphere medial temporal lobe.

From Figure. 2 we can see that the effective connectiv-
ity network of the left hemisphere medial temporal lobe
(Figure. 2 (a)) is closely similar to that of the right hemi-
sphere medial temporal lobe (Figure. 2 (b)), and has some
differences. These differences are mainly caused by the con-
nections of CA23DG, effective connectivity CA23DG →
SUB is in the left hemisphere while CA23DG ↔ PHC
and CA23DG → BA36 are in the right hemisphere. Com-
pared with the previous studies (Sanchez-Romero et al.
2019a), the effective connectivity network of the left hemi-
sphere medial temporal lobe in Figure. 2 (a) is consis-
tent with the effective connectivity networks estimated by
(Sanchez-Romero et al. 2019a). Besides, as is suggested by
(Lavenex and Amaral 2000), there are direct two-way con-
nections between PHC and BA35 (PHC ↔ BA35), which
is missing in (Sanchez-Romero et al. 2019a), however, this
connection is found by EC-GAN. In particular, EC-GAN
infers the effective connectivity ERC → CA23DG, and
this effective connectivity is the main pathway connect-
ing the medial temporal lobe cortices with the hippocam-
pus. However, the two methods proposed in (Sanchez-
Romero et al. 2019a) fail to detect the effective connectivity
ERC→CA23DG, which is inferred by EC-GAN. Therefore,
the new proposed method EC-GAN can provide a reliable
perspective for the analysis of brain effective connectivity
networks.

Results on Real Task fMRI Dataset

In this section, we run EC-GAN on one repetition of 9 sub-
jects concatenated (9 subjects × 160 time points = 1440 data
points) from (Sanchez-Romero et al. 2019b) task fMRI data.

As we do not have a fully defined ground-truth to exactly
assess the performance of different methods from real fMRI
data (Sanchez-Romero et al. 2019a). We evaluate the per-
formance of LiNGAM, GES and ACOEC (these methods

perform well on two simulated datasets) on the task fMRI
dataset based on the partial known knowledge. (Sanchez-
Romero et al. 2019a) suggested that we can model the dy-
namics of the task with an input variable for which er expect
feedforward edges into the regions of interest and not vice
versa. Therefore, we employ EC-GAN and other three com-
pared methods to infer the brain effective connectivity net-
works with 9 ROIs (include input variable) on the task fMRI
data, and the results are graphically rendered in a circular
diagram format in Figure. 3

From Figure. 3 we can find that only EC-GAN correctly
inferred the effective connectivity Input → LOCC and
Input → LACC, which indicates that the proposed frame-
work EC-GAN can correctly infer the feedforward connec-
tions from the Input variable to the brain regions. This re-
sult is consistent with the rhyming task in (Ramsey et
al. 2010) and (Sanchez-Romero et al. 2019a). From Fig-
ure. 3 (A), we also find that the left hemisphere of brain
regions always activated earlier than the right hemisphere
of brain regions under this task, as the information flow
is following the chain of Input-LOCC/LIPG-ROCC/RIPG
(Input → LOCC, LOCC → ROCC, Input → LACC,
LACC → RACC).

In a word, the new framework EC-GAN can provide a
reliable perspective for the analysis of effective connectivity
on both resting-state fMRI data and task fMRI data.

Conclusion

In this paper, we proposed a new framework for inferring
brain effective connectivity from fMRI data based on gener-
ative adversarial networks (GAN), named as EC-GAN. The
proposed framework infers effective connectivity via a gen-
erator and a discriminator. In detail, the generator is com-
posed of several effective connectivity generators which can
generate the fMRI time series of each brain region based on
effective connectivity, and the discriminator is employed to
distinguish between the joint distributions of real and gen-
erated fMRI time series. Experimental results on both sim-
ulated and real-world data demonstrate the efficacy of our
proposed framework.
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