
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

AutoCompress: An Automatic DNN Structured
Pruning Framework for Ultra-High Compression Rates

Ning Liu,1,2 Xiaolong Ma,2 Zhiyuan Xu,3 Yanzhi Wang,2 Jian Tang,1,3 Jieping Ye1

1DiDi AI Labs, 2Northeastern University, 3Syracuse University
{neilliuning, tangjian, yejieping}@didiglobal.com, ma.xiaol@husky.neu.edu, zxu105@syr.edu,

yanz.wang@northeastern.edu

Abstract

Structured weight pruning is a representative model compres-
sion technique of DNNs to reduce the storage and computa-
tion requirements and accelerate inference. An automatic hy-
perparameter determination process is necessary due to the
large number of flexible hyperparameters. This work pro-
poses AutoCompress, an automatic structured pruning frame-
work with the following key performance improvements: (i)
effectively incorporate the combination of structured prun-
ing schemes in the automatic process; (ii) adopt the state-
of-art ADMM-based structured weight pruning as the core
algorithm, and propose an innovative additional purification
step for further weight reduction without accuracy loss; and
(iii) develop effective heuristic search method enhanced by
experience-based guided search, replacing the prior deep re-
inforcement learning technique which has underlying incom-
patibility with the target pruning problem. Extensive experi-
ments on CIFAR-10 and ImageNet datasets demonstrate that
AutoCompress is the key to achieve ultra-high pruning rates
on the number of weights and FLOPs that cannot be achieved
before. As an example, AutoCompress outperforms the prior
work on automatic model compression by up to 33× in prun-
ing rate (120× reduction in the actual parameter count) un-
der the same accuracy. Significant inference speedup has been
observed from the AutoCompress framework on actual mea-
surements on smartphone. We release models of this work at
anonymous link: http://bit.ly/2VZ63dS.

1 Introduction

The high computational and storage requirements of large-
scale DNNs, such as VGG (Simonyan and Zisserman 2015)
or ResNet (He et al. 2016), make it prohibitive for broad,
real-time applications at the mobile end. Model compres-
sion techniques have been proposed that aim at reducing
both the storage and computational costs for DNN infer-
ence phase (Han et al. 2015; Wen et al. 2016; Guo, Yao, and
Chen 2016; Min et al. 2018; Luo and Wu 2017; He, Zhang,
and Sun 2017; He et al. 2018; Zhang et al. 2018a; 2018b;
Min et al. 2018; Leng et al. 2018). One key model compres-
sion technique is DNN weight pruning (Wen et al. 2016; Luo
and Wu 2017; Min et al. 2018; Guo, Yao, and Chen 2016;

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Han et al. 2015; He, Zhang, and Sun 2017; He et al. 2018;
Zhang et al. 2018a; 2018b) that reduces the number of
weight parameters, with minor (or no) accuracy loss.

There are mainly two categories of weight pruning. The
general, non-structured pruning (Han et al. 2015; 2015;
Luo and Wu 2017; Zhang et al. 2018a) can prune arbitrary
weight in DNN. Despite the high pruning rate (weight re-
duction), it suffers from limited acceleration in actual hard-
ware implementation due to the sparse weight matrix storage
and associated indices (Han et al. 2015; Wen et al. 2016;
He, Zhang, and Sun 2017). On the other hand, structured
pruning (Wen et al. 2016; Min et al. 2018; He, Zhang, and
Sun 2017; Zhang et al. 2018b) can directly reduce the size
of weight matrix while maintaining the form of a full ma-
trix, without the need of indices. It is thus more compatible
with hardware acceleration and has become the recent re-
search focus. There are multiple types/schemes of structured
pruning, e.g., filter pruning, channel pruning, and column
pruning for CONV layers of DNN as summarized in (Wen
et al. 2016; Luo and Wu 2017; He, Zhang, and Sun 2017;
Zhang et al. 2018b). Recently, a systematic solution frame-
work (Zhang et al. 2018a; 2018b) has been developed
based on the powerful optimization tool ADMM (Alternat-
ing Direction Methods of Multipliers) (Boyd et al. 2011;
Suzuki 2013). It is applicable to different schemes of struc-
tured pruning (and non-structured one) and achieves state-
of-art results (Zhang et al. 2018a; 2018b) by far.

The structured pruning problem of DNNs is flexible,
comprising a large number of hyper-parameters, includ-
ing the scheme of structured pruning and combination (for
each layer), per-layer weight pruning rate, etc. Conventional
hand-crafted policy has to explore the large design space
for hyperparameter determination for weight or computa-
tion (FLOPs) reductions, with minimum accuracy loss. The
trial-and-error process is highly time-consuming, and de-
rived hyperparameters are usually sub-optimal. It is thus de-
sirable to employ an automated process of hyperparameter
determination for such structured pruning problem, moti-
vated by the concept of AutoML (automated machine learn-
ing) (Zoph and Le 2016; Baker et al. 2016; Li et al. 2016;
Liu et al. 2018a). Recent work AMC (He et al. 2018) em-
ploys the popular deep reinforcement learning (DRL) (Zoph

4876



and Le 2016; Baker et al. 2016) technique for automatic de-
termination of per-layer pruning rates. However, it has limi-
tations that (i) it employs an early weight pruning technique
based on fixed regularization, and (ii) it only considers fil-
ter pruning for structured pruning. As we shall see later, the
underlying incompatibility between the utilized DRL frame-
work with the problem further limits its ability to achieve
high weight pruning rates (the maximum reported pruning
rate in (He et al. 2018) is only 5× and is non-structured
pruning).

This work makes the following innovative contributions
in the automatic hyperparameter determination process for
DNN structured pruning. First, we analyze such automatic
process in details and extract the generic flow, with four
steps: (i) action sampling, (ii) quick action evaluation, (iii)
decision making, and (iv) actual pruning and result gen-
eration. Next, we identify three sources of performance
improvement compared with prior work. We adopt the
ADMM-based structured weight pruning algorithm as the
core algorithm, and propose an innovative additional pu-
rification step for further weight reduction without accu-
racy loss. Furthermore, we find that the DRL framework
has underlying incompatibility with the characteristics of the
target pruning problem, and conclude that such issues can
be mitigated simultaneously using effective heuristic search
method enhanced by experience-based guided search.

Combining all the improvements results in our auto-
matic framework AutoCompress, which outperforms the
prior work on automatic model compression by up to 33×
in pruning rate (120× reduction in the actual parameter
count) under the same accuracy. Through extensive exper-
iments on CIFAR-10 and ImageNet datasets, we conclude
that AutoCompress is the key to achieve ultra-high prun-
ing rates on the number of weights and FLOPs that cannot
be achieved before, while DRL cannot compete with hu-
man experts to achieve high pruning rates. Significant in-
ference speedup has been observed from the AutoCompress
framework on actual measurements on smartphone, based
on our compiler-assisted mobile DNN acceleration frame-
work. We release all models of this work at anonymous link:
http://bit.ly/2VZ63dS.

2 Related Work
DNN Weight Pruning and Structured Pruning: DNN
weight pruning includes two major categories: the general,
non-structured pruning (Luo and Wu 2017; Guo, Yao, and
Chen 2016; Han et al. 2015; Zhang et al. 2018a) where
arbitrary weight can be pruned, and structured pruning
(Wen et al. 2016; Luo and Wu 2017; Min et al. 2018;
He, Zhang, and Sun 2017; Zhang et al. 2018b) that main-
tains certain regularity. Non-structured pruning can result in
a higher pruning rate (weight reduction). However, as weight
storage is in a sparse matrix format with indices, it often re-
sults in performance degradation in highly parallel imple-
mentations like GPUs. This limitation can be overcome in
structured weight pruning.

Figure 1 illustrates three structured pruning schemes on
the CONV layers of DNN: filter pruning, channel pruning,
and filter-shape pruning (a.k.a. column pruning), removing

channel 0 channel 1 channel m

(filter width) x (filter height) x (number of channels)

W0,0,0 W0,0,1 W0,0,k W0,1,0 W0,1,k W0,m,0W0,m,1 W0,m,k

W1,0,0 W1,0,1 W1,0,k W1,1,0 W1,1,k W1,m,0W1,m,1 W1,m,k

W2,0,0 W2,0,1 W2,0,k W2,1,0 W2,1,k W2,m,0W2,m,1 W2,m,k

Wn,0,0 Wn,0,1 Wn,0,k Wn,1,0 Wn,1,k Wn,m,0Wn,m,1 Wn,m,k

Num of
filters

W0,1,1

W1,1,1

W2,1,1

Wn,1,1

ChannelFilter Shape (Column)

Filter

Filter Pruning Channel Pruning Filter Shape Pruning

A

...

i Ai

... ...

Filter 1

Filter 2

Filter Filter AiFilter

Filter 1

Filter 2

Filter 1

Filter 2

Figure 1: Different structured pruning schemes: A filter-
based view and a GEMM view.

whole filter(s), channel(s), and the same location in each
filter in each layer. CONV operations in DNNs are com-
monly transformed to matrix multiplications by converting
weight tensors and feature map tensors to matrices (Wen et
al. 2016), named general matrix multiplication (GEMM).
The key advantage of structured pruning is that a full matrix
will be maintained in GEMM with dimensionality reduction,
without the need of indices, thereby facilitating hardware
implementations.

It is also worth mentioning that filter pruning and channel
pruning are correlated (He, Zhang, and Sun 2017), as prun-
ing a filter in layer i (after batch norm) results in the removal
of corresponding channel in layer i+ 1. The relationship in
ResNet (He et al. 2016) and MobileNet (Sandler et al. 2018)
will be more complicated due to bypass links.

ADMM: Alternating Direction Method of Multipliers
(ADMM) is a powerful mathematical optimization tech-
nique, by decomposing an original problem into two sub-
problems that can be solved separately and efficiently (Boyd
et al. 2011). Consider the general optimization problem
minx f(x) + g(x). In ADMM, it is decomposed into two
subproblems on x and z (z is an auxiliary variable), to be
solved iteratively until convergence. The first subproblem
derives x given z: minx f(x) + q1(x|z). The second sub-
problem derives z given x: minz g(z) + q2(z|x). Both q1
and q2 are quadratic functions.

As a key property, ADMM can effectively deal with a sub-
set of combinatorial constraints and yield optimal (or at least
high quality) solutions. The associated constraints in DNN
weight pruning (both non-structured and structured) belong
to this subset (Hong, Luo, and Razaviyayn 2016). In DNN
weight pruning problem, f(x) is loss function of DNN and
the first subproblem is DNN training with dynamic regu-
larization, which can be solved using current gradient de-
scent techniques and solution tools (Kingma and Ba 2014;
Ten 2017) for DNN training. g(x) corresponds to the combi-

4877



Step (i)
Quick Evaluation

Automated
Agent

Decision Making Actual Pruning

Previous
round

Next round?

Round t

Set of 
sample action

Hyper paras.

First
Improvement
Source

Second
Improvement
Source

Third Improvement Source

AMC
DRL, train

NN for decision
making

AutoCompress
Enhanced
Heuristic
Search by

Experience

AMC
Filter pruning

AutoCompress

Fixed Reg.

Action Sampling
Step (ii) Step (iii) Step (iv)

Combined
filter & column

ADMM

Figure 2: The generic flow of automatic hyperparameter
determination framework, and sources of performance im-
provements.

natorial constraints on the number of weights. As the result
of the compatibility with ADMM, the second subproblem
has optimal, analytical solution for weight pruning via Eu-
clidean projection. This solution framework applies both to
non-structured and different variations of structured pruning
schemes.

AutoML: Many recent work have investigated the con-
cept of automated machine learning (AutoML), i.e., us-
ing machine learning for hyperparameter determination in
DNNs. Neural architecture search (NAS) (Zoph and Le
2016; Baker et al. 2016; Liu et al. 2018a) is an represen-
tative application of AutoML. NAS has been deployed in
Google’s Cloud AutoML framework, which frees customers
from the time-consuming DNN architecture design process.
The most related prior work, AMC (He et al. 2018), applies
AutoML for DNN weight pruning, leveraging a similar DRL
framework as Google AutoML to generate weight pruning
rate for each layer of the target DNN. In conventional ma-
chine learning methods, the overall performance (accuracy)
depends greatly on the quality of features. To reduce the bur-
densome manual feature selection process, automated fea-
ture engineering learns to generate appropriate feature set in
order to improve the performance of corresponding machine
learning tools.

3 The Proposed AutoCompress Framework

for DNN Structured Pruning

Given a pretrained DNN or predefined DNN structure, the
automatic hyperparameter determination process will de-
cide the per-layer weight pruning rate, and type (and pos-
sible combination) of structured pruning scheme per layer.
The objective is the maximum reduction in the number of
weights or FLOPs, with minimum accuracy loss.

3.1 Automatic Process: Generic Flow

Figure 2 illustrates the generic flow of such automatic pro-
cess, which applies to both AutoCompress and the prior
work AMC. Here we call a sample selection of hyper-
paramters an “action” for compatibility with DRL. The flow
has the following steps: (i) action sampling, (ii) quick ac-

tion evaluation, (iii) decision making, and (iv) actual prun-
ing and result generation. Due to the high search space of
hyperparameters, steps (i) and (ii) should be fast. This is es-
pecially important for step (ii), in that we cannot employ
the time-consuming, retraining based weight pruning (e.g.,
fixed regularization (Wen et al. 2016; He, Zhang, and Sun
2017) or ADMM-based techniques) to evaluate the actual
accuracy loss. Instead, we can only use simple heuristic, e.g.,
eliminating a pre-defined portion (based on the chosen hy-
perparameters) of weights with least magnitudes for each
layer, and evaluating the accuracy. This is similar to (He et
al. 2018). Step (iii) makes decision on the hyperparameter
values based on the collection of action samples and eval-
uations. Step (iv) generates the pruning result, and the opti-
mized (core) algorithm for structured weight pruning will be
employed here. Here the algorithm can be more complicated
with higher performance (e.g., the ADMM-based one), as it
is only performed once in each round.

The overall automatic process is often iterative, and the
above steps (i) through (iv) reflect only one round. The rea-
son is that it is difficult to search for high pruning rates in
one single round, and the overall weight pruning process
will be progressive. This applies to both AMC and Auto-
Compress. The number of rounds is 4 - 8 in AutoCom-
press for fair comparison. Note that AutoCompress supports
flexible number of progressive rounds to achieve the max-
imum weight/FLOPs reduction given accuracy requirement
(or with zero accuracy loss).

3.2 Motivation: Sources of Performance
Improvements

Based on the generic flow, we identify three sources of per-
formance improvement (in terms of pruning rate, accuracy,
etc.) compared with prior work. The first is the structured
pruning scheme. Our observation is that an effective com-
bination of filter pruning (which is correlated with chan-
nel pruning) and column pruning will perform better com-
pared with filter pruning alone (as employed in AMC (He
et al. 2018)). Comparison results are shown in the evalua-
tion section. This is because of the high flexibility in column
pruning, while maintaining the hardware-friendly full ma-
trix format in GEMM. The second is the core algorithm for
structured weight pruning in Step (iv). We adopt the state-
of-art ADMM-based weight pruning algorithm in this step.
Furthermore, we propose further improvement of a purifica-
tion step on the ADMM-based algorithm taking advantages
of the special characteristics after ADMM regularization. In
the following two subsections, we will discuss the core al-
gorithm and the proposed purification step, respectively.

The third source of improvement is the underlying princi-
ple of action sampling (Step (i)) and decision making (Step
(iii)). The DRL-based framework in (He et al. 2018) adopts
an exploration vs. exploitation-based search for action sam-
pling. For Step (iii), it trains a neural network using action
samples and fast evaluations, and uses the neural network
to make decision on hyperparameter values. Our hypothesis
is that DRL is inherently incompatible with the target auto-
matic process, and can be easily outperformed by effective
heuristic search methods (such as simulated annealing or

4878



genetic algorithm), especially the enhanced versions. More
specifically, the DRL-based framework adopted in (He et al.
2018) is difficult to achieve high pruning rates (the maxi-
mum pruning rate in (He et al. 2018) is only 5× and is on
non-structured pruning), due to the following reasons.

First, the sample actions in DRL are generated in a ran-
domized manner, and are evaluated (Step (ii)) using very
simple heuristic. As a result, these action samples and eval-
uation results (rewards) are just rough estimations. When
training a neural network and relying on it for making de-
cisions, it will hardly generate satisfactory decisions espe-
cially for high pruning rates. Second, there is a common lim-
itation of reinforcement learning technique (both basic one
and DRL) on optimization problem with constraints (White-
son et al. 2011; Zhang et al. 2016; Henderson et al. 2018).
As pruning rates cannot be set as hard constraints in DRL,
it has to adopt a composite reward function with both ac-
curacy loss and weight No./FLOPs reduction. This is the
source of issue in controllability, as the relative strength
of accuracy loss and weight reduction is very different for
small pruning rates (the first couple of rounds) and high
pruning rates (the latter rounds). Then there is the para-
dox of using a single reward function in DRL (hard to sat-
isfy the requirement throughout pruning process) or mul-
tiple reward functions (how many? how to adjust the pa-
rameters?). Third, it is difficult for DRL to support flexi-
ble and adaptive number of rounds in the automatic process
to achieve the maximum pruning rates. As different DNNs
have vastly different degrees of compression, it is chal-
lenging to achieve the best weight/FLOPs reduction with
a fixed, predefined number of rounds. These can be ob-
served in the evaluation section on the difficulty of DRL
to achieve high pruning rates. As these issues can be miti-
gated by effective heuristic search, we emphasize that an ad-
ditional benefit of heuristic search is the ability to perform
guided search based on prior human experience. In fact, the
DRL research also tries to learn from heuristic search meth-
ods in this aspect for action sampling (Osband et al. 2016;
Silver, Sutton, and Müller 2008), but the generality is still
not widely evaluated.

3.3 Core Algorithm for Structured Pruning

This work adopts the ADMM-based weight pruning algo-
rithm (Zhang et al. 2018a; 2018b) as the core algorithm,
which generates state-of-art results in both non-structured
and structured weight pruning. Details are in (Zhang et al.
2018a; 2018b; Boyd et al. 2011; Suzuki 2013). The major
step in the algorithm is ADMM regularization. Consider a
general DNN with loss function f({Wi}, {bi}), where Wi

and bi correspond to the collections of weights and biases in
layer i, respectively. The overall (structured) weight pruning
problem is defined as

minimize
{Wi},{bi}

f({Wi}, {bi}), subject to Wi ∈ Si, for all i;

where Si reflects the requirement that remaining weights in
layer i satisfy predefined “structures”. Please refer to (Wen
et al. 2016; He, Zhang, and Sun 2017) for more details.

By defining (i) indicator functions gi(Wi) =

{
0 if Wi ∈ Si

+∞ otherwise
, (ii) incorporating auxiliary vari-

able Zi and dual variable Ui, (iii) adopting augmented
Lagrangian (Boyd et al. 2011), the ADMM regularization
decomposes the overall problem into two subproblems,
and iteratively solved them until convergence. The
first subproblem is minimize

{Wi},{bi}
f
({Wi}Ni=1, {bi}Ni=1

)
+

∑N
i=1

ρi

2 ‖Wi − Zk
i + Uk

i ‖2F . It can be solved us-
ing current gradient descent techniques and solution
tools for DNN training. The second subproblem is
minimize

{Zi}
∑N

i=1 gi(Zi) +
∑N

i=1
ρi

2 ‖Wk+1
i −Zi +Uk

i ‖2F ,

which can be optimally solved as Euclidean mapping.
Overall speaking, ADMM regularization is a dynamic

regularization where the regularization target is dynamically
adjusted in each iteration, without penalty on all the weights.
This is the reason that ADMM regularization outperforms
prior work of fixed L1, L2 regularization or projected gradi-
ent descent (PGD). To further enhance the convergence rate,
the multi-ρ method (Ye et al. 2018) is adopted in ADMM
regularization, where the ρi values will gradually increase
with ADMM iterations.

3.4 Purification and Unused Weights Removal

After ADMM-based structured weight pruning, we propose
the purification and unused weights removal step for further
weight reduction without accuracy loss. First, as also noticed
by prior work (He, Zhang, and Sun 2017), a specific filter
in layer i is responsible for generating one channel in layer
i + 1. As a result, removing the filter in layer i (in fact re-
moving the batch norm results) also results in the removal of
the corresponding channel, thereby achieving further weight
reduction. Besides this straightforward procedure, there is
further margin of weight reduction based on the character-
istics of ADMM regularization. As ADMM regularization
is essentially a dynamic, L2-norm based regularization pro-
cedure, there are a large number of non-zero, small weight
values after regularization. Due to the non-convex property
in ADMM regularization, our observation is that removing
these weights can maintain the accuracy or even slightly im-
prove the accuracy occasionally. As a result, we define two
thresholds, a column-wise threshold and a filter-wise thresh-
old, for each DNN layer. When the L2 norm of a column
(or filter) of weights is below the threshold, the column (or
filter) will be removed. Also the corresponding channel in
layer i + 1 can be removed upon filter removal in layer i.
Structures in each DNN layer will be maintained after this
purification step.

These two threshold values are layer-specific, depending
on the relative weight values of each layer, and the sensitiv-
ity on overall accuracy. They are hyperparameters to be de-
termined for each layer in the AutoCompress framework, for
maximum weight/FLOPs reduction without accuracy loss.

3.5 The Overall AutoCompress Framework for
Structured Weight Pruning and Purification

In this section, we discuss the AutoCompress framework
based on the enhanced, guided heuristic search method, in

4879



Automated
Agent

Round t

Phase Phase I II
Structured Prune Purification

Round
t-1

Round
t+1

Sampling ADMM
Prune

Evaluation Decision

SA

Round tRound
t-1

Round
t+1

Sampling Purify

Evaluation Decision

SA

Paras. reduction, FLOPs, Accuracy

Figure 3: Illustration of the AutoCompress framework.

which the automatic process determines per-layer weight
pruning rates, structured pruning schemes (and combina-
tions), as well as hyperparameters in the purification step
(discussed in Section 3.4). The overall framework has two
phases as shown in Figure 3: Phase I for structured weight
pruning based on ADMM, and Phase II for the purification
step. Each phase has multiple progressive rounds as dis-
cussed in Section 3.1, in which the weight pruning result
from the previous round serves as the starting point of the
subsequent round. We use Phase I as illustrative example,
and Phase II uses the similar steps.

The AutoCompress framework supports flexible num-
ber of progressive rounds, as well as hard constraints on
the weight or FLOPs reduction. In this way, it aims to
achieve the maximum weight or FLOPs reduction while
maintaining accuracy (or satisfying accuracy requirement).
For each round t, we set the overall reduction in weight
number/FLOPs to be a factor of 2 (with a small variance),
based on the result from the previous round. In this way,
we can achieve around 4× weight/FLOPs reduction within 2
rounds, already outperforming the reported structured prun-
ing results in prior work (He et al. 2018).

We leverage a classical heuristic search technique simu-
lated annealing (SA), with enhancement on guided search
based on prior experience. The enhanced SA technique is
based on the observation that a DNN layer with more num-
ber of weights often has a higher degree of model compres-
sion with less impact on overall accuracy. The basic idea of
SA is in the search for actions: When a perturbation on the
candidate action results in better evaluation result (Step (ii)
in Figure 2), the perturbation will be accepted; otherwise the
perturbation will be accepted with a probability depending
on the degradation in evaluation result, as well as a temper-
ature T . The reason is to avoid being trapped in local min-
imum in the search process. The temperature T will grad-
ually decrease during the search process, in analogy to the
physical “annealing” process.

Given the overall pruning rate Ct ≈ 2 (on weight No. or
FLOPs) in the current round, we initialize a randomized ac-
tion A0

t using the following process: i) order all layers based
on the number of remaining weights, ii) assign a random-
ized pruning rate (and partition between filter and column
pruning schemes) for each layer, satisfying that a layer with

Algorithm 1 AutoCompress Framework for Structured
Weight Pruning (similar process also applies to purification).
REQUIRE: Initial (unpruned) DNN model or DNN structure.

for each progressive round t do
Initialize the action A0

t with partitioning of structured prun-
ing schemes and pruning rate ≈ Ct, satisfying the heuristic
constraint.
while T > stop temperature do

for iteration i do
Generate perturbation (magnitude decreases with T )
on action, satisfying the heuristic constraint.
Perform fast evaluation on the perturbation.
if better evaluation result (higher accuracy) then

Accept the perturbation.
else

Accept with probability e−
ΔE
T , where ΔE is

increase in evaluation cost (accuracy loss).
Cool down T ← η · T .

The action outcome becomes the decision of hyperparameter
values.
Perform ADMM-based structured pruning to generate prun-
ing result, for the next round.

more weights will have no less pruning rate, and iii) nor-
malize the pruning rates by Ct. We also have a high initial-
ized temperature T . We define perturbation as the change
of weight pruning rates (and portion of structured pruning
schemes) in a subset of DNN layers. The perturbation will
also satisfy the requirement that the layer will more remain-
ing weights will have a higher pruning rate. The result eval-
uation is the fast evaluation introduced in Section 3.1. The
acceptance/denial of action perturbation, the degradation in
temperature T , and the associated reduction in the degree of
perturbation with T follow the SA rules until convergence.
The action outcome will become the decision of hyperpa-
rameter values (Step (iii), this is different from DRL which
trains a neural network). The ADMM-based structured prun-
ing will be adopted to generate pruning result (Step (iv)),
possibly for the next round until final result.

4 Evaluation, Experimental Results, and

Discussions

Setup: The effectiveness of AutoCompress is evaluated on
VGG-16 and ResNet-18 on CIFAR-10 dataset, and VGG-
16 and ResNet-18/50 on ImageNet dataset. We focus on the
structured pruning on CONV layers, which are the most
computationally intensive layers in DNNs and the major
storage in state-of-art DNNs such as ResNet. In this section
we focus on the objective function of reduction in the num-
ber of weight parameters. The implementations are based
on PyTorch (Paszke et al. 2017). For structured pruning, we
support (i) filter pruning only, and (ii) combined filter and
column pruning, both supported in ADMM-based algorithm
and AutoCompress framework. In the ADMM-based struc-
tured pruning algorithm, the number of epochs in each pro-
gressive round is 200, which is lower than the prior itera-
tive pruning heuristic (Han et al. 2015). We use an initial
penalty parameter ρ = 10−4 for ADMM and initial learn-

4880



Table 1: Comparison on pruning approaches using VGG-16 on CIFAR-10 Dataset

Method Accuracy CONV
Params Rt.

CONV
FLOPs Rt. Inference time

Original VGG-16 93.7% 1.0× 1.0× 14ms

Filter Pruning
2PFPCE (Min et al. 2018) 92.8% 4× N/A N/A
2PFPCE (Min et al. 2018) 91.0% 8.3× N/A N/A

ADMM, manual hyper. determ. 93.48% 9.3× 2.1× 7.1ms

Auto Filter Pruning
ADMM-based, enhanced SA 93.22% 13.7× 3.1× 4.8ms

Train-From-Scratch 93.19% 13.7× 3.1× 4.8ms
ADMM-based, enhanced SA 88.78% 47.4× 14.0× 1.7ms

Combined Structured Pruning
ADMM, manual hyper. determ. 93.26% 44.3× 8.1× 2.9ms

Full AutoCompress 93.21% 52.2× 8.8× 2.7ms
Train-From-Scratch 91.4% 52.2× 8.8× 2.7ms

Table 2: Comparison on pruning approaches using ResNet-18 (ResNet-50 in NISP and AMC) on CIFAR-10 Dataset

Method Accuracy CONV
Params Rt.

CONV
FLOPs Rt. Inference time

Original ResNet-18 93.9% 1.0× 1.0× 11ms

Filter Pruning NISP (Yu et al. 2018) 93.2% 1.7× N/A N/A
ADMM, manual hyper. determ. 93.9% 5.2× 2.7× 4.2ms

Auto Filter Pruning
AMC (He et al. 2018) 93.5% 1.7× N/A N/A

ADMM-based, enhanced SA 93.91% 8.0× 4.7× 2.4ms
Train-From-Scratch 93.89% 8.0× 4.7× 2.4ms

Combined Structured Pruning

ADMM, DRL hyper. determ. 93.55% 11.8× 3.8× 4.7ms
ADMM, manual hyper. determ. 93.69% 43.3× 9.6× 1.9ms

Full AutoCompress 93.43% 61.2× 13.3× 1.3ms
Full AutoCompress 93.81% 54.2× 12.2× 1.45ms
Train-From-Scratch 91.88% 54.2× 12.2× 1.45ms

ing rate 10−3. The ADAM (Kingma and Ba 2014) optimizer
is utilized. In the SA setup, we use cooling factor η = 0.7
and Boltzmann’s constant k = 10−3. The initial probability
of accepting high energy (bad) moves is set to be relatively
high.
Models and Baselines: We aim at fair and comprehensive
evaluation on the effectiveness of three sources of perfor-
mance improvements discussed in Section 3.2. Besides the
original, unpruned DNN models, we compare with a set of
prior baseline methods. Perhaps for software implementa-
tion convenience, almost all baseline methods we can find
focus on filter/channel pruning. For fair comparison, we also
provide pruning results on ADMM-based filter pruning with
manual hyperparameter determination. This case is only dif-
ferent from prior work by a single source of performance
improvement – the core algorithm using ADMM. We also
show the results on ADMM-based filter pruning with en-
hanced SA-based hyperparameter determination, in order to
show the effect of an additional source of improvement.

Beyond filter pruning only, we show the combined struc-
tured pruning results using ADMM to demonstrate the last
source of performance improvement. We provide results on
manual, our crafted DRL-based, and enhanced SA-based
hyperparameter determination for fair comparison, the last
representing the full version of AutoCompress. We pro-
vide the inference time of the pruned models using the lat-
est Qualcomm Adreno 640 GPU in Samsung Galaxy S10
smartphone. The results clearly demonstrate the actual ac-
celeration using the combined structured pruning. Note that
our mobile DNN acceleration framework is a compiler as-
sisted, strong framework by itself. For the original VGG-16

and ResNet-18 (without pruning) on CIFAR-10, it achieves
14ms and 11ms end-to-end inference times, respectively,
on the Adreno 640 mobile GPU. For the original VGG-16
and ResNet-50 on ImageNet, it achieves 95ms and 48ms
inference times, respectively. All these results, outperform
current DNN acceleration frameworks like TensorFlow-Lite
(Ten 2017) and TVM (Chen et al. 2018).

Recent work (Liu et al. 2018b) points out an interesting
aspect. When one trains from scratch based on the structure
(not using weight values) of a pruned model, one can of-
ten retrieve the same accuracy as the model after pruning.
We incorporate this “Train-From-Scratch” process based on
the results of filter pruning and combined filter and column
pruning (both the best results using the enhanced SA-based
search). We will observe whether accuracy can be retrieved.

Through extensive experiments, we conclude that Auto-
Compress is the key to achieve ultra-high pruning rates on
the number of weights and FLOPs that cannot be achieved
before, while DRL cannot compete with human experts to
achieve high structured pruning rates.

4.1 Results and Discussions on CIFAR-10 Dataset

Table 1 illustrates the comparison results on VGG-16 for
CIFAR-10 dataset, while Table 2 shows the results on
ResNet-18 (ResNet-50 for some baselines).

From the two tables we have the following conclusions.
First, for filter/channel pruning only using manual hyperpa-
rameter determination, our method outperforms prior work
2PFPCE, NISP and AMC (both in accuracy and in pruning
rate). As no other sources of improvement are exploited, this
improvement is attributed to the ADMM-based algorithm

4881



equipped with purification. Second, the combined structured
pruning outperforms filter-only pruning in both weight re-
duction and FLOPs reduction. For manual hyperparameter
determination, the combined structured pruning enhances
from 9.3× pruning rate to 44.3× in VGG-16, and enhances
from 5.2× to 43.3× in ResNet-18. If we aim at the same
high pruning rate for filter-only pruning, it suffers a notable
accuracy drop (e.g., 88.78% accuracy at 47.4× pruning rate
for VGG-16). Third, the enhanced SA-based hyperparam-
eter determination outperforms DRL and manual counter-
parts. As can be observed in the two tables, the full Auto-
Compress achieves a moderate improvement in pruning rate
compared with manual hyperparameter optimization, but
significantly outperforms DRL-based framework (all other
sources of improvement are the same). This demonstrates
the statement that DRL is not compatible with ultra-high
pruning rates. For relatively small pruning rates, it appears
that DRL can hardly outperform manual process as well, as
the improvement over 2PFPCE is less compared with the
improvement over AMC.

With all sources of performance improvements effec-
tively exploited, the full AutoCompress framework achieves
15.3× improvement in weight reduction compared with
2PFPCE and 33× improvement compared with NISP and
AMC, under the same (or higher for AutoCompress) accu-
racy. When accounting for the different number of parame-
ters in ResNet-18 and ResNet-50 (NISP and AMC), the im-
provement can be even perceived as 120×. It demonstrates
the significant performance of our proposed AutoCompress
framework, and also implies that the high redundancy of
DNNs on CIFAR-10 dataset has not been exploited in prior
work. Also the measured inference speedup on mobile GPU
validates the effectiveness of the combined pruning scheme
and our proposed AutoCompress framework.

Moreover, there are some interesting results on “Train-
From-Scratch” cases, in response to the observations in
(Liu et al. 2018b). When “Train-From-Scratch” is performed
based the result of filter-only pruning, it can recover the
similar accuracy. The insight is that filter/channel pruning
is similar to finding a smaller DNN model. In this case,
the main merit of AutoCompress framework is to discover
such DNN model, especially corresponding compression
rates in each layer, and our method still outperforms prior
work. On the other hand, when “Train-From-Scratch” is per-
formed based on the result of combined structured pruning,
the accuracy CANNOT be recovered. This is an interesting
observation. The underlying insight is that the combined
pruning is not just training a smaller DNN model, but with
adjustments of filter/kernel shapes. In this case, the pruned
model represents a solution that cannot be achieved through
DNN training only, even with detailed structures already
given. In this case, weight pruning (and the AutoCompress
framework) will be more valuable due to the importance of
training from a full-sized DNN model.

4.2 Results and Discussions on ImageNet Dataset

In this subsection, we show the application of AutoCom-
press on ImageNet dataset, and more comparison results
with filter-only pruning (equipped by ADMM-based core al-

gorithm and SA-based hyperparameter determination). This
will show the first source of improvement. Table 3 and Ta-
ble 4 show the comparison results on VGG-16 and ResNet-
18 (ResNet-50) structured pruning on ImageNet dataset, re-
spectively. We can clearly see the advantage of AutoCom-
press over prior work, such as (He, Zhang, and Sun 2017)
(filter pruning with manual determination), AMC (He et
al. 2018) (filter pruning with DRL), and ThiNet (Luo, Wu,
and Lin 2017) (filter pruning with manual determination).
We can also see the advantage of AutoCompress over man-
ual hyperparameter determination (both combined struc-
tured pruning with ADMM-based core algorithm), improv-
ing from 2.7× to 3.3× structured pruning rates on ResNet-
18 (ResNet-50) under the same (Top-5) accuracy. Finally,
the full AutoCompress also outperforms filter pruning only
(both ADMM-based core algorithm and SA-based hyper-
parameter determination), improvement from 3.8× to 6.4×
structured pruning rates on VGG-16 under the same (Top-5)
accuracy. This demonstrates the advantage of combined fil-
ter and column pruning compared with filter pruning only,
when the other sources of improvement are the same. Be-
sides, our filter-only pruning results also outperform prior
work, demonstrating the strength of proposed framework.

Table 3: Comparison results on VGG-16 for the ImageNet
dataset.

Method Top-5 Acc. Loss Params Rt. Objective
Filter (He, Zhang, and Sun 2017) 1.7% ≈ 4× N/A

AMC (He et al. 2018) 1.4% ≈ 4× N/A
Filter pruning, ADMM, SA 0.6% 3.8× Params#

Full AutoCompress 0.6% 6.4× Params#

Table 4: Comparison results on ResNet-18 (ResNet-50) for
the ImageNet dataset.

Method Top-5 Acc. Loss Params Rt. Objective
ThiNet-50 (Luo, Wu, and Lin 2017) 1.1% ≈ 2× N/A
ThiNet-30 (Luo, Wu, and Lin 2017) 3.5% ≈ 3.3× N/A

Filter pruning, ADMM, SA 0.8% 2.7× Params#
Combined pruning, ADMM, manual 0.1% 2.7× N/A

Full AutoCompress 0.1% 3.3× Params#

Table 5: Comparison results on non-structured weight prun-
ing on ResNet-50 using ImageNet dataset.

Method Top-5 Acc. Loss Params Rt. Objective
AMC (He et al. 2018) 0% 4.8× N/A

ADMM, manual hyper. 0% 8.0× N/A
Full AutoCompress 0% 9.2× Params#
Full AutoCompress 0.7% 17.4× Params#

Last but not least, the AutoCompress framework can also
be applied to non-structured pruning. For non-structured
pruning on ResNet-50 model for ImageNet dataset, Auto-
Compress results in 9.2× non-structured pruning rate on
CONV layers without accuracy loss (92.7% Top-5 accu-
racy), which outperforms manual hyperparameter optimiza-
tion with ADMM-based pruning (8× pruning rate) and prior
work AMC (4.8× pruning rate).

4882



5 Conclusion

This work proposes AutoCompress, an automatic structured
pruning framework with the following key performance im-
provements: (i) effectively incorporate the combination of
structured pruning schemes in the automatic process; (ii)
adopt the state-of-art ADMM-based structured weight prun-
ing as the core algorithm, and propose an innovative addi-
tional purification step for further weight reduction without
accuracy loss; and (iii) develop effective heuristic search
method enhanced by experience-based guided search, re-
placing the prior deep reinforcement learning technique
which has underlying incompatibility with the target prun-
ing problem. Extensive experiments on CIFAR-10 and Im-
ageNet datasets demonstrate that AutoCompress is the key
to achieve ultra-high pruning rates on the number of weights
and FLOPs that cannot be achieved before.

References

Baker, B.; Gupta, O.; Naik, N.; and Raskar, R. 2016. Designing
neural network architectures using reinforcement learning. arXiv
preprint arXiv:1611.02167.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J.; et al. 2011.
Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends R© in Ma-
chine learning 3(1):1–122.
Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.;
Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning.
In 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 578–594.
Guo, Y.; Yao, A.; and Chen, Y. 2016. Dynamic network surgery
for efficient dnns. In NIPS, 1379–1387.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both
weights and connections for efficient neural network. In NIPS,
1135–1143.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE CVPR, 770–
778.
He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.-J.; and Han, S. 2018.
Amc: Automl for model compression and acceleration on mobile
devices. In ECCV, 815–832. Springer.
He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for accelerat-
ing very deep neural networks. In Proceedings of the IEEE ICCV,
1389–1397.
Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup, D.; and
Meger, D. 2018. Deep reinforcement learning that matters. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Hong, M.; Luo, Z.-Q.; and Razaviyayn, M. 2016. Convergence
analysis of alternating direction method of multipliers for a family
of nonconvex problems. SIAM Journal on Optimization 26(1):337–
364.
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Leng, C.; Dou, Z.; Li, H.; Zhu, S.; and Jin, R. 2018. Extremely
low bit neural network: Squeeze the last bit out with admm. In
Thirty-Second AAAI Conference on Artificial Intelligence.
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and Tal-
walkar, A. 2016. Hyperband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint arXiv:1603.06560.

Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-J.; Fei-
Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018a. Progressive
neural architecture search. In ECCV, 19–34.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018b.
Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270.
Luo, J.-H., and Wu, J. 2017. An entropy-based pruning method for
cnn compression. arXiv preprint arXiv:1706.05791.
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level pruning
method for deep neural network compression. In Proceedings of
the IEEE ICCV, 5058–5066.
Min, C.; Wang, A.; Chen, Y.; Xu, W.; and Chen, X. 2018. 2pf-
pce: Two-phase filter pruning based on conditional entropy. arXiv
preprint arXiv:1809.02220.
Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016. Deep
exploration via bootstrapped dqn. In NIPS, 4026–4034.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito,
Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017. Auto-
matic differentiation in PyTorch. In NIPS Autodiff Workshop.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and Chen, L.-
C. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE CVPR, 4510–4520.
Silver, D.; Sutton, R. S.; and Müller, M. 2008. Sample-based learn-
ing and search with permanent and transient memories. In ICML,
968–975. ACM.
Simonyan, K., and Zisserman, A. 2015. Very deep convolutional
networks for large-scale image recognition. CoRR abs/1409.1556.
Suzuki, T. 2013. Dual averaging and proximal gradient descent for
online alternating direction multiplier method. In ICML, 392–400.
2017. Tensorflow lite. https://www.tensorflow.org/lite.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016. Learning
structured sparsity in deep neural networks. In NIPS, 2074–2082.
Whiteson, S.; Tanner, B.; Taylor, M. E.; and Stone, P. 2011. Pro-
tecting against evaluation overfitting in empirical reinforcement
learning. In 2011 IEEE Symposium on Adaptive Dynamic Pro-
gramming and Reinforcement Learning (ADPRL), 120–127. IEEE.
Ye, S.; Zhang, T.; Zhang, K.; Li, J.; Xu, K.; Yang, Y.; Yu, F.;
Tang, J.; Fardad, M.; Liu, S.; et al. 2018. Progressive weight
pruning of deep neural networks using admm. arXiv preprint
arXiv:1810.07378.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han, X.; Gao,
M.; Lin, C.-Y.; and Davis, L. S. 2018. Nisp: Pruning networks
using neuron importance score propagation. In Proceedings of the
IEEE CVPR, 9194–9203.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals, O. 2016.
Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530.
Zhang, T.; Ye, S.; Zhang, K.; Tang, J.; Wen, W.; Fardad, M.; and
Wang, Y. 2018a. A systematic dnn weight pruning framework
using alternating direction method of multipliers. In ECCV, 184–
199.
Zhang, T.; Zhang, K.; Ye, S.; Li, J.; Tang, J.; Wen, W.; Lin, X.; Far-
dad, M.; and Wang, Y. 2018b. Adam-admm: A unified, systematic
framework of structured weight pruning for dnns. arXiv preprint
arXiv:1807.11091.
Zoph, B., and Le, Q. V. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578.

4883


