
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

An ADMM Based Framework for AutoML Pipeline Configuration

Sijia Liu,† Parikshit Ram,† Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble,
Horst Samulowitz, Dakuo Wang, Andrew Conn, Alexander Gray

IBM Research AI
†Equal contributions

Abstract

We study the AutoML problem of automatically configuring
machine learning pipelines by jointly selecting algorithms and
their appropriate hyper-parameters for all steps in supervised
learning pipelines. This black-box (gradient-free) optimization
with mixed integer & continuous variables is a challenging
problem. We propose a novel AutoML scheme by leveraging
the alternating direction method of multipliers (ADMM). The
proposed framework is able to (i) decompose the optimization
problem into easier sub-problems that have a reduced number
of variables and circumvent the challenge of mixed variable
categories, and (ii) incorporate black-box constraints along-
side the black-box optimization objective. We empirically
evaluate the flexibility (in utilizing existing AutoML tech-
niques), effectiveness (against open source AutoML toolkits),
and unique capability (of executing AutoML with practically
motivated black-box constraints) of our proposed scheme on
a collection of binary classification data sets from UCI ML
& OpenML repositories. We observe that on an average our
framework provides significant gains in comparison to other
AutoML frameworks (Auto-sklearn & TPOT), highlighting
the practical advantages of this framework.

1 Introduction
Automated machine learning (AutoML) research has re-
ceived increasing attention. The focus has shifted from hyper-
parameter optimization (HPO) for the best configuration of a
single machine learning (ML) algorithm (Snoek, Larochelle,
and Adams 2012), to configuring multiple stages of a ML
pipeline (e.g., transformations, feature selection, predictive
modeling) (Feurer et al. 2015), to AutoML user experience
in the real world (Wang and others 2019). Among the wide-
range of research challenges offered by AutoML, we focus on
the automatic pipeline configuration problem (that is, joint
algorithm selection and HPO), and tackle it from the per-
spective of mixed continuous-integer black-box nonlinear
programming. This problem has two main challenges: (i)
the tight coupling between the ML algorithm selection &
HPO; and (ii) the black-box nature of optimization objective
lacking any explicit functional form and gradients – opti-
mization feedback is only available in the form of function
evaluations. We propose a new AutoML framework to ad-
dress these challenges by leveraging the alternating direction

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

method of multipliers (ADMM). ADMM offers a two-block
alternating optimization procedure that splits an involved
problem (with multiple variables & constraints) into simpler
sub-problems (Boyd and others 2011)
Contributions. Starting with a combinatorially large set
of algorithm candidates and their collective set of hyper-
parameters, we utilize ADMM to decompose the AutoML
problem into three problems: (i) HPO with a small set of
only continuous variables & constraints, (ii) a closed-form
Euclidean projection onto an integer set, and (iii) a combi-
natorial problem of algorithm selection. Moreover, we ex-
ploit the ADMM framework to handle any black-box con-
straints alongside the black-box objective (loss) function –
the above decomposition seamlessly incorporates such con-
straints while retaining almost the same sub-problems.

Our contributions are: (i) We explicitly model the coupling
between hyper-parameters and available algorithms, and ex-
ploit the hidden structure in the AutoML problem (Section
3). (ii) We employ ADMM to decompose the problem into
a sequence of sub-problems (Section 4.1), which decouple
the difficulties in AutoML and can each be solved more effi-
ciently and effectively, demonstrating over 10× speedup and
10% improvement in many cases.(iii) We present the first
AutoML framework that explicitly handles general black-box
constraints (Section 4.2). (iv) We demonstrate the flexibility
and effectiveness of the ADMM-based scheme empirically
against popular AutoML toolkits Auto-sklearn (Feurer et al.
2015) & TPOT (Olson and Moore 2016) (Section 5), per-
forming best on 50% of the datasets; Auto-sklearn performed
best on 27% and TPOT on 20%.

2 Related work

Black-box optimization in AutoML. Beyond grid-search
for HPO, random search is a very competitive baseline be-
cause of its simplicity and parallelizability (Bergstra and
Bengio 2012). Sequential model-based optimization (SMBO)
(Hutter, Hoos, and Leyton-Brown 2011) is a common tech-
nique with different ‘models’ such as Gaussian processes
(Snoek, Larochelle, and Adams 2012), random forests (Hut-
ter, Hoos, and Leyton-Brown 2011) and tree-parzen estima-
tors (Bergstra et al. 2011). However, black-box optimization
is a time consuming process because the expensive black-
box function evaluation involves model training and scoring
(on a held-out set). Efficient multi-fidelity approximations

4892

of the black-box function based on some budget (training
samples/epochs) combined with bandit learning can skip un-
promising candidates early via successive halving (Jamieson
and Talwalkar 2016; Sabharwal and others 2016) and Hy-
perBand (Li et al. 2018). However, these schemes essen-
tially perform an efficient random search and are well suited
for search over discrete spaces or discretized continuous
spaces. BOHB (Falkner, Klein, and Hutter 2018) combines
SMBO (with TPE) and HyperBand for improved optimiza-
tion. Meta-learning (Vanschoren 2018) leverages past expe-
riences in the optimization with search space refinements
and promising starting points. The collaborative filtering
based methods (Yang et al. 2019) are examples of meta-
learning, where information from past evaluation on other
datasets is utilized to pick pipelines for any new datasets.
Compared to the recent works on iterative pipeline construc-
tion using tree search (Mohr, Wever, and Hüllermeier 2018;
Rakotoarison, Schoenauer, and Sebag 2019), we provide a
natural yet formal primal-dual decomposition of autoML
pipeline configuration problems.
Toolkits. Auto-WEKA (Thornton et al. 2012; Kotthoff and
others 2017) and Auto-sklearn (Feurer et al. 2015) are the
main representatives of SBMO-based AutoML. Both apply
the general purpose framework SMAC (Sequential Model-
based Algorithm Configuration) (Hutter, Hoos, and Leyton-
Brown 2011) to find optimal ML pipelines. Both consider
a fixed shape of the pipeline with functional modules (pre-
processing, transforming, modeling) and automatically select
a ML algorithm and its hyper-parameters for each module.
Auto-sklearn improves upon Auto-WEKA with two inno-
vations: (i) a meta-learning based preprocessing step that
uses ‘meta-features’ of the dataset to determine good initial
pipeline candidates based on past experience to warm start
the optimization, (ii) an greedy forward-selection ensembling
(Caruana et al. 2004) of the pipeline configurations found dur-
ing the optimization as an independent post-processing step.
Hyperopt-sklearn (Komer, Bergstra, and Eliasmith 2014) uti-
lizes TPE as the SMBO. TPOT (Olson and Moore 2016) and
ML-Plan (Mohr, Wever, and Hüllermeier 2018) use genetic
algorithm and hierarchical task networks planning respec-
tively to optimize over the pipeline shape and the algorithm
choices, but require discretization of the hyper-parameter
space (which can be inefficient in practice as it leads perfor-
mance degradation). AlphaD3M (Drori, Krishnamurthy, and
others 2018) integrates reinforcement learning with Monte-
Carlo tree search (MCTS) for solving AutoML problems
but without imposing efficient decomposition over hyperpa-
rameters and model selection. AutoStacker (Chen, Wu, and
others 2018) focuses on ensembling and cascading to gener-
ate complex pipelines and the actual algorithm selection and
hyper-parameter optimization happens via random search.

3 An Optimization Perspective to AutoML
We focus on the joint algorithm selection and HPO for a fixed
pipeline – a ML pipeline with a fixed sequence of functional
modules (preprocessing → missing/categorical handling →
transformations → feature selection → modeling) with a
set of algorithm choices in each module – termed as the
CASH (combined algorithm selection and HPO) problem

(Thornton et al. 2012; Feurer et al. 2015) and solved with
toolkits such as Auto-WEKA and Auto-sklearn. We extend
this formulation by explicitly expressing the combinatorial
nature of the algorithm selection with Boolean variables and
constraints. We will also briefly discuss how this formulation
facilities extension to other flexible pipelines.
Problem statement. For N functional modules (e.g., pre-
processor, transformer, estimator) with a choice of Ki algo-
rithms in each, let zi ∈ {0, 1}Ki denote the algorithm choice
in module i, with the constraint 1�zi =

∑Ki

j=1 zij = 1
ensuring that only a single algorithm is chosen from each
module. Let z = {z1, . . . , zN}. Assuming that categorical
hyper-parameters can be encoded as integers (using standard
techniques), let θij be the hyper-parameters of algorithm j

in module i, with θc
ij ∈ Cij ⊂ R

mc
ij as the continuous hyper-

parameters (constrained to the set Cij) and θd
ij ∈ Dij ⊂ Z

md
ij

as the integer hyper-parameters (constrained to Dij). Condi-
tional hyper-parameters can be handled with additional con-
straints θij ∈ Eij or by “flattening” the hyper-parameter tree
and considering each leaf as a different algorithm. For sim-
plicity of exposition, we assume that the conditional hyper-
parameters are flattened into additional algorithm choices.
Let θ = {θij , ∀i ∈ [N], j ∈ [Ki]}, where [n] = {1, . . . , n}
for n ∈ N. Let f (z,θ;A) represent some notion of loss
of a ML pipeline corresponding to the algorithm choices as
per z with the hyper-parameters θ on a learning task with
data A (such as the k-fold cross-validation or holdout valida-
tion loss). The optimization problem of automatic pipeline
configuration is stated as:

min
z,θ

f(z,θ;A)

subject to
{

zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N],

θc
ij ∈ Cij ,θd

ij ∈ Dij , ∀i ∈ [N], j ∈ [Ki].
(1)

We highlight 2 key differences of problem (1) from the con-
ventional CASH formulation: (i) we use explicit Boolean
variables z to encode the algorithm selection, (ii) we differ-
entiate continuous variables/constraints from discrete ones
for a possible efficient decomposition between continuous
optimization and integer programming. These features better
characterize the properties of the problem and thus enable
more effective joint optimization. For any given (z,θ) and
data A, the objective (loss) function f(z,θ;A) is a black-
box function – it does not have an analytic form with respect
to (z,θ) (hence no derivatives). The actual evaluation of f
usually involves training, testing and scoring the ML pipeline
corresponding to (z,θ) on some split of the data A.
AutoML with black-box constraints. With the increasing
adoption of AutoML (Wang and others 2019), the formula-
tion (1) may not be sufficient. AutoML may need to find ML
pipelines with high predictive performance (low loss) that
also explicitly satisfy application specific constraints. Deploy-
ment constraints may require the pipeline to have prediction
latency or size in memory below some threshold (latency
≤ 10μs, memory ≤ 100MB). Business specific constraints
may desire pipelines with low overall classification error
and an explicit upper bound on the false positive rate – in
a loan default risk application, false positives leads to loan

4893

denials to eligible candidates, which may violate regulatory
requirements. In the quest for fair AI, regulators may explic-
itly require the ML pipeline to be above some predefined
fairness threshold (Friedler and others 2019). Furthermore,
many applications have very domain specific metric(s) with
corresponding constraints – custom metrics are common in
Kaggle competitions. We incorporate such requirements by
extending AutoML formulation (1) to include M black-box
constraints:

gi (z,θ;A) ≤ εi, i ∈ [M]. (2)

These functions have no analytic form with respect to (z,θ),
in constrast to the analytic constraints in problem (1). One ap-
proach is to incorporate these constraints into the black-box
objective with a penalty function p, where the new objec-
tive becomes f +

∑
i p(gi, εi) or f ·∏i p(gi, εi). However,

these schemes are very sensitive to the choice of the penalty
function and do not guarantee feasible solutions.
Generalization for more flexible pipelines. We can extend
the problem formulation (1) to enable optimization over the
ordering of the functional modules. For example, we can
choose between ‘preprocessor → transformer → feature se-
lector’ OR ‘feature selector → preprocessor → transformer’.
The ordering of T ≤ N modules can be optimized by in-
troducing T 2 Boolean variables o = {oik : i, k ∈ [T]},
where oik = 1 indicates that module i is placed at po-
sition k. The following constraints are then needed: (i)∑

k∈[T] oik = 1, ∀i ∈ [T] indicates that module i is placed at
a single position, and (ii)

∑
i∈[T] oik = 1∀k ∈ [T] enforces

that only one module is placed at position k. These variables
can be added to z in problem (1) (z = {z1, . . . , zN ,o}).
The resulting formulation still obeys the generic form of (1),
which as will be evident later, can be efficiently solved by an
operator splitting framework like ADMM (Boyd and others
2011).

4 ADMM-Based Joint Optimizer

ADMM provides a general effective optimization framework
to solve complex problems with mixed variables and multiple
constraints (Boyd and others 2011; Liu et al. 2018). We utilize
this framework to decompose problem (1) without and with
black-box constraints (2) into easier sub-problems.

4.1 Efficient operator splitting for AutoML

In what follows, we focus on solving problem (1) with an-
alytic constraints. The handling of black-box constraints
will be elaborated on in the next section. Denoting θc =
{θc

ij , ∀i ∈ [N], j ∈ [Ki]} as all the continuous hyper-
parameters and θd (defined correspondingly) as all the integer
hyper-parameters, we re-write problem (1) as:

min
z,θ={θc,θd}

f
(
z,
{
θc,θd

}
;A

)
subject to

{
zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N],

θc
ij ∈ Cij ,θd

ij ∈ Dij , ∀i ∈ [N], j ∈ [Ki].
(3)

Introduction of continuous surrogate loss. With D̃ij as
the continuous relaxation of the integer space Dij (if Dij

includes integers ranging from {l, . . . , u} ⊂ Z, then D̃ij =

[l, u] ⊂ R), and θ̃
d

as the continuous surrogates for θd with
θ̃ij ∈ D̃ij (corresponding to θij ∈ Dij), we utilize a surro-
gate loss function f̃ for problem (3) defined solely over the
continuous domain with respect to θ:

f̃
(
z,
{
θc, θ̃

d
}
;A

)
:= f

(
z,
{
θc,PD

(
θ̃
d
)}

;A
)
, (4)

where PD(θ̃
d
) = {PDij

(θ̃
d

ij), ∀i ∈ [N], j ∈ [Ki]} is the
projection of the continuous surrogates onto the integer set.
This projection is necessary since the black-box function
is defined (hence can only be evaluated) on the integer sets
Dijs. Ergo, problem (3) can be equivalently posed as

min
z,θc,˜θ

d
,δ

f̃
(
z,
{
θc, θ̃

d
}
;A

)

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N]

θc
ij ∈ Cij , θ̃

d

ij ∈ D̃ij , ∀i ∈ [N], j ∈ [Ki]
δij ∈ Dij , ∀i ∈ [N], j ∈ [Ki]

θ̃
d

ij = δij , ∀i ∈ [N], j ∈ [Ki],
(5)

where the equivalence between problems (3) & (5) is es-

tablished by the equality constraint θ̃
d

ij = δij ∈ Dij , im-

plying PDij (θ̃
d

ij) = θ̃
d

ij ∈ Dij and f̃(z, {θc, θ̃
d};A) =

f(z, {θc, θ̃
d};A). The continuous surrogate loss (4) is key

in being able to perform theoretically grounded operator split-
ting (via ADMM) over mixed continuous/integer variables in
the AutoML problem (3).
Operator splitting from ADMM. Using the notation that
IX (x) = 0 if x ∈ X else +∞, and defining the sets Z =
{z : z = {zi}, zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N]}, C =
{θc : θc = {θc

ij},θc
ij ∈ Cij , ∀i ∈ [N], j ∈ [Ki]}, D =

{δ : δ = {δij}, δij ∈ Dij , ∀i ∈ [N], j ∈ [Ki]} and D̃ =

{θ̃d
: θ̃

d
= {θ̃d

ij}, θ̃
d

ij ∈ D̃ij , ∀i ∈ [N], j ∈ [Ki]}, we can
re-write problem (5) as

min
z,θc,˜θ

d
,δ

f̃
(
z,
{
θc, θ̃

d
}
;A

)
+ IZ(z) + IC(θc) + I

˜D(θ̃
d
)

+ ID(δ); subject to θ̃
d
= δ. (6)

with the corresponding augmented Lagrangian function

L(z,θc, θ̃
d
, δ,λ) := f̃

(
z,
{
θc, θ̃

d
}
;A

)
+ IZ(z) + IC(θc)

+ I
˜D(θ̃

d
) + ID(δ) + λ�

(
θ̃
d − δ

)
+

ρ

2

∥∥∥θ̃d − δ
∥∥∥2

2
, (7)

where λ is the Lagrangian multiplier, and ρ > 0 is a penalty
parameter for the augmented term.

ADMM (Boyd and others 2011) alternatively minimizes
the augmented Lagrangian function (7) over two blocks of
variables, leading to an efficient operator splitting framework
for nonlinear programs with nonsmooth objective function
and equality constraints. Specifically, ADMM solves problem

(1) by alternatively minimizing (7) over variables {θc, θ̃
d},

4894

and {δ, z}. This can be equivalently converted into 3 sub-

problems over variables {θc, θ̃
d}, δ and z, respectively. We

refer readers to Algorithm 1 for simplified sub-problems and
Appendix 1 for detailed derivation1.

The rationale behind the advantage of ADMM is that it
decomposes the AutoML problem into sub-problems with
smaller number of variables: This is crucial in black-box op-
timization where convergence is strongly dependent on the
number of variables. For example, the number of black-box
evaluations needed for critical point convergence is typically
O(n ∼ n3) for n variables (Larson, Menickelly, and Wild
2019). In what follows, we show that the easier sub-problems
in Algorithm 1 yield great interpretation of the AutoML prob-
lem (1) and suggest efficient solvers in terms of continuous
hyper-parameter optimization, integer projection operation,
and combinatorial algorithm selection.
Solving θ-min. Problem (θ-min) can be rewritten as

min
θc,˜θ

d
f̃
(
z(t),

{
θc, θ̃

d
}
;A

)
+

ρ

2

∥∥∥θ̃d − b
∥∥∥2
2

subject to

{
θc
ij ∈ Cij

θ̃
d

ij ∈ D̃ij ,
∀i ∈ [N], j ∈ [Ki],

(8)

where both θc and θ̃
d

are continuous optimization vari-
ables. Since the algorithm selection scheme z(t) is fixed for
this problem, f̃ in problem (8) only depends on the hyper-
parameters of the chosen algorithms – the active set of con-

tinuous variables (θc
ij , θ̃

d

ij) where zij
(t) = 1. This splits

problem (8) even further into two problems. The inactive set
problem reduces to the following for all i ∈ [N], j ∈ [Ki]
such that zij = 0:

min
˜θ
d

ij

ρ

2
‖θ̃d

ij − bij‖22 subject to θ̃
d

ij ∈ D̃ij , (9)

which is solved by a Euclidean projection of bij onto D̃ij .

For the active set of variables S = {(θc
ij , θ̃

d

ij) : θ
c
ij ∈

Cij , θ̃ij ∈ D̃ij , zij = 1, ∀i ∈ [N], j ∈ [Ki]}, problem (8)
reduces to the following black-box optimization with only
the small active set of continuous variables2

min
(θc,˜θ

d
)∈S

f̃
(
z(t),

{
θc, θ̃

d
}
;A

)
+

ρ

2

∥∥∥θ̃d − b
∥∥∥2
2
. (10)

The above problem can be solved using Bayesian optimiza-
tion (Shahriari et al. 2016), direct search (Larson, Menickelly,
and Wild 2019), or trust-region based derivative-free opti-
mization (Conn, Scheinberg, and Vicente 2009).
Solving δ-min. According to the definition of D, problem
(δ-min) can be rewritten as

min
δ

ρ

2
‖δ − a‖22 subject to δij ∈ Dij , ∀i ∈ [N], j ∈ [Ki],

(11)
1Appendix is available at arXiv (Liu, Ram, and others 2019)
2For the AutoML problems we consider in our empirical evalu-

tations, |θ| = |θc
ij |+ |θ̃d

ij | ≈ 100 while the largest possible active
set S is less than 15 and typically less than 10.

and solved in closed form by projecting a onto D̃ and then
rounding to the nearest integer in D.
Solving z-min. Problem (z-min) rewritten as

min
z

f̃
(
z,
{
θc(t+1), θ̃

d(t+1)
}
;A

)
subject to zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N]

(12)

is a black-box integer program solved exactly with
∏N

i=1 Ki

evaluations of f̃ . However, this is generally not feasible.
Beyond random sampling, there are a few ways to lever-
age existing AutoML schemes: (i) Combinatorial multi-
armed bandits. – Problem (12) can be interpreted through
combinatorial bandits as the selection of the optimal N

arms (in this case, algorithms) from
∑N

i=1 Ki arms based
on bandit feedback and can be efficiently solved with
Thompson sampling (Durand and Gagné 2014) (ii) Multi-
fidelity approximation of black-box evaluations – Techniques
such as successive halving (Jamieson and Talwalkar 2016;
Li et al. 2018) or incremental data allocation (Sabharwal
and others 2016) can efficiently search over a discrete set of∏N

i=1 Ki candidates. (iii) Genetic algorithms – Genetic pro-
gramming can perform this discrete black-box optimization
starting from a randomly generated population and building
the next generation based on the ‘fitness’ of the pipelines and
random ‘mutations’ and ‘crossovers’.

4.2 ADMM with black-box constraints

We next consider problem (3) in the presence of black-box
constraints (2). Without loss of generality, we assume that
εi ≥ 0 for i ∈ [M]. By introducing scalars ui ∈ [0, εi], we
can reformulate the inequality constraint (2) as the equality
constraint together with a box constraint

gi

(
z,
{
θc,θd

}
;A

)
− εi+ui, ui ∈ [0, εi], i ∈ [M]. (13)

We then introduce a continuous surrogate black-box functions
g̃i for gi, ∀i ∈ [M] in a similar manner to f̃ given by (4).
Following the reformulation of (3) that lends itself to the
application of ADMM, the version with black-box constraints
(13) can be equivalently transformed into

min
z,θc,˜θ

d
,δ

f̃
(
z,
{
θc, θ̃

d
}
;A

)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

zi ∈ {0, 1}Ki ,1�zi = 1, ∀i ∈ [N]

θc
ij ∈ Cij , θ̃d

ij ∈ D̃ij , ∀i ∈ [N], j ∈ [Ki]
δij ∈ Dij , ∀i ∈ [N], j ∈ [Ki]

θ̃
d

ij = δij , ∀i ∈ [N], j ∈ [Ki]
ui ∈ [0, εi], ∀i ∈ [M]

g̃i

(
z,
{
θc, θ̃

d
}
;A

)
− εi + ui = 0, ∀i ∈ [M].

(14)
Compared to problem (5), the introduction of auxiliary vari-

ables {ui} enables ADMM to incorporate black-box equality
constraints as well as elementary white-box constraints. Sim-
ilar to Algorithm 1, the ADMM solution to problem (14) can
be achieved by solving three sub-problems of similar nature,
summarized in Algorithm 2 and derived in Appendix 2.

4.3 Implementation and convergence

We highlight that our ADMM based scheme is not a single
AutoML algorithm but rather a framework that can be used to

4895

Algorithm 1 Operator splitting from ADMM to solve problem (5)

{
θc(t+1), θ̃

d(t+1)
}
= argmin

θc,˜θ
d

f̃
(
z(t),

{
θc, θ̃

d
}
;A

)
+ IC(θ

c) + I
˜D(θ̃

d
) + (ρ/2)

∥∥∥θ̃d − b
∥∥∥2

2
, b := δ(t) − 1

ρ
λ(t), (θ-min)

δ(t+1) = argmin
δ

ID(δ) + (ρ/2) ‖a− δ‖22 , a := θ̃
d(t+1) + (1/ρ)λ(t), (δ-min)

z(t+1) = argmin
z

f̃
(
z,
{
θc(t+1), θ̃

d(t+1)
}
;A

)
+ IZ(z), (z-min)

where (t) represents the iteration index, and the Lagrangian multipliers λ are updated as λ(t+1) = λ(t) + ρ(θ̃
d(t+1) − δ(t+1)).

Algorithm 2 Operator splitting from ADMM to solve problem (14) (with black-box constraints)

{
θc(t+1), θ̃

d(t+1),u(t+1)
}
= argmin

θc,˜θ
d
,u

f̃ +
ρ

2

∥∥∥θ̃d − b
∥∥∥2

2
+ IC(θ

c) + I
˜D(θ̃

d
) + IU (u) +

ρ

2

M∑
i=1

[
g̃i + ui − εi +

μi
(t)

ρ

]2

,

δ(t+1) = argmin
δ

ρ

2
‖δ − a‖22 + ID(δ),

z(t+1) = argmin
z

f̃ + IZ(z) +
ρ

2

M∑
i=1

[
g̃i − εi + ui

(t+1) +
1

ρ
μi

(t)

]2

,

where the arguments of f̃ and g̃i are omitted for brevity, a and b have been defined in Algorithm 1, U = {u : u = {ui}, and μi

is the Lagrangian multiplier corresponding to the equality constraint g̃i − εi + ui = 0 in (14) and updated as μi
(t+1) = μi

(t) +

ρ(g̃i(z
(t+1), {θc(t+1), θ̃

d(t+1)};A)− εi + ui
(t+1)) for ∀i ∈ [M].

mix and match different existing black-box solvers. This is es-
pecially useful since this enables the end-user to plug-in effi-
cient solvers tailored for the sub-problems (HPO & algorithm
selection in our case). In addition to the above, the ADMM
decomposition allows us to solve simpler sub-problems with
a smaller number of optimization variables (a significantly re-
duced search space since (θ-min) only requires optimization
over the active set of continuous variables). Unless specified
otherwise, we adopt Bayesian optimization (BO) to solve the
HPO (θ-min), e.g., (10). We use customized Thompson sam-
pling to solve the combinatorial multi-armed bandit problem,
namely, the (z-min) for algorithm selection. We refer readers
to Appendix 3 and 4 for more derivation and implementation
details. In Appendix 5, we demonstrate the generalizability
of ADMM to different solvers for (θ-min) and (z-min).

The theoretical convergence guarantees of ADMM have
been established under certain assumptions, e.g., convexity
or smoothness (Boyd and others 2011; Hong and Luo 2017;
Liu et al. 2018). Unfortunately, the AutoML problem vi-
olates these restricted assumptions. Even for non-ADMM
based AutoML pipeline search, there is no theoretical conver-
gence established in the existing baselines to the best of our
knowledge. Empirically, we will demonstrate the improved
convergence of the proposed scheme against baselines in the
following section.

5 Empirical Evaluations

In this evaluation of our proposed framework, we demon-
strate three important characteristics: (i) the empirical per-
formance against existing AutoML toolkits, highlighting the

empirical competitiveness of the theoretical formalism, (ii)
the systematic capability to handle black-box constraints,
enabling AutoML to address real-world ML tasks, and (iii)
the flexibility to incorporate various learning procedures and
solvers for the sub-problems, highlighting that our proposed
scheme is not a single algorithm but a complete framework
for AutoML pipeline configuration.
Data and black-box objective function. We consider 30 bi-
nary classification3datasets from the UCI ML (Asuncion and
Newman 2007) & OpenML repositories (Bischl and others
2017), and Kaggle. We consider a subset of OpenML100
limited to binary classification and small enough to allow for
meaningful amount of optimization for all baselines in the
allotted 1 hour to ensure that we are evaluating the optimizers
and not the initialization heuristics. Dataset details are in Ap-
pendix 6. We consider (1− AUROC) (area under the ROC
curve) as the black-box objective and evaluate it on a 80-20%
train-validation split for all baselines. We consider AUROC
since it is a meaningful predictive performance metric re-
gardless of the class imbalance (as opposed to classification
error).
Comparing ADMM to AutoML baselines. Here we evalu-
ate the proposed ADMM framework against widely used
AutoML systems Auto-sklearn (Feurer et al. 2015) and
TPOT (Olson and Moore 2016). This comparison is lim-
ited to black-box optimization with analytic constraints only
given by (1) since existing AutoML toolkits cannot handle
black-box constraints explicitly. We consider SMAC based
vanilla Auto-sklearn ASKL4(disabling ensembles and meta-

3Our scheme applies to multiclass classification & regression.

4896

learning), random search RND, and TPOT with a population
of 50 (instead of the default 100) to ensure that TPOT is
able to process multiple generations of the genetic algorithm
in the allotted time on all data sets.For ADMM, we utilize
BO for (θ-min) and CMAB for (z-min) – ADMM(BO,Ba)5.
For all optimizers, we use scikit-learn algorithms (Pe-

(a) All methods

(b) ASKL vs. ADMM (c) TPOT50 vs. ADMM

Figure 1: Average rank (across 30 datasets) of mean perfor-
mance across 10 trials – lower rank is better.

dregosa, Varoquaux, and others 2011). The functional mod-
ules and the algorithms (with their hyper-parameters) are
presented in Appendix 7 6. We maintain parity7 across the
various AutoML baselines by searching over the same set
of algorithms (see Appendix 7). For each scheme, the algo-
rithm hyper-parameter ranges are set using Auto-sklearn as
the reference8. We optimize for 1 hour & generate time vs.
incumbent black-box objective curves aggregated over 10
trials. Details on the complete setup are in Appendix 10. The
optimization convergence for all 30 datasets are in Appendix
11. At completion, ASKL achieves the lowest mean objec-
tive (across trials) in 6/30 datasets, TPOT50 in 8/30, RND

4Meta-learning and ensembling in ASKL are preprocessing and
postprocessing steps respectively to the actual black-box optimiza-
tion and can be applied to any optimizer. We demonstrate this for
ADMM in Appendix 8. So we skip these aspects of ASKL here.

5In this setup, ADMM has 2 parameters: (i) the penalty ρ on
the augmented term, (ii) the loss upper-bound f̂ in the CMAB
algorithm (Appendix 4). We evaluate the sensitivity of ADMM on
these parameters in Appendix 9. The results indicate that ADMM is
fairly robust to these parameters, and hence set ρ = 1 and f̂ = 0.7

throughout. We start the ADMM optimization with λ(0) = 0.
6Appendix is available at arXiv (Liu, Ram, and others 2019)
7ASKL and ADMM search over the same search space of fixed

pipeline shape & order. TPOT also searches over different pipeline
shapes & orderings because of the nature of its genetic algorithm.

8github.com/automl/auto-sklearn/tree/master/autosklearn/
pipeline/components

(a) Varying tp, dI = 0.07 (b) Varying dI , tp = 10μs

Figure 2: Best objective achieved by any constraint satisfying
pipeline from running the optimization for 1 hour seconds
with varying thresholds for the two constraints – lower is bet-
ter (please view in color). Note the log-scale on the vertical
axis.

in 3/30 and ADMM(BO,Ba) in 15/30, showcasing ADMM’s
effectiveness.

Figure 1 presents the overall performance of the different
AutoML schemes versus optimization time. Here we consider
the relative rank of each scheme (with respect to the mean
objective over 10 trials) for every timestamp, and average
this rank across 30 data sets similar to the comparison in
Feurer et al. (2015). With enough time, all schemes outper-
form random search RND. TPOT50 performs worst in the
beginning because of the initial start-up time involved in the
genetic algorithm. ASKL and ADMM(BO,Ba) have compa-
rable performance initially. As the optimization continues,
ADMM(BO,Ba) significantly outperforms all other baselines.
We present the pairwise performance of ADMM with ASKL
(figure 1b) & TPOT50 (figure 1c).
AutoML with black-box constraints. To demonstrate the
capability of the ADMM framework to incorporate real-world
black-box constraints, we consider the recent Home Credit
Default Risk Kaggle challenge9 with the black-box objec-
tive of (1 − AUROC), and 2 black-box constraints: (i) (de-
ployment) Prediction latency tp enforcing real-time predic-
tions, (ii) (fairness) Maximum pairwise disparate impact
dI (Calders and Verwer 2010) across all loan applicant age
groups enforcing fairness across groups (see Appendix 12).

We run a set of experiments for each of the constraints:
(i) fixing dI = 0.7, we optimize for each of the thresholds
tp = {1, 5, 10, 15, 20} (in μs), and (ii) fixing tp = 10μs and
we optimize for each of dI = {0.05, 0.075, 0.1, 0.125, 0.15}.
Note that the constraints get less restrictive as the thresholds
increase. We apply ADMM to the unconstrained problem
(UCST) and post-hoc filter constraint satisfying pipelines to
demonstrate that these constraints are not trivially satisfied.
Then we execute ADMM with these constraints (CST). Using
BO for (θ-min) & CMAB for (z-min), we get two variants –
UCST(BO,Ba) & CST(BO,Ba). This results in (5+5)× 2 =
20 ADMM executions, each repeated 10×.

Figure 2 presents the objective achieved by the optimizer
when limited only to constraint satisfying pipelines. Figure
2a presents the effect of relaxing the constraint on tp while
Figure 2b presents the same for the constraint on dI . As

9www.kaggle.com/c/home-credit-default-risk

4897

expected, the objective improves as the constraints relax. In
both cases, CST outperforms UCST, with UCST approaching
CST as the constraints relax. Figure 3 presents the constraint
satisfying capability of the optimizer by considering the frac-
tion of constraint-satisfying pipelines found (Figure 3a & 3b
for varying tp & dI respectively). CST again significantly out-
performs UCST, indicating that the constraints are non-trivial
to satisfy, and that ADMM is able to effectively incorporate
the constraints for improved performance.
Flexibility & benefits from ADMM operator splitting. It
is common in ADMM to solve the sub-problems to higher
approximation in the initial iterations and to an increasingly
lower approximation as ADMM progresses (instead of the
same approximation throughout) (Boyd and others 2011). We
demonstrate (empirically) that this adaptive ADMM produces
expected gains in the AutoML problem. Moreover, we show
the empirical gains of ADMM from (i) splitting the AutoML
problem (1) into smaller sub-problems which are solved in
an alternating fashion, & (ii) using different solvers for the
differently structured (θ-min) and (z-min).

First we use BO for both (θ-min) and (z-min). For
ADMM with a fixed approximation level (fixed ADMM),
we solve the sub-problems with BO to a fixed number
I = 16, 32, 64, 128 iterations, denoted by ADMMI(BO,BO)
(e.g., ADMM16(BO,BO)). For adaptive ADMM, we start
with 16 BO iterations for the sub-problems and progres-
sively increase it with an additive factor F = 8 & 16 with
every ADMM iteration until 128 denoted by AdADMM-
F8(BO,BO) & AdADMM-F16(BO,BO) respectively. We op-
timize for 1 hour and aggregate over 10 trials.

Figure 4 presents optimization convergence for 1 dataset
(fri-c2). We see the expected behavior – fixed ADMM with
small I dominate for small time scales but saturate soon;
large I require significant start-up time but dominate for
larger time scales. Adaptive ADMM (F = 8 & 16) is able
to match the performance of the best fixed ADMM at every
time scale. Please refer to Appendix 13 for additional results.

Next, we illustrate the advantage of ADMM on operator
splitting. We consider 2 variants, AdADMM-F16(BO,BO)
and AdADMM-F16(BO,Ba), where the latter uses CMAB
for (z-min). For comparison, we solve the complete joint
problem (1) with BO, leading to a Gaussian Process with a

(a) Varying tp, dI = 0.07 (b) Varying dI , tp = 10μs

Figure 3: Fraction of pipelines found satisfying constraints
with optimization for 1 hour with varying thresholds for the
2 constraints – higher is better. Note the log-scale on the
vertical axis.

Figure 4: Optimization time (in seconds) vs. median valida-
tion performance with the inter-quartile range over 10 trials
on fri-c2 dataset – lower is better (please view in color). Note
the log scale on both axes. See Appendix 13 for additional
results.

Figure 5: Optimization time vs. median validation perfor-
mance with the inter-quartile range over 10 trials on fri-c2
dataset – lower is better (please view in color). Note the log
scale on both axes. See Appendix 14 for additional results.

large number of variables, denoted as JOPT(BO).
Figure 5 shows the optimization convergence for 1 dataset

(fri-c2). The results indicate that the operator splitting in
ADMM provides significant improvements over JOPT(BO),
with ADMM reaching the final objective achieved by JOPT
with significant speedup, and then further improving upon
that final objective significantly. These improvements of
ADMM over JPOT on 8 datasets are summarized in Table 1,
indicating significant speedup (over 10× in most cases) and
further improvement (over 10% in many cases).

Let us use SBa and SBO to represent the temporal speedup
achieved by AdADMM(BO,Ba) and AdADMM(BO,BO)
(eliding “-F16”) respectively to reach the best objective of
JOPT, and similarly use IBa and IBO to represent the objec-
tive improvement at the final converged point. Table 1 shows
that between AdADMM(BO,BO) and AdADMM(BO,Ba),
the latter provides significantly higher speedups, but the for-
mer provides higher additional improvement in the final ob-
jective. This demonstrates ADMM’s flexibility, for example,
allowing choice between faster or more improved solution.

4898

Dataset SBa SBO IBa IBO
Bank8FM 10× 2× 0% 5%
CPU small 4× 5× 0% 5%
fri-c2 153× 25× 56% 64%
PC4 42× 5× 8% 13%
Pollen 25× 7× 4% 3%
Puma8NH 11× 4× 1% 1%
Sylvine 9× 2× 9% 26%
Wind 40× 5× 0% 5%

Table 1: Comparing ADMM schemes to JOPT(BO), we list
the speedup SBa & SBO achieved by AdADMM(BO,Ba) &
AdADMM(BO,BO) respectively to reach the best objective
of JOPT, and the final objective improvement IBa & IBO
(respectively) over the JOPT objective. These numbers are
generated using the aggregate performance of JOPT and
AdADMM over 10 trials.

6 Conclusions

Posing the problem of joint algorithm selection and HPO
for automatic pipeline configuration in AutoML as a formal
mixed continuous-integer nonlinear program, we leverage
the ADMM optimization framework to decompose this prob-
lem into 2 easier sub-problems: (i) black-box optimization
with a small set of continuous variables, and (ii) a combinato-
rial optimization problem involving only Boolean variables.
These sub-problems can be effectively addressed by existing
AutoML techniques, allowing ADMM to solve the overall
problem effectively. This scheme also seamlessly incorpo-
rates black-box constraints alongside the black-box objective.
We empirically demonstrate the flexibility of the proposed
ADMM framework to leverage existing AutoML techniques
and its effectiveness against open-source baselines.

References

Asuncion, A., and Newman, D. 2007. UCI ML Repository.
Bergstra, J., and Bengio, Y. 2012. Random search for hyper-
parameter optimization. JMLR 13(Feb):281–305.
Bergstra, J. S.; Bardenet, R.; Bengio, Y.; and Kégl, B. 2011. Algo-
rithms for hyper-parameter optimization. In NeurIPS.
Bischl, B., et al. 2017. OpenML benchmarking suites and the
OpenML100. arXiv:1708.03731.
Boyd, S., et al. 2011. Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning 3(1):1–122.
Calders, T., and Verwer, S. 2010. Three naive bayes approaches
for discrimination-free classification. Data Mining and Knowledge
Discovery 21(2):277–292.
Caruana, R.; Niculescu-Mizil, A.; Crew, G.; and Ksikes, A. 2004.
Ensemble selection from libraries of models. In ICML.
Chen, B.; Wu, H.; et al. 2018. Autostacker: A compositional
evolutionary learning system. In Proceedings of the Genetic and
Evolutionary Computation Conference, 402–409. ACM.
Conn, A. R.; Scheinberg, K.; and Vicente, L. N. 2009. Introduction
to derivative-free optimization. SIAM.
Drori, I.; Krishnamurthy, Y.; et al. 2018. Alphad3m: Machine
learning pipeline synthesis. In AutoML Workshop at ICML.
Durand, A., and Gagné, C. 2014. Thompson sampling for combi-
natorial bandits and its application to online feature selection. In
AAAI Workshops.

Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust and
efficient hyperparameter optimization at scale. In ICML.
Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum,
M.; and Hutter, F. 2015. Efficient and robust automated machine
learning. In NeurIPS.
Friedler, S. A., et al. 2019. A comparative study of fairness-
enhancing interventions in machine learning. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, 329–
338. ACM.
Hong, M., and Luo, Z.-Q. 2017. On the linear convergence of the
alternating direction method of multipliers. Mathematical Program-
ming 162(1):165–199.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Sequential
Model-based Optimization for General Algorithm Configuration. In
International Conference on Learning and Intelligent Optimization.
Springer-Verlag.
Jamieson, K., and Talwalkar, A. 2016. Non-stochastic best arm
identification and hyperparameter optimization. In AISTATS.
Komer, B.; Bergstra, J.; and Eliasmith, C. 2014. Hyperopt-sklearn:
automatic hyperparameter configuration for scikit-learn. In ICML
workshop on AutoML.
Kotthoff, L., et al. 2017. Auto-weka 2.0: Automatic model selection
and hyperparameter optimization in weka. JMLR.
Larson, J.; Menickelly, M.; and Wild, S. M. 2019. Derivative-free
optimization methods. Acta Numerica 28:287–404.
Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; and Talwalkar,
A. 2018. Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization. JMLR 18(185):1–52.
Liu, S.; Kailkhura, B.; Chen, P.-Y.; Ting, P.; Chang, S.; and Amini,
L. 2018. Zeroth-order stochastic variance reduction for nonconvex
optimization. In NeurIPS.
Liu, S.; Ram, P.; et al. 2019. An ADMM Based Framework for
AutoML Pipeline Configuration. arXiv:1905.00424.
Mohr, F.; Wever, M.; and Hüllermeier, E. 2018. ML-Plan: Auto-
mated machine learning via hierarchical planning. Machine Learn-
ing 107(8-10):1495–1515.
Olson, R. S., and Moore, J. H. 2016. TPOT: A tree-based pipeline
optimization tool for automating machine learning. In Workshop on
AutoML.
Pedregosa, F.; Varoquaux, G.; et al. 2011. Scikit-learn: Machine
learning in Python. JMLR.
Rakotoarison, H.; Schoenauer, M.; and Sebag, M. 2019. Automated
Machine Learning with Monte-Carlo Tree Search. In IJCAI.
Sabharwal, A., et al. 2016. Selecting near-optimal learners via
incremental data allocation. In AAAI.
Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and De Freitas,
N. 2016. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical bayesian
optimization of machine learning algorithms. In NeurIPS.
Thornton, C.; Hoos, H. H.; Hutter, F.; and Leyton-Brown, K. 2012.
Auto-weka: Automated selection and hyper-parameter optimization
of classification algorithms. arXiv:1208.3719.
Vanschoren, J. 2018. Meta-learning: A survey. arXiv:1810.03548.
Wang, D., et al. 2019. Human-AI Collaboration in data science: Ex-
ploring data scientists’ perceptions of automated AI. arXiv preprint
arXiv:1909.02309.
Yang, C.; Akimoto, Y.; Kim, D. W.; and Udell, M. 2019. OBOE:
Collaborative filtering for AutoML model selection. In KDD.

4899

