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Abstract

Interactive recommender systems that enable the interactions
between users and the recommender system have attracted
increasing research attention. Previous methods mainly focus
on optimizing recommendation accuracy. However, they usu-
ally ignore the diversity of the recommendation results, thus
usually results in unsatisfying user experiences. In this pa-
per, we propose a novel diversified recommendation model,
named Diversified Contextual Combinatorial Bandit (DC2B),
for interactive recommendation with users’ implicit feed-
back. Specifically, DC2B employs determinantal point pro-
cess in the recommendation procedure to promote diversity of
the recommendation results. To learn the model parameters,
a Thompson sampling-type algorithm based on variational
Bayesian inference is proposed. In addition, theoretical re-
gret analysis is also provided to guarantee the performance of
DC2B. Extensive experiments on real datasets are performed
to demonstrate the effectiveness of the proposed method in
balancing the recommendation accuracy and diversity.

Introduction

Conventional recommender systems are usually developed
in non-interactive manner and learn the user preferences
from logged user behavior data (Liu et al. 2017; Yang et
al. 2018; Liu et al. 2018; Wang et al. 2018). One main
drawback of these systems is that they cannot capture the
changes of users’ preferences in time. This requires the de-
velopment of interactive recommender system that enables
interactions (Steck, van Zwol, and Johnson 2015). In the lit-
erature, contextual bandit learning has been demonstrated
to be a promising solution to interactive recommendation
problems (Li et al. 2010; Zhao, Zhang, and Wang 2013;
Tang et al. 2015; Wang, Wu, and Wang 2017; Qi et al. 2018).
In these methods, the recommender system sequentially rec-
ommends a set of items to a user and adopts the user’s im-
mediate feedback to improve its recommendation policy.

In practice, users’ implicit feedback (e.g., clicking his-
tory) are usually utilized to build recommender systems, be-
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cause implicit feedback is user centric, and can be easily col-
lected (Shi, Larson, and Hanjalic 2014; Wang et al. 2019).
However, the implicit feedback usually brings bias signals
which make the recommendation problems much more chal-
lenging. This bias comes from the fact that the implicit feed-
back can only capture the positive user preferences (i.e., ob-
served user-item interactions), and all negative user prefer-
ences are missing. Although the non-interaction between the
user and an item is usually treated as negative user prefer-
ence in previous research work (Shi, Larson, and Hanjalic
2014), it does not explicitly indicate that the user dislikes
the item, as non-interaction may also be caused by that the
item has not been exposed to the user (Liang et al. 2016).

Moreover, previous interactive recommendation methods
mainly focus on optimizing recommendation accuracy. They
usually ignore other important properties of the recommen-
dation results, for example the diversity of the recommended
item set (Kunaver and Požrl 2017; Wu et al. 2019b). There-
fore, the items in the recommendation lists generated by
these approaches may usually be very similar with each
other, and the recommendation results may only cover a
small fraction of items. This usually leads to inferior user ex-
periences, and thus reduces the commercial values of recom-
mender systems. Intuitively, it is very challenging to achieve
both high accuracy and diversity. The methods focusing too
strongly on diversity usually put accuracy at risk. Because
there is a lack of data for less popular items, considering
such items for recommendation may lead to a decrease in
recommendation accuracy (Adomavicius and Kwon 2011).
Therefore, the main objective of diversified recommenda-
tion methods is to optimize the trade-off between accuracy
and diversity, which is usually referred as the “accuracy–
diversity dilemma” (Zhou et al. 2010).

In this paper, we propose a novel bandit learning frame-
work for interactive recommender systems based on users’
implicit feedback, which strives to achieve a good balance
between accuracy and diversity in the recommendation re-
sults. To solve the bias problems caused by implicit feed-
back, we model the interactions between users and the rec-
ommender system from two perspectives: i) Diversified Item
Exposure: the recommender system selects a set of relevant
yet diverse items to expose to the user; ii) User Engage-
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ments: the user eventually engages with some of the ex-
posed items (e.g., clicks on the items). Specifically, the de-
terminantal point process (DPP) (Kulesza, Taskar, and oth-
ers 2012) is employed to select a set of diverse items to ex-
pose to users, considering both the qualities of items and
the diversity of the selected item set. The advantage of DPP
is that it explicitly models the probability that an item set
would be selected to be shown to the user, thus can help
solve the bias problem caused by implicit feedback (Liang
et al. 2016). In addition, the contextual features of items are
also utilized to model the observed user engagements on the
recommended items.

To summarize, the major contributions made in this pa-
per are as follows: (1) we propose a novel bandit learning
method, i.e., Diversified Contextual Combinatorial Bandit
(DC2B), to improve the recommendation diversity for in-
teractive recommender systems; (2) we propose a varia-
tional Bayesian inference algorithm under the Thompson
sampling framework to learn the model parameters; (3) we
also provide theoretical regret analysis for the proposed
DC2B method; (4) we perform extensive experiments on
real datasets to demonstrate the effectiveness of DC2B in
balancing the recommendation accuracy and diversity.

Related Work

Diversified Recommendation

One major group of diversified recommendation methods
are based on greedy heuristics. The pioneering work is max-
imal marginal relevance (MMR) (Carbonell and Goldstein
1998), which defines a marginal relevance to combine the
relevance and diversity metrics, and creates a diversified
ranking of items by choosing an item in each interaction
such that it maximizes the marginal relevance. Other greedy
heuristics methods vary in the definition of the marginal rel-
evance, often in the form of a sub-modular objective func-
tion (Qin and Zhu 2013; Sha, Wu, and Niu 2016), which
can be solved greedily with an approximation to the opti-
mal solution. Another group of methods are based on refine-
ment heuristics, which usually re-rank a pre-ranked item list
through post-processing actions (Zhang and Hurley 2008;
Antikacioglu and Ravi 2017). From another perspective,
(Cheng et al. 2017) formulates the diversified recommen-
dation problem as a supervised learning task, and proposes
a diversified collaborative filtering model to solve the opti-
mization problems. Recently, DPP has been demonstrated to
be effective in modeling diversity in various machine learn-
ing problems (Kulesza, Taskar, and others 2012), and some
recent work (Chen, Zhang, and Zhou 2018; Wilhelm et al.
2018; Wu et al. 2019a) employs DPP to improve recommen-
dation diversity.

Interactive Recommendation

Contextual bandit has been often used for building inter-
active recommender systems. These methods mainly focus
on optimizing the recommendation accuracy. For instance,
(Li et al. 2010) proposes a contextual bandit algorithm,
named LinUCB, which sequentially recommended articles
to users based on the contextual information of users and

articles. (Zhao, Zhang, and Wang 2013) combines proba-
bilistic matrix factorization with Thompson sampling and
upper confidence bound based bandit algorithms to interac-
tively select items. (Tang et al. 2015) proposes a parameter-
free bandit approach that uses online bootstrap to learn
the online recommendation model. Recently, (Wang et al.
2017) extends the LinUCB to incorporate users’ social rela-
tionships into interactive recommender system. (Wang, Wu,
and Wang 2017) proposes a factorization-based bandit ap-
proach to solve the online interactive recommendation prob-
lem. Moreover, in (Qi et al. 2018), the Thompson sampling
framework is employed to solve the bandit problems with
implicit feedback, where the implicit feedback is modeled
as a composition of user result examination and relevance
judgement. There also exist some interactive recommender
systems focusing on promoting the recommendation diver-
sity. For example, (Qin, Chen, and Zhu 2014) proposes a
contextual combinatorial bandit framework, incorporating
the entropy regularizer (Qin and Zhu 2013) to diversify the
recommendation results. Differing from (Qin, Chen, and
Zhu 2014), DC2B is a full Bayesian framework which is
more effective in balancing the recommendation accuracy
and diversity.

Problem Formulation

We employ contextual bandit to build the diversified inter-
active recommender system. The recommender system is
treated as an agent, and each item is treated as an arm. Let
A = {ai}Ni=1 denote the set of N arms (i.e., items). We as-
sume each arm ai has a contextual feature vector xi ∈ R

1×d

summarizing its side information, and denote the features of
all arms by X ∈ R

N×d. At each trial, the recommender
agent would firstly choose a subset of arms S from A, con-
sidering the qualities of the arms and the diversity of selected
arms. S is usually called as a super arm. Here, we empiri-
cally define the quality of an arm ai as follows:

ri = exp(θx�
i ), (1)

where θ is the bandit parameter that describes the user pref-
erences. The diversity of the selected super arm S can be
measured by the intra-list distance metric (Zhang and Hur-
ley 2008). Once a diversified super arm S has been selected
according to a policy π and displayed to the user, the user’s
engagements on displayed items (e.g., clicks on items) are
used as the rewards for recommender agent to optimize its
recommendation policy. Through interactions with the user,
the recommender agent aims to adjust its super arm selection
strategy to maximize its cumulative reward over time.

Diversified Item Exposure

The DPP is an elegant probabilistic model with the abil-
ity to model diversity in various machine learning prob-
lems (Kulesza, Taskar, and others 2012). In this work, we
utilize DPP to model the selection probability of a relevant
yet diverse super arm S . Formally, a DPP P on the set of
candidate armsA is a probability measure on 2A, describing
the probability for the set of all subsets of A. If P assigns
nonzero probability on the empty set ∅, there exists a real,
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positive semi-definite kernel matrix L ∈ R
N×N , such that

the probability of the super arm S can be defined as follows:

p(S) = det(L[S])

det(L+ I)
, (2)

where I is the identity matrix, L[S] ≡ [Lij ]ai,aj∈S is the
sub-matrix of L. As revealed in (Kulesza, Taskar, and oth-
ers 2012), L can be written as a Gram matrix, L = V V �,
where the rows of V are vectors representing the arms. Fol-
lowing (Chen, Zhang, and Zhou 2018; Wilhelm et al. 2018),
we empirically set V i = (ri)

αxi, where α > 0 is a pa-
rameter controlling the impacts of item qualities. Then, the
elements of L are defined as Lij =

(
rirj

)α
xix

�
j . If xi is

normalized, i.e., ‖xi‖2 = 1, the Cosine similarity between
ai and aj can be calculated as Cij = xix

�
j . We can re-write

L as follows:

L = Diag{exp(αr̃)} ·C · Diag{exp(αr̃)}, (3)

where Diag{r̃} is a diagonal matrix with the ith diagonal
element being r̃i = θx�

i , and C is the similarity matrix.
Then, the log-probability of the super arm S is:

log p(S) ∝ 2α
∑
ai∈S

r̃i + log det
(
C [S]

)
, (4)

where the last term is maximized when the features of arms
in S are orthogonal, thus it helps promote recommendation
diversity (Chen, Zhang, and Zhou 2018). In addition, Eq. (4)
also indicates the parameter α can help balance the relevance
and diversity of items for recommendation.

User Engagements

The user’s engagements on displayed items are expressed
by her implicit feedback (e.g., clicks on the items), which
is usually described by a set of binary variables. If the user
engages in the arm ai, we set yi to 1; otherwise, we set yi
to 0. Once an arm ai ∈ S has been displayed to the user,
we assume the user’s engagements on ai is only determined
by its quality. Thus, the probability of the observed user en-
gagement on ai, i.e., yi = 1, can be defined as follows:

pi � ρ(θx�
i ) =

exp(θx�
i )

1 + exp(θx�
i )

=
ri

1 + ri
. (5)

This can be explained as that when an arm ai is offered to
the user, the user engages in this arm or a virtual arm a0 with
a relevance score 1. Based on these assumptions, we can
define the joint probability of observed user engagements
Y = {yi|ai ∈ S} as follows:

p(Y,S,θ) = p(θ)p(S|θ)p(Y|S,θ)

= p(θ)
det(L[S])

det(L+ I)

∏
ai∈S

pyi

i (1− pi)
1−yi , (6)

where p(θ) is the prior assigned to bandit parameters. In
addition, we assume p(θ) follows a Gaussian distribution
N (m,Σ), and m, Σ are bounded. This assumption is typi-
cally used in practice.

Algorithm 1 Thompson Sampling for DC2B
Initialize m = 0, Σ = λI , andR = ∅.
for t = 0 to T do
At ← A \R, Xt = {xi|ai ∈ At}
Randomly sample θ̂ ∼ N (m,Σ)

S ← O(θ̂,Xt)
Play super arm S and observe the reward Y
Update Σ and m according to Eq. (9), (10), and (11).
R ← R∪ S

end for

Parameter Inference

Once a newly observation (S,Y) is available, we em-
ploy variational Bayesian inference (Blei, Kucukelbir, and
McAuliffe 2017) to develop a closed form approximation
to the posterior of θ. According to (Blei, Kucukelbir, and
McAuliffe 2017), the approximated posterior q(θ) of θ can
be expressed as log q∗(θ) = Eparam �=θ[log p(Y,S,θ)] +
const. Moreover, based on the knowledge in Linear Alge-
bra, we have det(L[S]) =

∏
ai∈S r2αi det(X [S]X

�
[S]) and

det(L + I) = exp(tr(log(L + I)). Then, we can have the
following log-likelihood function:

log p(Y,S|θ)
=
∑
ai∈S

(ϕi + 2α log ri) + log det(X [S]X
�
[S])

−
N∑
j=1

log(1 + r2αj xjx
�
j ), (7)

where ϕi = yi log pi + (1 − yi) log(1 − pi). In Eq. (7), the
likelihood function is a logistic function, which is not con-
jugate with the Gaussian priors on θ. To address this issue,
the following Gaussian lower bound on the logistic func-
tion is employed to approximate the likelihood (Jaakkola
and Jordan 1997), ρ(x) ≥ ρ(ξ)e

x−ξ
2 −λ(ξ)(x2−ξ2), where

λ(ξ) = 1
2ξ (ρ(ξ) − 1

2 ), and ξ is an auxiliary variable needs
to be adjusted to make the bound tight at x = ±ξ. More-
over, by assuming ||θ||2 ≤ A and ||xj ||2 ≤ B, we have
− log

[
1 + exp(2αθx�

j )xjx
�
j

] ≥ − exp(2αθx�
j )xjx

�
j ≥

− exp(2αAB)B2. As we assume m and Σ are bounded,
it is reasonable to infer that θ is bounded. By normalizing
xj , we can make xj bounded. Then, we have the following
lower bound of the log-likelihood function in Eq. (7):

log p(Y,S|θ) ≥ const.+∑
ai∈S

[
(2yi − 1 + 4α)θx�

i

2
− λ(ξi)(θ(x

�
i xi)θ

�) + φ(ξi)]︸ ︷︷ ︸
log h(θ,ξ)

,

(8)

where φ(ξi) = log ρ(ξi) − ξi
2 + λ(ξi)ξ

2
i . The optimal

variational distribution of θ is as follows: log q∗(θ) ≈
E
[
log h(θ, ξ)

]
+E
[
log p(θ)

]
+ const. Due to model conju-

gacy, we can know that q(θ) shall follow a Gaussian distri-
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Algorithm 2 DPP Greedy Search S ← O(θ̂,Xt)

Startup: Construct L,p according to θ̂,Xt

Initialize ci = [] , d2i = Lii , j = argmaxi∈Z log
(
d2i
)
+

log(pi) , S = {j}.
for k = 0 to K do

for i ∈ Z\S do
ei = (Lji − 〈cj , ci〉) /dj
ci =

[
ci ei], d

2
i = d2i − e2i

end for
j = argmaxi∈Z\Yg

log
(
d2i
)
+ log(pi),S = S ∪ {j}

end for
Return S

bution N (mpost,Σpost), where the mean and variance are
as follows:

Σ−1
post = Σ−1 + 2

∑
ai∈S

λ(ξi)x
�
i xi, (9)

mpost = Σpost

[
Σ−1m+

∑
ai∈S

(yi + 2α− 1

2
)xi

]
. (10)

Since no prior has been assigned to ξi, the optimal value of
ξi can be derived by maximizing the expected log-likelihood
function:	(ξi) = E[log p(Y,S|θ, ξi)]. Taking the derivative
of 	(ξi) with respect to ξi and setting it to zero, the optimal
value of ξi can be obtained as follows:

ξi =
√
xi(Σpost +m�

postmpost)x�
i . (11)

We employ Thompson sampling (TS) to update the model
parameters by balancing exploration and exploitation. The
details of the TS algorithm are summarized in Algorithm 1.
In standard TS method, it is required to sample from the
true posterior of model parameter θ. As the logistic likeli-
hood function is not conjugate with the Gaussian prior, we
propose to sample from the approximated poster distribution
q(θ). Once completing the sampling of θ, the DPP kernel
matrix L is fixed, and we can select the optimal super arm
S by maximizing fθ(S) =

∏
ai∈S pi det(L[S]). We employ

the fast gready MAP inference algorithm (Chen, Zhang, and
Zhou 2018) to obtain the optimal super arm. The details of
the greedy algorithm are summarized in Algorithm 2.

Regret Analysis
We consider a model involving a set of actions S and a
set of functions F = {fθ : S �→ R|θ ∈ Θ} indexed by a
random variable θ which belongs to an index set Θ. At
each time t, a random subset St ⊆ S is presented and an
action St ∈ St is selected after which the reward Rt is
gained. We define the reward function as: E[Rt] � fθ(St) =∏

ai∈St
pi det(L[St]) =

∏
ai∈St

pir
2α
i det(X [St]X

T
[St]),

and define the reward at trial t as: Rt = fθ(St) + εt. There-
fore, we have E[εt] = 0. In addition we assume ∀fθ ∈
F , ∀St ∈ S, fθ(St) ∈ [0, C]. For a recommendation pol-
icy π, we can define the Bayesian risk bound as follows:

Regret(T, π) =

T∑
t=1

E

[
max
s∈St

fθ(s)− fθ (St)
]
. (12)

To perform the regret analysis, we first introduce the fol-
lowing two Lemmas, which can be proofed following the
Proposition 9 and 10 in (Russo and Van Roy 2014). The dif-
ference is that the variable in our approach is a set of arms
St instead of a single arm a, the proofs are similar so we
omit them due to space limitation. We set σ = 1 according
to Lemma 7 in (Qi et al. 2018), which also shows that fθ
satisfies Assumption 2 in (Russo and Van Roy 2014).
Lemma 1. For all T ∈ N, α0 > 0 and δ ≤ 1/2T ,

Regret
(
T, πTS

) ≤4√dimM (F , T−1)β∗
T (F , α0, δ)T + 1

+
[
dimM

(F , T−1
)
+ 1
]
C,

where dimM

(F , T−1
)

is the ε-dimension, β∗
T (F , α0, δ) :=

8 ln (N (F , α0, ‖ · ‖∞) /δ) + 2αt
(
15
2 C + ln(2t2/δ)

)
, and

N (F , α0, ‖ · ‖∞) denotes the α0-covering number of F .
Lemma 2. Suppose Θ ⊂ R

d, and |fθ(St)− fθ�(St)| ≤∣∣h(θ − θ�)�φ(St)
∣∣, where φ(St) =

∑
i∈St

xi and h is a
constant. Assume there exist constants γ, S0 such that ∀St ∈
S and θ ∈ Θ, ‖θ‖2 ≤ S0, and ‖φ(St)‖2 ≤ γ. Then we have

dimM (F , ε) ≤ 3d
e

e− 1
ln

{
3

(
2S0hγ

ε

)2
}

+ 1. (13)

According to Lemma 1, in our problem, C = 1, and we
can choose α0 = 1/T 2, δ = 1/T 2. Then, the Bayesian risk
bound of DC2B is given by the following Theorem.
Theorem 1. When T is sufficient large, the Bayesian risk
bound of DC2B is

Regret
(
T, πTS

)
= O

(
d ln

(
αse2αsT

√
d
)√

T
)
, (14)

where s is the number of items in a selected set, d is the
dimension of θ.

Proof. We first assume ‖θ‖2 ≤ 1, ‖x‖2 ≤ 1, and in-
troduce the following inequalities: (1) Mean Value The-
orem: we have |θx| ≤ ‖θ‖2‖x‖2 ≤ 1, then |p −
p�| = |ρ(θ�x) − ρ(θ��x)| = |ρ′(ξ)(θ − θ�)�x| ≤
1
4‖θ − θ�‖2‖x‖2, and |r2 − r�2| = | exp(2αθ�x) −
exp(2αθ��x)| = | exp(2αζ)2(θ − θ�)�x| ≤ 2αe2α‖θ −
θ�‖2‖x‖2, where ρ′(x) = ρ(x)(1− ρ(x)) ≤ 1

4 , 0 ≤ ξ ≤ 1,
0 ≤ ζ ≤ 1; (2) Gram Inequality: | det(X�

[S]X [S])| =

|det (G (x1, · · · ,xs))| � ‖x1‖22 · · · ‖xs‖22 ≤ 1, where
[G (x1, · · · ,xn)]i,j = x�

i xj defines a gram matrix; (3) Tri-
angle inequality: |x1x2 − y1y2| = |x1x2 − y1x2 + y1x2 −
y1y2| ≤ |x1 − y1||x2| + |y1||x2 − y2|. Based on these in-
equalities, we have,

|fθ(St)− fθ�(St)|

= | det(X�
[St]X [St])||

s∏
i=1

pir
2α
i −

s∏
i=1

p�i r
�2α
i |

≤ (
8α+ 1

4
)e2αs|(θ − θ�)�

s∑
i=1

xi|

≤ 8α+ 1

4
se2αs

√
d‖θ − θ�‖∞, (15)
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where we use inequality ‖θ‖2 ≤
√
d‖θ‖∞. According to

Eq. (15), an α0-covering of F can therefore be attained
through an (α0/γ)-covering of Θ ⊂ R

d, where γ =
8α+1

4 se2αs
√
d. Evenly divide Rd in each dimension, we can

obtain N
(
R

d, α0, ‖ · ‖∞
)
= (1/α0)

d. Then, we have

N (F , α0, ‖ · ‖∞) = (γ/α0)
d =

(
(8α+ 1)se2αs

√
d

4α0

)d

.

(16)

In our problem, S0 = 1, h = 8α+1
4 e2αs and γ = s. Accord-

ing to Lemma 2 and Eq. (15), we have the following bound
on dimM

(F , T−1
)
:

dimM (F , T−1)

≤ 3d
e

e− 1
ln

{
3

(
(8α+ 1)e2αsTs

2

)2
}

+ 1. (17)

Let α0 = 1/T 2, δ = 1/T 2, C = 1. When T is sufficient
large, the second part of β∗

T (F , α0, δ) will decrease to zero.
After some calculation together with above two bounds, we
can finish the proof.

The upper bound in Theorem 1 mainly depends on the
dimensionality of model parameter d, the size of recom-
mended item set s, and the quality controlling parameter α.
Here, d describes the model complexity. As d increases, θ
is able to model more complex scenarios. However, a so-
phisticated model would cause over-fitting, resulting in poor
performances. Therefore, the regret bound would be high,
when d is large. The Proposition 9 in (Russo and Van Roy
2014) gives the Bayesian risk bound for non-combinatorial
bandit methods as O(rd

√
T log(rT )), where r is a parame-

ter determined by the reward function. By simply repeating
the recommendation s times to get a set of items, the bound
would be O(srd

√
T log(rT )). In DC2B, if we set α = 1, the

Bayesian regret bound would be O(d
√
T log(se2s

√
dT )),

which is slightly different from multiplying s to the bound
of non-combinatorial methods. This is because our reward
function also takes the recommendation diversity into ac-
count. As α controls the impacts of item qualities, the in-
crease of α would increase the risks caused by the estimation
of item qualities. Thus, the regret will grow as α increases.

Experiments

Experimental Settings

Datasets The experiments are performed on the following
datasets: Movielens-100K, Movielens-1M1, and Anime2.
Movilens-100K contains 100,000 ratings given by 943 users
to 1,682 movies, and Movielens-1M contains 1,000,209 rat-
ings given by 6,040 users to 3,706 movies. There are 18
movie categories in both Movielens datasets. We denote
these two datasets by ML-100K and ML-1M, respectively.

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/CooperUnion/anime-

recommendations-database

Table 1: The statistics of experimental datasets.
Datasets # Users # Items # Inter. # Cate.
ML-100K 942 1,447 55,375 18
ML-1M 6,038 3,533 575,281 18
Anime 69,400 8,825 5,231,117 44

For Anime dataset, there are 7,813,737 ratings given by
73,515 users to 11,200 animes, and there are 44 anime cat-
egories. Following (Liu et al. 2018), we keep the ratings
larger than 3 as positive feedback on ML-100K and ML-1M
datasets, and keep the ratings larger than 6 as positive feed-
back on the Anime dataset. Table 1 summarizes the statistics
of the experimental datasets, where movies and animes are
“items”. In these datasets, each item may belong to multiple
categories. The density of ML-100K, ML-1M, and Anime
datasets are 4.06%, 2.70%, and 0.85%, respectively.

Setup and Metrics For interactive recommendation meth-
ods, it is most appropriate to use an online experimental
setting with real time user interactions for evaluation. How-
ever, it is typically impossible to have such an environment
in academic research. Hence, following (Zhao, Zhang, and
Wang 2013; Qin, Chen, and Zhu 2014; Wang et al. 2017),
we assume that users’ ratings on items recorded in our ex-
perimental datasets are not biased by the recommender sys-
tem, and these records can be regarded as unbiased user
feedback in our experimental settings. The unbiased of-
fline evaluation strategy (Li et al. 2011) is used to evalu-
ate the recommendation methods. In the experiments, we
randomly partition each dataset into two non-overlapping
sets, by randomly sampling 80% of the users for training
and using the remaining 20% users for testing. Moreover,
we employ BPRMF (Rendle et al. 2009) to learn the em-
beddings of items based on training data, which are used
as the contextual features of arms. Empirically, we set the
dimensionality of the item embeddings to 10. As users
are usually interested in a few top-ranked recommendation
items, we adopt Precision@N to evaluate the recommenda-
tion accuracy (Shi, Larson, and Hanjalic 2014), by aggre-
gating the recommended items in �N/|S|� trials and com-
puting the precision. Specifically, N is set to 10, 30, and
50. We also evaluate the average recommendation diver-
sity of each method over all recommendation trials, by the
intra-list distance (ILD) (Zhang and Hurley 2008) metric
as follows: 1

T

∑T
t=1

[
2

|St|(|St|−1)

∑
ai∈St

∑
aj∈St,i �=j(1 −

simij)
]
, where St is recommended item set at trial t, |St|

denotes the size of St, T is the total number of recom-
mendation trials, simij denotes the similarity between ai
and aj . As an item may belong to multiple item cate-
gories, we define the item similarity simij by using the
Jaccard similarity of the categories of two items. For these
accuracy and diversity metrics, we first compute the value
for each user, and then report the averaged value over all
users. Following (Cheng et al. 2017), we also employ F-
measure to evaluate the performances of different methods
on trading-off between accuracy and diversity, where F-
measure=2*accuracy*diversity / (accuracy+diversity).
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Table 2: Recommendation performances of different algorithms. The best results are in bold faces, and the second best results
are underlined.

Datasets Metrics LogRank MMR ε-Greedy DPPmap C2UCB EC-Bandit DC2B

ML-100K

Precision@10 0.3548 0.3665 0.3421 0.3665 0.3633 0.2128 0.3649
Precision@30 0.2872 0.2872 0.2792 0.2846 0.3415 0.1633 0.3211
Precision@50 0.2507 0.2499 0.2433 0.2554 0.3146 0.1453 0.2882
Diversity 0.8024 0.8151 0.8145 0.7985 0.7827 0.8356 0.8118
F-measure 0.3820 0.3825 0.3747 0.3870 0.4488 0.2476 0.4254

ML-1M

Precision@10 0.3785 0.3754 0.3631 0.3764 0.3418 0.2160 0.3785
Precision@30 0.3204 0.3173 0.3084 0.3173 0.3192 0.1750 0.3401
Precision@50 0.2841 0.2824 0.2745 0.2807 0.2998 0.1611 0.3117
Diversity 0.8516 0.8531 0.8462 0.8174 0.8319 0.8326 0.8367
F-measure 0.4261 0.4221 0.4145 0.4179 0.4408 0.2700 0.4542

Anime

Precision@10 0.3141 0.3157 0.2867 0.3157 0.0095 0.1733 0.3003
Precision@30 0.2527 0.2534 0.2366 0.2541 0.1116 0.1326 0.2666
Precision@50 0.2165 0.2178 0.2025 0.2164 0.1518 0.1168 0.2419
Diversity 0.8323 0.8495 0.8521 0.8414 0.5031 0.8460 0.8355
F-measure 0.3436 0.3467 0.3272 0.3443 0.2332 0.2053 0.3752

Evaluated Recommendation Methods

As the training users are non-overlapping with the test-
ing users, the recommendation algorithms (Shi, Larson, and
Hanjalic 2014) designed for warm-start settings are not suit-
able as baselines. In this paper, we compare DC2B with
the following recommendation methods: (1) LogRank: In
this method, we define the quality score of each arm ai
as ri = 1/(1 + exp(−ūx�

i )), where ū is the mean of
the user embeddings learnt from the training data. Then,
the |St| available arms with the highest quality scores are
selected as a super arm St for recommendation at trial t;
(2) MMR: This method employs MMR strategy (Carbonell
and Goldstein 1998) to promote the recommendation diver-
sity. At trial t, this method sequentially selects an avail-
able arm with the largest maximal marginal relevance score
into St. The maximal marginal relevance score is defined as
r̃i = αri − (1−α)

|St|
∑

j∈St
sim(xi,xj), where ri is the arm

quality defined in the LogRank method, and sim(xi,xj)
is the Cosine similarity between xi and xj ; (3) ε-Greedy:
This method randomly adds an available arm into St with
probability ε, and adds the arm with highest quality into
St with probability 1 − ε. The item quality is defined the
same as in LogRank method; (4) DPPmap (Chen, Zhang,
and Zhou 2018): This non-interactive method uses deter-
minantal point process to promote recommendation diver-
sity. The item quality is defined the same as in LogRank;
(5) C2UCB (Qin, Chen, and Zhu 2014): This methods inte-
grates the LinUCB framework with an entropy regularizer to
promote diversity for interactive recommendation. (6) EC-
Bandit (Qi et al. 2018): This bandit method is based on
Thompson sampling framework and developed for interac-
tive recommendation with users’ implicit feedback. In this
method, the user needs to interact with the recommender |St|
times to generate the recommended item set at trial t.

For all methods, we empirically set the size of St to 10
in each trial. A validation set is sampled from training data
to choose hyper-parameters. The best parameter settings for
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Figure 1: Performance trend of DC2B with respect to differ-
ent settings of α on ML-100K dataset.

each method are as follows. α is set to 0.9 for MMR. ε is
set to 0.1 for ε-Greedy, and θ is set to 0.6 for DPPmap. In
C2UCB, we set λ0 = 100, λ = 0.1, and σ = 1. In EC-
Bandit, we set the parameter λ = 1. For DC2B, we empiri-
cally set α = 3, and λ = 1, on all datasets.

Performance Comparison

The recommendation accuracies and diversity of different
algorithms are summarized in Table 2. As shown in Ta-
ble 2, the proposed DC2B method usually achieves the
best recommendation accuracy (i.e., Precision@N ) on ML-
1M and Anime datsets, and achieves the second best accu-
racy on ML-100K dataset. For example, on Anime dataset,
DC2B significantly outperforms C2UCB and EC-Bandit
by 59.35% and 107.11%, and achieves 11.73%, 11.07%,
19.46%, and 11.78% better performances than LogRank,
MMR, ε-Greedy, and DPPmap, in terms of Precision@50.
These results indicate that DC2B is more effective than base-
line methods on large and sparse dataset. Moreover, we also
note the combinatorial bandit methods C2UCB and DC2B
significantly outperform EC-Bandit. One potential reason is

4937



Table 3: Relative improvements of DC2B over baselines. The positive improvements are highlighted in bold.

Methods ML-100K ML-1M Anime
Prec.@50 Div. F-m. Prec.@50 Div. F-m. Prec.@50 Div. F-m.

LogRank +14.96% +1.17% +11.36% +9.71% -1.75% +6.59% +11.73% +0.38% +9.20%

MMR +15.33% -0.40% +11.22% +10.38% -1.92% +7.60% +11.07% -1.65% + 8.22%

ε-Greedy +18.45% -0.33% +13.53% +13.55% -1.12% +9.58% +19.46% -1.95% +14.67%

DPPmap +12.84% +1.67% +9.92% +11.04% +2.36% +8.69% +11.78% -0.70% +8.97%

C2UCB -8.39% +3.72% -5.21% +3.97% +0.58% +3.04% +59.35% +66.07% +60.89%

EC-Bandit +98.35% -2.85% +71.81% +93.48% +0.49% +68.22% +107.11% -1.21% +82.76%
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Figure 2: Performance trend of DC2B with respect to differ-
ent settings of |St| on ML-100K dataset.

that the combinatorial methods employ the user’s feedback
on a set of items to update model parameters. However, EC-
Bandit uses the user’s feedback on a single item to update
model parameters. The parameter learning of C2UCB and
DC2B is more stable than that of EC-Bandit, thus C2UCB
and DC2B can achieve better recommendation accuracy.
In addition, we can note that the non-interactive methods
MMR, and ε-Greedy usually achieves slightly higher rec-
ommendation diversity than DC2B, and DC2B attains better
recommendation diversity than DPPmap on ML-100K and
ML-1M datasets. Comparing with interactive methods, Ta-
ble 2 indicates that the recommendation diversity of DC2B
is higher than that of C2UCB on all datasets, and EC-Bandit
achieves higher recommendation diversity than DC2B on
ML-100K and Anime datasets.

For better understanding the results, F-measure is used to
study the effectiveness of each recommendation algorithm
in balancing the recommendation accuracy and diversity.
Here, we use Precision@50 and Diversity to compute the
F-measure. As shown in Table 2, we can note that DC2B
achieves the best F-measure value on ML-1M and Anime
datasets, and the second best F-measure value on ML-100K
dataset. In addition, we summarize the relative improve-
ments of DC2B over baseline methods on Precision@50, Di-
versity, and F-measure in Table 3. These results demonstrate
that the proposed DC2B method is more effective in bal-
ancing the recommendation accuracy and diversity than the
baseline methods, especially on larger and sparser datasets.

Parameter Sensitivity Analysis

Moreover, we also evaluate the impacts of α and the
size of super arm |St| on the performances of DC2B,
on ML-100K dataset. The parameter α is varied in
{0.01, 0.1, 1, 3, 5, 10, 100}. Figure 1 shows the perfor-
mances of DC2B with respect to different settings of α. As
shown in Figure 1, the recommendation accuracy in terms of
Precision@50 firstly increases with the increase of α. When
α is larger than 5, the recommendation accuracy of DC2B
drops drastically by changing α to 10 and 100. We can also
note that the diversity value decreases with the increase of α,
because larger α makes DC2B focus more on the item qual-
ities in generating recommendations. Overall, the results in
Figure 1 indicate that α can effectively control the item qual-
ities and item diversities when generating recommendations.
Additionally, we vary the size of recommendation list |St|
at each trial in {5, 10}. Figure 2 summarizes the accuracy
of DC2B with respect to different sizes of super arm. As
shown in Figure 2, larger super arm size tends to results bet-
ter recommendation accuracy, when enough number of in-
teractions (e.g., more than 3 interactions) between the user
and the recommender system have been performed. This is
because the model updating based on the user’s feedback on
a larger set of items is expected to be more stable and accu-
rate. Moreover, the average recommendation diversity with
respect to |St| = 5 and |St| = 10 are 0.8110 and 0.8118, re-
spectively. This indicates that |St| does not have significant
impacts on diversity.

Conclusion and Future Work

This work proposes a novel bandit learning method, namely
Diversified Contextual Combinatorial Bandit (DC2B), for
interactive recommendation based on users’ implicit feed-
back. Specifically, DC2B is a full Bayesian recommenda-
tion framework, which enables the interactions between rec-
ommender system and the user, and employs determinan-
tal point process (DPP) to promote the recommendation di-
versity. We develop a Thompson sampling-type optimiza-
tion algorithm to iteratively learn the model parameters, and
conduct regret analysis to provide theoretical guarantee for
DC2B. Moreover, empirical experiments on real datasets
also demonstrate the effectiveness of the proposed DC2B
in balancing the recommendation accuracy and diversity. As
for the future work, we intend to develop more complex DPP
kernels and efficient DPP inference algorithms for interac-
tive recommender systems. In addition, we are also inter-
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ested in developing more sophisticated models to describe
the user engagements on the recommendation results.
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