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Abstract

Graph-based semi-supervised learning (GSSL) studies the
problem where in addition to a set of data points with few
available labels, there also exists a graph structure that de-
scribes the underlying relationship between data items. In
practice, structure uncertainty often occurs in graphs when
edges exist between data with different labels, which may fur-
ther results in prediction uncertainty of labels. Considering
that Gaussian process generalizes well with few labels and
can naturally model uncertainty, in this paper, we propose an
Uncertainty aware Graph Gaussian Process based approach
(UaGGP) for GSSL. UaGGP exploits the prediction uncer-
tainty and label smooth regularization to guide each other
during learning. To further subdue the effect of irrelevant
neighbors, UaGGP also aggregates the clean representation
in the original space and the learned representation. Exper-
iments on benchmarks demonstrate the effectiveness of the
proposed approach.

Introduction

Datasets with graph or network structures are all around in
wide applications. It is often desirable to predict the labels
for nodes in the graph. For example, in a social network,
we may be interested in predicting the profession of indi-
viduals; in a citation network, we might want to predict the
topics of documents. Sometimes, only a small number of
labeled examples are available, and it is costly to collect a
large set of labeled data for training. In such cases, making
good use of the graph structure which contains information
about the relationship between data items is critical. Such
learning problem is referred as graph-based semi-supervised
learning (GSSL)(Zhu 2005).

During the past years, various studies have been con-
ducted for GSSL. Early work led to the development of
explicit graph-based regularization(Zhu, Ghahramani, and
Lafferty 2003; Belkin, Niyogi, and Sindhwani 2006; Zhang
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et al. 2010), which rely on the label smooth assumption
that data connected to each other in the graph tend to
share the same label. Recently, implicit graph regulariza-
tion via learned node representation have emerged, includ-
ing graph embedding works(Perozzi, AI-Rfou, and Skiena
2014; Yang, Cohen, and Salakhutdinow 2016) and the pow-
erful graph convolutional networks (GCN)(Wu et al. 2019;
Kipf and Welling 2017).

In real world tasks, the graph structure is not always pre-
cisely given, and usually suffer from uncertainty issues. For
example, it is a common case that edges connecting nodes
with different labels appear in a graph. In other words, the
connected neighbors could be irrelevant to the node. This
in turn would lead to uncertainty on the predictions of the
learning model. It is thus a significant challenge to enhance
the learning model with ability to handle structure uncer-
tainty in the graph. Attempts for GCN have been made to-
wards this target. The approach in (Vashishth et al. 2019)
added the label prediction uncertainty of nodes as parame-
ters and optimized them jointly with the network parame-
ter by back propagation. The method in (Zhang et al. 2019)
treated the graph structure as one realization of a parametric
family of random graphs and proposed a Bayesian GCN to
solve it.

While the graph neural networks have generally surpassed
Laplacian and embedding based methods in predictive per-
formance, they require a relatively large set of labeled val-
idation set to prevent over-fitting, whereas the labeled data
is usually limited in many applications. To bridge the gap
between the simpler models and the more data intensive
graph neural networks, Gaussian process model for GSSL
is proposed in (Ng, Colombo, and Silva 2018), which is
data-efficient and can achieve competitive performance with
GCN when there are sufficient labeled data. However, this
method does not consider the uncertainty issue during the
model inference and prediction.

In this paper, considering the appealing properties of
Gaussian process, which generalize well with few labels and
can naturally incorporate the uncertainty of inferences in the
learning process, we propose an Uncertainty aware Graph
Gaussian Process based approach (UaGGP) for GSSL. We
utilize the prediction uncertainty and label smooth regular-
ization to guide each other during the learning process. To
further alleviate the possible side effect of irrelevant neigh-
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borhoods on the learned node representation, we also pro-
pose to aggregate the clean data representation in the origi-
nal input space and the learned representation. We examine
the resilience of the proposed approach on three graph struc-
tured benchmark datasets.

Related Work
Researchers have developed various of technologies for
graph-based semi-supervised learning during the past
decades. Laplacian regularization and graph embedding are
two important ways. And recently, methods based on neural
networks become more popular.

In graph-based semi-supervised learning, the graph
Laplacian regualrization is employed (Zhu, Ghahramani,
and Lafferty 2003; Belkin, Niyogi, and Sindhwani 2006;
Weston, Ratle, and Collobert 2008) by combining with dif-
ferent types of loss functions. For example, in (Zhu, Ghahra-
mani, and Lafferty 2003), the authors defined a Gaussian
Random Field (GRF) on the graph, and optimized the soft
labels of unlabeled points by minimizing the quadratic en-
ergy function. The manifold regularization (Belkin, Niyogi,
and Sindhwani 2006) has a similar idea for learning from
labeled and unlabeled examples by taking the adjacent rela-
tions as the data geometry. Besides, some research works
(Gadde and Ortega 2015; Chen and Wei 2018) in graph
signal processing often consider the target on graph as a
signal vector to recover (Gadde, Anis, and Ortega 2014;
Chen et al. 2015). If it is assumed that the signal vector el-
ements obey a multivariate Gaussian prior distribution, the
reconstruction of the signal is equal to the MAP inference.

In order to seek more effective feature representation with
lower dimensions, various methods are proposed based on
graph embedding(Cai, Zheng, and Chang 2018). DeepWalk
(Perozzi, AI-Rfou, and Skiena 2014) learns a representa-
tion which encodes structural regularities by using local in-
formation from truncated random walks. The advantage of
DeepWalk is that, the learned representations are indepen-
dent of models, which thus can be used in any classifica-
tion method. The method in (Yang, Cohen, and Salakhutdi-
now 2016) combines embedding learning with graph-based
semi-supervised learning, which utilizes the learned embed-
ding and input feature together to predict both the class label
and graph context.

In recent years, GNN (Zhang, Cui, and Zhu 2018; Zhou
et al. 2019) has been attracting more and more attentions.
GCN methods (Kipf and Welling 2017; Defferrard, Bres-
son, and Vandergheynst 2016) deal with GSSL in the view
of deep learning via the spectral theory and achieve amaz-
ing results compared with traditional spectral approaches.
However, GCN can not provide the confidence score for the
predictions. It is desirable to know how much to trust the
model output on many occasions. (Vashishth et al. 2019)
tries to provide prediction distribution for each unlabeled
node by setting the pseudo label mean score and variance
as model parameters, which are optimized by back propaga-
tion. Whereas in our work based on GP, confidence scores
are inferred naturally, and thus the label smooth constraint
can be incorporated into the learning objective of the Graph
Gaussian Processes.

Background

In this section, we briefly introduce the necessary back-
ground basis for Gaussian Process learning and the notations
used in the paper.

Gaussian Processes

In 2006, Rasmussen and Williams (2006) presented a com-
prehensive tutorial on Guassian Processes (GPs) and their
natural applications in machine learning. Formally a GP is
defined as a collection of random variables, of which any fi-
nite subsets have joint Gaussian distributions. Thus a GP can
be fully specified by its mean function m(x) and covariance
function k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)). (1)

Defined over functions, GPs are natural generalizations
of Gaussian distribution over vectors. Used as priors over
real-valued functions f(x), GPs provide rich nonparametric
models for the machine learning field. The prior is updated
in light of the training examples to get the posterior, which
is then used to make predictions for unseen test data.

Given a dataset of input X = {xi}ni=1 and their corre-
sponding labels y = {yi}ni=1, GPs define a prior over the
latent function value at the input examples:

p(f(xi)) = N (f(xi)|m(xi), k(xi, xi)). (2)

The observed label yi is connected to the function value via
the conditional likelihood function:

yi|f(xi) ∼ p(yi|f(xi)). (3)

Therefore, the joint distribution of data and latent function
becomes:

p(y, f) =
n∏

i=1

p(yi|f(xi))p(f(xi)) (4)

=

n∏
i=1

p(yi|f(xi))N (f |mn,Knn)

Here mn denotes the mean vector on X, Knn denotes the
covariance matrix over all data pairs. In this paper, we con-
cern classification tasks. For binary classification, the condi-
tional likelihood is implemented as

p(yi|f(xi)) = B(yi|π(fi)) = π(fi)
yi(1− π(fi))

1−yi . (5)

Here π(x) =
∫ x

−∞ N (a|0, 1)da is the cumulative proba-
bility density function of the normal distribution. For the
multi-class problems, p(yi|f(xi)) is implemented by the
robust-max likelihood(Wu, Lin, and Weng 2004). The learn-
ing interest in GPs is to infer the posterior p(y|f) and the
model parameters through maximizing the marginal likeli-
hood p(y).

Scalable GPs Learning

While GPs can be conveniently used to specify flexible
learning functions, the inference for parameters and poste-
rior is not easy. First, for cases where the likelihood p(y) is
non-Gaussian, e.g., in classification problems, the marginal
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likelihood p(y) and the posterior p(f |y) must be approxi-
mated. Second, the computation for inference often has a
complexity of O(N3) (see (Rasmussen and Williams 2006)
for details), which limited their application to large data.

Recently, scalable inference algorithms are pro-
posed(Snelson and Ghahramani 2005; Titsias 2009;
Hensman, Matthews, and Ghahramani 2015). As we con-
cern classification tasks in this paper, we review the KLSp
approach proposed by(Hensman, Matthews, and Ghahra-
mani 2015), which empirically outperformed state-of-the
art methods and can be optimized using SGD, making the
GP classification applicable to big data.
Objective function derivation The KLSp method is de-
rived using variational approximation. As in (Snelson and
Ghahramani 2005), a set of t inducing points Z =
[zt, ..., zt]

� are introduced. Their latent function values are
represented as u = [f(z1), ..., f(zt)]. Assuming the mean
function value m(x) is zero, the conditional GP of f over u
can be derived as

p(f |u) = N (KntK
−1
tt u,Knn −Qnn), (6)

where Ktt is the covariance matrix at pairs of the inducing
points Z, Knt is the covariance matrix across the X and Z,
Qnn = KntK

−1
tt KT

nt.
Combing Eqs.3 and 6, the joint distribution of y,f and

u takes the form p(y, f ,u) = p(y|f)p(f |u)p(u). Follow-
ing the standard derivation of variational inference, the Evi-
dence Lower Bound(ELBO) for p(y) is obtained:

LLB =

n∑
i=1

Eq(f(xi))[logp(yi|f(xi))]− KL[q(u)||p(u)].
(7)

Here q(f)is defined as q(f) :=
∫
p(f |u)q(u)du.

Training With the prior of u defined as p(u) = N (0,Ktt)
and the posterior to be a multivariate Gaussian distribution
q(u) = N (v,S), the inducing points Z, parameters v,S of
the posterior distribution q(u), and the covariance function
parameters are optimized by maximizing the ELBO in Eq. 7
using gradient based optimization and SGD for large data.
Prediction Using the inferred variational Gaussian distribu-
tion q(u), the latent function value are calculated as follows:

p(f∗|y) =
∫

p(f∗|f ,u)p(f ,u|y)dfdu

≈
∫

p(f∗|f ,u)p(f |u)q(u)dfdu

=

∫
p(f∗|u)q(u)du. (8)

The optimization of our UaGGP approach is implemented
by adapting the process of KLSp.

The UaGGP Approach

In the graph-based semi-supervised learning problem, in ad-
dition to a set of data points X = {xi}ni=1 and the labels
for a subset of the data yL = {yi}nL

i=1 with yi ∈ {1, ...,K},
a graph structure G = (V, E) is also available. A symmet-
ric binary adjacency matrix A ∈ {0, 1}n×n can be used to

represent the relationship. The target is to predict the labels
yU = {yi}ni=1+nL

for the remaining unlabeled data.
To make use of the graph structure in GPs, a Graph Gaus-

sian Process (GGP) model is proposed in (Ng, Colombo,
and Silva 2018), which introduced another latent function
h, whose GP prior is defined as the average of the values
of f over the 1-hop neighborhood Ne given by the adjacent
matrix A:

gi =
f(xi) +

∑
k∈Ne(i) f(xk)

1 +Di,i
. (9)

And the joint distribution is defined as

p(Y,g|X, A) = p(g|X, A)
n∏

i=1

p(yi|gi). (10)

In this paper, we extend the work of (Ng, Colombo, and
Silva 2018) by considering the graph structure uncertainty
issue. In practice, inexact graph structure are common, i.e.,
edges may occur between data with different labels, which
in turn would result in misleading neighbors and predictions.
We propose the Uncertainty aware Graph Gaussian Process
based approach (UaGGP), which improves GGP from two
perspectives. First, considering that GP can naturally in-
corporate uncertainty, UaGGP utilizes the prediction uncer-
tainty and label smooth regularization to guide each other
during learning. Second, considering that the GGP can be
interpreted as learning Laplacian matrix transformed feature
representation, to alleviate the possible side effect of irrele-
vant neighborhoods on learned representation, UaGGP fur-
ther aggregates the clean data representation in the original
input space and the learned representation. We explain the
two points in the following subsections.

Regularization of Inference

From the definition of g Eq. 9, it can be seen that prior of g
can be written as

p(g|X, A) = N (0, PKnnP
�), (11)

where P = (I +D)−1(I + A) is the random walk matrix.
This means that implementing the GGP with the KLSp algo-
rithm(Hensman, Matthews, and Ghahramani 2015) amounts
to implementing a new covariance function, and the opti-
mization process keeps the same.

Using the prediction function defined in Eq. 8, combined
with the Gaussian form of p(g∗|u) and q(u), the posterior
mean and posterior covariance of p(g∗|y) can be got easily:

μ = K̂ntK̂
−1
tt v, (12)

Σ = K̂nn + K̂ntK̂
−1
tt (S− K̂tt)(K̂ntK̂

−1
tt )�, (13)

where K̂ = PKnnP
�.

The mean and covariance predictions μ,Σ for the data are
utilized in this paper to conduct regularization. The idea is
as follows. For an edge which lies between a pair of nodes
vi and vj , the inferences of both nodes are supposed to be
close, so we may define and minimize a distance d(vi, vj)
between both inferred results. However, when the model is
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Figure 1: The sketch of the UaGGP: feature aggregation are conducted in both the input sapce and the Hilbert space. The label
smooth regularization is applied to model predictions.

Figure 2: Feature Aggretation: One node can be represented
by itself and its neighbour nodes, different methods have dif-
ferent aggreation weights.

not confident in the inference of vi or vj or both of them, the
distance d(vi, vj) should not be tight.

Following (Orbach and Crammer 2012; Vashishth et al.
2019), we take the symmetric Mahalanobis distance as the
measure. Let μi, μj denote the latent function mean vector
of nodes vi and vj respectively, diagonal matrices Σi and Σj

denote the uncertainty of vi and vj respectively, where μi ∈
R

K and Σ ∈ R
K×K . That is, (Σi)kk denotes the variance

of μi,k, which represents the score that node vi belongs to
label k. The distance between them would be expressed as

d(vi, vj) = (μi − μj)
�(Σ−1

i +Σ−1
v )(μi − μj). (14)

One important property of the distance d(vi, vj) is that if at
least one of the two diagonal matrices has large eigenvalue,
the constraint that expect μi and μj to be close will be re-
laxed. For any pair of nodes, if an edge exists between them,
we enforce the GP inferences of them to be close, so the
regularization term would be written as

LLS =
∑

(i,j)∈E
(μi − μj)

�(Σ−1
i +Σ−1

v )(μi − μj) (15)

The objective learning function is defined as the sum of
the ELBO in Eq. 7 and the label smooth regularization in
Eq. 15, as follows:

L = −LLB + λLLS (16)

Feature Aggregation

In Eq. 11, the kernel matrix Knn can be written as Knn =
ΦnΦ

�
n , where Φ denotes the feature map corresponding to

the covariance function. Thus the GGP can be interpreted as
aggregating nodes feature in the learned Hilbert space.

Considering that the learned node representation in the
Hilbert space might be badly affected by the uncertainty

in the graph structure and prediction degeneration, we pro-
posed to also conduct aggregation of node features in the
original reliable input space.

GCN(Kipf and Welling 2017) has suggested several ways
to aggregate nodes feature considering graph neighborhood:

X̂ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AX
(A+ I)X
(I +D)−1(I +A)X
(I +D−1/2AD−1/2)X
D−1/2AD−1/2X

D̃−1/2ÃD̃−1/2X

Here D denotes the diagonal degree matrix of the graph,
Ã = A+ I , D̃ is the degree matrix of Ã. As Figure 2 shows,
various GCN methods aggregate feature by using different
weights Wij definition. In GCN(Kipf and Welling 2017), the
renormalization trick gained best performance. In our work,
for fair comparison with (Ng, Colombo, and Silva 2018), we
take a weighted average of features and exploit the simple
implementation X̂ = (I + D)−1(I + A)X. This is similar
as gi, the new normalized representation x̂i for each node is
constructed utilizing the one-hop neighborhoods:

x̂i =
xi +Σk∈Ne(i)xk

1 +Di
. (17)

In UaGGP, the new data representations {x̂i} are used as
inputs for the learning model.

The sketch of UaGGP is shown in Figure 1, where the
feature aggregation are conducted both in the original in-
put space and the learned Hilbert space, and the soft label
smooth regularization term is applied.

Optimization

The optimization of UaGGP can be easily implemented
using the scalable variational inference algorithm of
KLSp(Hensman, Matthews, and Ghahramani 2015). The
variational parameters Z,v,S and covariance function pa-
rameters are jointly optimized by gradient based method.

Time Complexity

The computational complexity of UaGGP composes of three
parts: 1) computing the regularization term LLS in Eq. 15,
which incurs O(|E|); 2) computing the new representations
{x̂i} in Eq. 17, which incurs O(nDmax) with Dmax rep-
resenting the maximum node degree; 3) the gradient based
variational inference algorithm, which is O(nLt

2) (Ng,
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Table 1: Statistics of the datasets used in experiments for the classification task.

Type Nodes Edges Features Classes Label Rate Label Mismatch Test Nodes

Cora Citation 2708 5429 1433 7 0.052 0.002 1000
Citeseer Citation 3327 4732 3703 6 0.036 0.003 1000
Pubmed Citation 19717 44338 500 3 0.003 0.0 1000

Table 2: Performance of methods on benchmark datasets. Results for baselines are taken from (Liao et al. 2018; Vashishth et
al. 2019; Kipf and Welling 2017; Ng, Colombo, and Silva 2018).

Method Cora Citeseer Pubmed

LP(Zhu, Ghahramani, and Lafferty 2003) 68.0% 45.3% 63.0%
ManiReg(Belkin, Niyogi, and Sindhwani 2006) 59.5% 60.1% 70.7%
SemiEmb(Weston, Ratle, and Collobert 2008) 59.6% 59.0% 71.1%
DeepWalk(Perozzi, AI-Rfou, and Skiena 2014) 67.2% 43.2% 65.3%

Planetoid(Yang, Cohen, and Salakhutdinow 2016) 75.7% 64.7% 77.2%
GCN(Kipf and Welling 2017) 81.5% 70.3% 79.0%

GGP(Ng, Colombo, and Silva 2018) 80.9% 69.7% 77.1%
UaGGP 82.7% 70.7% 76.7%

Colombo, and Silva 2018). In practice, the first and second
computation terms are small because the graphs are typically
sparse.

When implementing the variational inference algorithm,
we choose the number of inducing points t as the number of
labeled data nL, which is small compared to the total num-
ber of examples. In fact, for large data, the algorithm can
be easily conducted in parallel or in a stochastic manner by
randomly selecting mini-batches of the data.

Experiments

Datasets and Baselines

We follow the exact experimental setup in(Ng, Colombo,
and Silva 2018; Kipf and Welling 2017; Vashishth et al.
2019), where GCN and GPP are known to perform well.
Described in Table 1, the three benchmark datasets are ci-
tation networks. Each node denotes a document represented
by sparse bag-of-words features, each edge denotes the cita-
tion connection between two documents. The label of each
document represents one topic. In Table 1, Label Rate de-
notes the percentage of labeled data, Label Mismatch de-
notes the proportion of edges that lie between different la-
bels among the labeled data.

For fair comparison with (Ng, Colombo, and Silva 2018),
we also use the 3rd degree polynomial kernel function for
the covariance, and the joint gradient based optimization of
variational parameters and model parameters are optimized
using ADAM(Kingma and Ba 2015). The value of param-
eter λ is set to 0.001 for Cora and Citeseer, for Pubmed,
λ=0.0001. All experiments are repeated for 10 times and the
mean values are recorded.

We compare against several baselines including tradi-
tional methods, the well performed GCN(Kipf and Welling
2017) and GGP(Ng, Colombo, and Silva 2018).

• LP(Zhu, Ghahramani, and Lafferty 2003) defined a Gaus-

sian random field model which propagates a node label to
its neighbors by graph weights.

• ManiReg(Belkin, Niyogi, and Sindhwani 2006) built on
a framework based a data-dependent regularization which
exploits the geometry of the marginal distribution.

• SemiEmb(Weston, Ratle, and Collobert 2008) combined
deep architectures with semi-supervised learning embed-
ding to improve the unsupervised method.

• DeepWalk (Perozzi, AI-Rfou, and Skiena 2014) learned
the latent representations of nodes by using local infor-
mation obtained from truncated random walks.

• Palnetoid(Yang, Cohen, and Salakhutdinow 2016) learned
an embedding for each node by jointly predicting the class
label and the neighborhood context in the graph.

• GCN(Kipf and Welling 2017) presented one approach
based on convolutional neural networks with outstanding
performance.

• GGP(Ng, Colombo, and Silva 2018) is a Gaussian process
based model which incorporates the graph neighborhoods
into the GP prior.

Comparison Results

The classification accuracy results of all methods for the
three datasets are shown in Table 2. Due to the same exper-
imental setup, results for the baselines are taken from (Liao
et al. 2018; Vashishth et al. 2019; Kipf and Welling 2017;
Ng, Colombo, and Silva 2018). As shown in Table 2, UaGPP
consistently outperforms the baselines on Cora and Cite-
seer. Note that the original GGP is marginally worse than
GCN, which uses additional 500 labeled data for early stop-
ping. In the original GGP paper(Ng, Colombo, and Silva
2018), the authors also conducted one comparison ’GGP-X’
which used the additional labels for training and obtained
much better performance. Using only the training labels,
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(a) Cora (b) Citeseer (c) Pubmed

Figure 3: Time cost per 100 iterations varies with different number of labeled nodes for three datasets.

(a) Cora (b) Citeseer (c) Pubmed

Figure 4: Performance variation over different number of labeled nodes. For GGP and UaGPP, the results not shown for nL = 50
on Cora are 47.2± 0.44 vs 51.0± 0.34, results for nL = 50 on Citeseer are 45.8± 2.26 vs 32.8± 1.61.

(a) Cora (b) Citeseer (c) Pubmed

Figure 5: Performance variation over different λ from 1e−1 to 1e−5. The red dotted line indicates the results of GGP(Ng,
Colombo, and Silva 2018).
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Table 3: Feature aggregation ablation study on GGP(Ng,
Colombo, and Silva 2018) and UaGGP with three different
aggregation manners: aggregation in the Hilbert space, the
Euclidean space and in both spaces.

Space Dataset GGP UaGGP

Hilbert
Cora

80.9% 82.3%
Euclidean 81.6% 82.4 %

Hi+Eu 82.8% 82.7%
Hilbert

Citeseer
69.7% 70.1 %

Euclidean 69.1% 70.2%
Hi+Eu 70.7% 70.7%
Hilbert

Pubmed
75.8% 76.5 %

Euclidean 77.2% 77.4 %
Hi+Eu 77.0% 77.5%

UaGPP beats GCN, which implies that our UaGPP makes
better use of the data.

On Pubmed, UaGPP is marginally degenerated but com-
petitive with GGP. We guess that this may be due to that
Pubmed has very few labeled data, in which case the la-
bel smooth regularization term LLS in Eq. 15 would not be
helpful. Too few labels may even have side effects on LLS .
In the next subsection, we explore the effect of label size and
regularization strength on the learning performance.

We also examine the efficiency of the compared methods.
We vary the number of nodes in [100, 200, 300, 400, 500],
and the results are shown in Figure 3.

Figure 3 shows how the time cost changes with the in-
crease of labeled data size. It can be observed that the time
cost of UaGGP is higher than GGP on the Cora and Cite-
seer. Especially UaGGP consumes much more time on the
Pubmed dataset. Because the Pubmed contains much more
nodes and edges, and all data points are need to be inferred
by GP in each iteration and the symmetric Mahalanobis dis-
tance is calculated for each edge in the graph. So a large por-
tion of time is consumed for the label smooth term. Note that
the proposed approach can be easily implemented in paral-
lel. The time cost may be significantly reduced with parallel
implementation.

Performance Study with Varying nL and λ

In this subsection, we explore the performance of UaGGP in
settings with different number of labeled data and different
strength of the regularization term LLS . We test the number
of labeled data nL in range of [50, 100, 150, 200, 250], and
set the value of λ as 0.0001 for nL = 50 and 0.001 for other
cases. We also report the performance of GGP for compari-
son.

The results with varying label size are shown in Figure 4.
It can be observed that the proposed UaGGP approach con-
sistently outperforms GGP with different number of labeled
examples in most cases. A special case is on Citeseer when
only 100 labeled examples are available, GGP achieves a
slightly better performance than UaGGP. These results vali-
date that the regularization term plays a positive role as long
as labels are not too few.

Next, we vary the value of the parameter λ in the set
[10−1, 10−2, 10−3, 10−4, 10−5] to study the effect of the
strength of regularization LLS . The number of labeled data
nL for Cora and Citeseer is the same as in Table 1. For
Pubmed, nL = 100 labels are used to ensure enough labels.
The results are shown in Figure 5. It can be seen that the reg-
ularization term helps in most cases. On one hand, too large
λ, e.g.,λ > 1e − 1 on Cora and λ > 1e − 3 on Pubmed,
could enforces too strong regularization and results in per-
formance collapse. On the other hand, So the strength of the
regularization should be properly determined. too small λ
could reduces the UaGGP to GGP and the results would not
collapse but may get a little worse.

Feature Aggregation Study

As mentioned before, we can view the GGP method as con-
ducting feature aggregation in the Hilbert space. The pro-
posed UaGGP extends GGP by conducting feature aggre-
gation in both the original input Euclidean space and the
Hilbert space. In this section, we conduct ablation studies on
the different aggregation manners. Respectively aggregating
features in the original input Euclidean space, the Hilbert
space and both spaces for GGP and UaGGP. The results are
shown in Table 3.

Note that similar settings in previous section are used.
Specifically, nL = 100 labeled examples are used for
Pubmed to ensure enough labels. Thus on Pubmed, the re-
sults for GGP in the Hilbert space and UaGGP in the Hi+Eu
space are different from that in Table 2.

It can be seen from Table 3 that for both GGP and UaGGP,
conducting aggregation in both spaces performs consistently
better. Note that we aggregate features for one node with
its one-hop neighbours. While in GCN(Kipf and Welling
2017), stacking multiple layers can take into account multi-
hop neighbours. The UaGGP can also aggregate farther
nodes by random-walk matrix like the LP(Zhu, Ghahramani,
and Lafferty 2003), or deep Gaussian Processes(Salimbeni
and Deisenroth 2017) as described in (Ng, Colombo, and
Silva 2018).

Conclusion

In this paper, we propose a Gaussian Process based approach
UaGGP for semi-supervised classification with graph struc-
tures. In UaGGP, the structural information of the graph is
utilized in the feature aggregation and graph Laplacian reg-
ularization. By making use of the uncertainty of the Gaus-
sian Processes model, we propose the graph Laplacian reg-
ularization based on the GP inferences and the symmetric
Mahalanobis distance to deal with the structure uncertainty
issues. Experimental comparison with multiple state-of-the-
art methods on multiple benchmark datasets validated the
effectiveness of the proposed approach. In the future, we
plan to test the approach on more large datasets with a par-
allel implementation. Also it would be an interesting prob-
lem to extend the approach to more complicated tasks, such
as when the examples are assigned with multiple labels or
noisy labels.
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