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Abstract

In the era of big data, rare category data examples are often
of key importance despite their scarcity, e.g., rare bird au-
dio is usually more valuable than common bird audio. How-
ever, existing efforts on rare category mining consider only
the statistical characteristics of rare category data examples,
while ignoring their ‘true’ interestingness to the user. More-
over, current approaches are unable to support real-time user
interactions due to their prohibitive computational costs for
answering a single user query.

In this paper, we contribute a new model named IRim,
which can interactively mine rare category data examples of
interest over large datasets. The mining process is carried
out by two steps, namely rare category detection (RCD) fol-
lowed by rare category exploration (RCE). In RCD, by in-
troducing an offline phase and high-level knowledge abstrac-
tions, IRim reduces the time complexity of answering a user
query from quadratic to logarithmic. In RCE, by proposing
a collaborative-reconstruction based approach, we are able
to explicitly encode both user preference and rare category
characteristics. Extensive experiments on five diverse real-
world datasets show that our method achieves the response
time in seconds for user interactions, and outperforms state-
of-the-art competitors significantly in accuracy and number
of queries. As a side contribution, we construct and release
two benchmark datasets which to our knowledge are the first
public datasets tailored for rare category mining task.

Introduction

The big data era provides tremendous opportunities for ex-
tracting valuable knowledge from large datasets (Cao et al.
2015). In many real-world applications, it is often the case
that the dataset is mixed with a great number of data ex-
amples belonging to a major category together with a small
number of data examples belonging to a few rare categories,
whereas the rare categories are more valuable than the major
category (Pelleg and Moore 2004; He and Carbonell 2007).
For example, a network access dataset may contain a big
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portion of normal network connections forming the major
category and a small portion of intrusions forming a few
rare categories, which however are usually more significant.
The motivation and aims of rare category mining have en-
abled it to have a wide variety of applications such as fraud-
ulent transaction detection (Zhou et al. 2018), network secu-
rity bug discovering, and forest fire identification in satel-
lite images (Mithal et al. 2017), and etc (He, Tong, and
Carbonell 2010; Svenstrup, Jørgensen, and Winther 2015;
Liu et al. 2017; Cheng et al. 2019).

Following the existing work (Huang et al. 2014; He and
Carbonell 2007; He, Tong, and Carbonell 2010), rare cat-
egory mining can be decomposed into two sequential sub-
tasks, namely RCD (rare category detection) and RCE (rare
category exploration). (1) RCD targets to detect a few data
examples for an undiscovered rare category to prove its exis-
tence in the unlabeled dataset, e.g., detecting an instance of
a network attack. (2) If the user finds the detected rare cate-
gory data examples valuable or interesting, RCE further tries
to identify other similar and interesting data examples in the
same rare category, e.g., identifying interesting instances of
the same attack type as the detected one.

Facing a few challenges such as (1) skewed category
distribution, (2) the non-separability nature of interesting
data examples from uninteresting data examples, and (3)
the extremely limited number of labeling budget of the user,
most of the existing methods (e.g., (He and Carbonell 2007;
Huang et al. 2013; Yu and Lam 2019; Pérez-Ortiz et al.
2019; Feuz and Cook 2017)) have been focused on the dis-
covery of statistically significant data examples of a rare cat-
egory. However, not all rare category data examples are nec-
essarily of equal importance (Vatturi and Wong 2009). For
examples, a user might be interested in only a few fighting
scenes in a rare game instead of all game images; a doctor in
digestive diseases may not be interested in a rare psychopath
instance. This motivates us to identify rare category data ex-
amples that are of interest to a user subjectively besides of
their statistical significance (which is objective).

More importantly, scrutinizing the implementations of ex-
isting methods, e.g., (Vatturi and Wong 2009; Tu et al. 2018),
we empirically found that current RCD approaches often
have quadratic time complexities w.r.t. dataset size in an-
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swering a single user query. To demonstrate their high com-
putational costs, we plot the required time of different meth-
ods for answering an RCD query in Fig. 1. The x-axis are
five real-world datasets sorted by their numbers of data ex-
amples, while the y-axis represents the required time in sec-
onds. The methods presented are NNDM (He and Carbonell
2007), HMS (Vatturi and Wong 2009), Clover(Huang et al.
2013), and our method. All experiments are conducted on a
server equipped with 40 Intel Xeon E5-2640V4 vCPUs and
96 GB RAM. We can clearly observe that as the dataset size
increases, the required time increases, which confirms the
challenges in dealing with large datasets. Moreover, when
the dataset size exceeds 494,021 (e.g., on the KDD-CUP
dataset), the existing methods take hours or days to answer
a single query. This is far from achieving the second-level
response time required by interactive systems.

Abalone Bird Shuttle Game KDD-CUP

NNDM
HMS
Clover
Ours

(4,177) (6,495) (58,000) (494,021) (331,853) 

400,000 
350,000 
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100,000 

50,000 
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Figure 1: Required time for answering a single RCD query.
Empirical results for four distinct RCD methods are pre-
sented. The x-axis are five datasets sorted by their numbers
of data examples. The numbers in the parentheses show the
numbers of data examples in the corresponding datasets. The
y-axis denotes the required time in seconds.

To address these challenges, we propose a novel online
rare category mining platform, which is able to fast inter-
act with users and effectively identify rare category data ex-
amples of interest over large datasets. The platform is de-
signed to jointly address the two subtasks, namely RCD and
RCE. (1) For RCD, a logarithmic time complexity algorithm
is proposed to enable real-time user interactions, which to
our knowledge, is two orders of magnitude faster than state-
of-the-art competitors. (2) For RCE, a novel collaborative-
reconstruction approach is presented, which explicitly en-
code user interest using positive and negative contexts.

We also notice that there is a lack of benchmark datasets
for rare category mining. We construct two benchmark
datasets, which are obtained from practical problems, and
make them publicly available. To our knowledge, they are
the first public datasets tailored for rare category mining
task. The datasets will be released at https://github.com/
Bayi-Hu/Interactive-Rare-Category-of-Interest-Mining.

To summarize, the key contributions are:

• Problem formulation. We propose to discover data ex-
amples that not only fulfill rare category compactness as-
sumption but also are interesting.

• Methods. We present a novel collaborative reconstruction
approach for RCE, and propose to model raw big data into

compact knowledge-rich abstractions for RCD.

• Datasets and codes. Our method sets the new state-of-
the-art performance for interactive rare category mining
and overall provides insights into the challenges and op-
portunities in this task. The implementation codes and
datasets will be released upon acceptance.

Related Work

In this section, we briefly review the related work regard-
ing the two subtasks of rare category mining, namely rare
category detection (RCD) and rare category mining (RCE).

Rare Category Detection

RCD is an emerging topic in security and data mining,
which targets to find a few data examples for a rare cate-
gory from an unlabeled dataset. It is firstly formulated by
(Pelleg and Moore 2004), where a rare category is charac-
terized as a tiny and compact cluster of similar data exam-
ples. Following this compactness assumption, (He and Car-
bonell 2007) and (Huang et al. 2013) propose to rank all
data examples according to user specified parameters, and
return top data examples to a user. The user provides labels
that indicate whether a data example belongs to an undiscov-
ered rare category. (He and Carbonell 2009) and (Liu et al.
2014) instead resort to semi-parametric density estimation
and wavelet transform respectively to rank all data exam-
ples. (Vatturi and Wong 2009) employs hierarchical mean
shift clustering to detect rare categories of different scales.
Recently, (Zhou et al. 2015) explores utilizing multi-view
features, while (Tu et al. 2018) introduces a prior-free RCD
method composed of active learning and semi-supervised
hierarchical clustering. (Lin et al. 2018) further presents a
user-guided RCD approach via visualization.

Rare Category Exploration RCE is a natural follow-
up action of RCD, i.e., after detecting a few interesting rare-
category data examples called seeds, we may want to find
more interesting data examples in the same rare category.
(He, Tong, and Carbonell 2010) transforms RCE into a con-
vex optimization problem and proposes to characterize the
entire rare category as the set of data examples within a hy-
perball. (Huang et al. 2014) converts RCE to a local com-
munity detection problem, which keeps absorbing external
data examples until there is no improvement in local com-
munity quality. (Wu, Xiong, and Chen 2010) advocates to
address the imbalanced category distribution by perform-
ing clustering within each large category, producing sub-
categories with relatively balanced sizes. (Zhou et al. 2018)
develops a self-paced framework that gradually learns the
rare category oriented representation and the rare category
exploration model. It is worth noting that there are research
efforts that jointly address the RCD and RCE tasks, e.g.,
(Hospedales, Gong, and Xiang 2013) tries to solve RCD
and RCE simultaneously with a generative and discrimina-
tive model.

Our Approach

In this section, we present the details of our proposed IRim
(Interactive Rare-category-of-interest mining) system. Be-
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Figure 2: (a) An overview of the proposed system, which consists of RCD and RCE. RCD queries are supported by multiple
high-level knowledge spaces, while RCE is conducted by collaborative reconstruction using both positive and negative data
examples. (b) A toy example to illustrate the stable areas.

fore that, we first introduce the basic concepts and assump-
tions in rare category mining.

Concepts and Assumptions

Presented with an imbalanced dataset X = {xi}ni=1, where
the category label for each data example xi ∈ R

d is lacked,
we are interested in interacting with the user to effectively
identify rare category data examples of her/his interest.

Assumptions. A commonly adopted assumption in rare
category mining is the compactness assumption (Zhou et
al. 2018; Vatturi and Wong 2009; Wang et al. 2016). That
is, data examples of a rare category are assumed to exhibit
intra-category similarity and inter-category dissimilarity.

Candidate score. Following the compactness assump-
tion, we rank all the unlabeled data examples by their po-
tentials to be from a rare category. Inspired by (He and Car-
bonell 2007; Lin et al. 2018), the rare category candidate
score ski for data example xi is defined as:

ski =
dk

avg{d1, · · · , dk−1} , (1)

where dj denotes the distance between xi and its jth nearest
neighbor, and avg represents average. The numerator and
denominator measure inter-category and intra-category dis-
tances, respectively. Score ski measures how likely xi is from
a compact rare category that consists of k similar data exam-
ples, higher ski corresponds to higher likelihood. It is worth
pointing out that parameter k specifies the scale (number of
data examples) of the rare category to be detected, a different
value of k leads to different scores for all data examples.

System Overview Given the above background knowl-
edge, now we are ready to present the IRim system. Fig. 2(a)
depicts the overall architecture of IRim, which consists of
two key components: 1) RCD basing on high-level knowl-
edge abstractions, and 2) RCE basing on collaborative re-
construction. Next, we elaborate the two key components.

Rare Category Detection (RCD) Model

RCD seeks to detect a few data examples of an undiscovered
rare category hidden in an unlabeled dataset.

Conventional RCD approaches generally operate in a trial
and error manner (He and Carbonell 2007; Tu et al. 2018):
1) A user selects particular values for the three parameters

in the query triple < k, slow, sup >, where k repre-
sents the expected number of data examples in the rare
category to be detected, slow and sup denote the lower
and upper bounds of the rare category candidate score
(Eq. 1).

2) This instantiated triple is then submitted as an RCD
query to the model, which computes and returns all the
data examples xi that have candidate scores ski satisfying
slow � ski � sup. The returned data examples are ranked
by their candidate scores ski .

3) The user investigates the returned data examples and pro-
vides category labels for them. If the user finds the re-
turned data examples insignificant, she will adjust the pa-
rameters in the triple and executes another RCD query to
obtain a different set of returned data examples.

This conventional framework suffers from severe limita-
tions: (1) A good parameter setting for the triple is the key
to gain insight into the data (Cao et al. 2015). However, in
this framework, the user has to consistently re-submit iso-
lated queries with different parameter settings in a trial-and-
error manner. This is extremely inefficient because of the
infinite number of possible parameter settings. (2) To an-
swer a query, candidate scores {ski }ni=1 of all data examples
are computed from scratch using Eq. 1, which requires time
consuming kNN (k nearest neighbor) calculations and thus
has an O(n2) time complexity. Consequently, the user has to
wait hours or days to get the result for a single RCD query.

To address these issues, we propose to divide the RCD
process into offline and online phases. In the offline phase,
we construct high-level knowledge base to avoid queries be-
ing executed from scratch, and guide the user to explore dif-
ferent parameter settings in a systematic way. The knowl-
edge base mainly includes parameter setting panorama,
ranking curve, and kNN relationship.

Parameter Setting Panorama Our insight is that the
three parameters in the query triple < k, slow, sup > actu-
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ally fall in a 2D space since slow and sup are in one dimen-
sion. Fig. 2(b) visualizes the 2D space, which is spanned
by parameter k in the x-axis and candidate score ski in the
y-axis. In the figure, kmin and kmax stand for the user-
specified lower and upper bounds for k value, respectively.
For a fixed k ∈ [kmin, kmax], its parameter space corre-
sponds to a column in Fig. 2(b). Let < ŝk1 , ŝ

k
2 , · · · , ŝkn > de-

note the descending ordered scores of all data examples un-
der a fixed k, and < x̂1, x̂2, · · · , x̂n > be their correspond-
ing data examples. As depicted in Fig. 2(b), the parameter
space of k are partitioned into n+ 1 areas (rectangles in the
figure) by the sorted scores {ŝki }ni=1, with the n + 1 areas
being (−∞, ŝkn), (ŝ

k
n, ŝkn−1), (ŝ

k
n−1, ŝkn−2), · · · , (ŝk2 , ŝk1),

and (ŝ1,+∞).
Interestingly, once we fix k and sup in the query triple, no

matter how we adjust the value of slow within any one of the
n + 1 areas, the returned result, i.e., all data examples that
have scores ski within range (slow, sup), remains the same.
This conclusion can be easily proved as below, while each
of the n+ 1 areas is called a stable area.

Proof. Given the descending ordered scores
< ŝk1 , ŝ

k
2 , · · · , ŝkn > for all data examples, without

loss of generality, sup can be assumed to fall in (ŝkm+1, ŝ
k
m),

i.e., ŝkm+1 < sup < skm. We fix k and sup, and adjust slow
within an area (ŝkj+1, ŝ

k
j ). For ∀slow ∈ (ŝkj+1, ŝ

k
j ), condi-

tions ŝkj+1 < slow and slow < ŝkj hold, so the scores that
fall in range [slow, sup] are {ŝj , ŝj−1, ŝj−2, · · · , ŝm+1} for
∀slow ∈ (ŝkj+1, ŝ

k
j ). As a result, the returned data examples

for the query triple < k, slow, sup > remain the same as
{x̂j , x̂j−1, · · · , x̂m+1} for ∀slow ∈ (ŝkj+1, ŝkj ). In other
words, once we fix k and sup in the query triple, no matter
how we adjust the value of slow within an area (ŝkj+1, ŝ

k
j ),

the returned result remains the same. It is worth pointing
out that variants of this proof apply if we assume sup fall on
the area boundaries, i.e., sup = ŝkm,m ∈ [1, n]. �

Similarly, once we fix k and slow in the query triple, no
matter how we adjust the value of sup within any one of the
n+ 1 areas, the returned data examples remain the same.

Therefore, given a specific k, its parameter space is par-
titioned into n + 1 stable areas. Within a stable area, no
matter how we adjust the value of slow or sup, the re-
turned data examples do not change. Traverse all possible
k ∈ [kmin, kmax], the entire parameter space is partitioned
into (n+1)∗(kmax−kmin+1) stable areas, which are shown
by the rectangles in Fig. 2(b). These stable areas form the
entire parameter setting panorama. It is worth pointing out
that: (1) despite the infinite number of possible parameter
settings for the query triple, the number of possible returned
results is limited to at most (n + 1) ∗ (kmax − kmin + 1),
and (2) the limited number of stable areas offers the user
an opportunity to avoid blindly trying all possible parame-
ter settings since different sup (or slow) values within a sta-
ble area yield the same result. To store the parameter set-
ting panorama, for each specific k, we only need to store n
sorted candidate scores and their corresponding data exam-
ple indices. In total, n∗(kmax−kmin+1) scores and indices
are stored.

Ranking Curve and kNN Relationship Besides the
parameter setting panorama, we further construct (1) kNN
abstraction, which stores the kmax nearest neighbors of each
data example, and (2) ranking abstraction, which maintains
the score ranking of each data example under each feasible
k value. These multi-view semantic spaces facilitate user’s
insights into the data and provide supporting evidence when
the user is labeling an ambiguous data example.

Online query. For an RCD query with parameter setting
< k, slow, sup >, we can easily answer it by consulting the
parameter setting panorama. More specifically, as shown in
Fig. 2(b), we adopt binary search to lookup the positions of
slow and sup in the ranked score list {ŝki }ni=1, and then in-
tercept the scores in the ranked list that fall in [slow, sup].
Since for each score ŝki , its corresponding data example in-
dex is already stored in the offline phase, we can easily re-
turn all data examples that have scores within [slow, sup].
Overall, the time complexity for answering an RCD query
in our model is O(log(n)), while it is O(n2) for existing
methods.

Rare Category Exploration (RCE) Model

RCE is a natural follow-up action of RCD, i.e., after detect-
ing a few interesting or valuable rare-category data exam-
ples, RCE further seeks to identify other similar and inter-
esting data examples in the same rare category. Formally,

RCE problem formulation. Given (i) few-shot positive
data examples {xp}|P |

p=1 that are labeled as interesting data
examples of a rare category C, and (ii) optionally few-shot
negative data examples {xg}|G|

g=1 that are labeled as uninter-
esting, RCE aims to identify other interesting data examples
of C by interacting with the user.

Positive data examples {xp}|P |
p=1 are often referred to as

seeds. The unique challenges of RCE (Zhou et al. 2018)
come from (1) the extremely limited number of labeled data
examples, (2) the fact that the support region of interesting
data examples may be non-separable from that of uninter-
esting ones in the feature space, and 3) the subjective na-
ture of user interest. Note that the positive and negative data
examples are obtained in the RCD process, where the user
provides labels for the returned data examples.

Conventional approaches (He, Tong, and Carbonell 2010;
Wu, Xiong, and Chen 2010) adopt supervised methods
such as imbalanced classification or convex optimization for
RCE, which heavily rely on a number of labeled data exam-
ples for training. When presented with only one or a few la-
beled data examples, their performance degenerates greatly.
To address this issue, (Huang et al. 2014) and (Liu et al.
2015) propose semi-supervised methods using local com-
munity detection and wavelet transform, respectively. These
methods, however, consider only the rare category compact-
ness characteristics and ignore the true interest of the user.

We propose to explicitly encode both compactness as-
sumption and user interest in RCE using collaborative re-
construction. In particular, for an unlabeled data example xi,
we collaboratively reconstruct xi by using either positive or
negative data examples. Then, the residuals r+i and r−i for
reconstructing xi using either positive or negative data ex-
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ample set can be computed, respectively. r+i measures the
distance between xi and the positive data example set, while
r−i measures the distance between xi and the negative data
example set. We rank all the unlabeled data examples xi by
ri = r−i − r+i , and ask the user to label the top data exam-
ple x, i.e., indicating x is positive (interesting) or negative
(uninteresting). Afterwards, we update the positive or nega-
tive data example set accordingly and re-rank the unlabeled
data examples for another round of interesting data example
mining.

We first use all positive data examples to reconstruct xi.
Formally, let P = {xp}|P |

p=1 denote the positive data exam-
ple sets. We model all the positive data examples as a hull
by hull(P ) = Pw, where w = [w1, w2, ..., w|P |]T is the
weight vector for all positive data examples and

∑
wi = 1.

We reconstruct an unlabeled data example xi using all posi-
tive data examples with the objective to minimize the recon-
struction residual as follows:

min
w,c

‖Pw − xic‖22 + α1‖w‖2 + α2‖c‖2
s.t.

∑
wj = 1,

(2)

where c is the coefficient (scalar) for xi, while α1‖w‖2, and
α2‖c‖2 are the regularization terms. Here l2-norm regular-
ization is used to achieve a closed-form solution. Constraint
wj = 1 is required by the hull definition (Zhu et al. 2014)
and can avoid the trivial solution wj = c = 0 (Liu et al.
2016). Element wj corresponds to the weight of the jth pos-
itive data example. By minimizing the distance between Pw
and xic, different wj will possess distinct values, thus each
positive data examples makes its individual contribution in
the final representation of xi.

Solution derivation for minimizing Eq. 2. To solve
Eq. 2, we transform Eq. 2 into its Lagrangian form:

f(w, c, λ) = ‖Pw − xjc‖22 + α1‖w‖2 + α2‖c‖2
+ λ(ew − 1)

(3)

where e is a row vector with all elements equal to 1. Let

M = [P , − xj ], z =

[
w
c

]
, U =

[
α1I 0
0 α2I

]
and

v = [e, 0]T , then Eq. (3) can be deformed into:

f(z, λ) = zT (MTM)z + zTUz + λ(vTz − 1) (4)

By setting the gradients w.r.t. z and λ to zero:
⎧⎪⎨
⎪⎩

∂f

∂z
= (MTM)z +Uz +

1

2
λv = 0

∂f

∂λ
= vTz − 1 = 0

(5)

we finally arrive at the closed form solution to Eq. 2:

z =
(MTM +U)

−1
v

vT (MTM +U)
−1

v
, λ = − 2

vT (MTM +U)
−1

v
(6)
�

After solving Eq. 2, we can obtain the optimal weight
vector w∗ and optimal coefficient c∗. We define the dis-
tance between xi and positive data example set P as r+i =
‖Pw∗ − xic

∗‖22.
Similarly, we then use all negative data examples to recon-

struct xi. Let r−i be the distance between xi and negative set
G, namely r−i = ‖Gω∗ − xiς

∗‖22. Note ω∗ and ς∗ are the
optimal weight vectors obtained when reconstructing xi us-
ing G. We rank unlabeled data examples {xi}ni=1 according
to {r−i − r+i }ni=1 and request the user to label the top data
example.

Discussions. We would like to point out that we do not ac-
tually reconstruct all the unlabeled data examples. Instead,
we only reconstruct the unlabeled data examples that have
similar candidate scores as the seeds under k = k0, where
k0 is the parameter value for k under which the seeds are
detected. This is because data examples in the same rare cat-
egory are within a same compact cluster, and thus should
have similar candidate scores.

Experiments
In this section, we evaluate the proposed methods on five
diverse and complex datasets. The datasets were obtained
from real-world applications in different fields and involve
different data types including images, audio, and numerical
data. We seek to answer the following research questions.
• Q1: How is the efficiency of the proposed RCD and RCE

models comparing to state-of-the-art methods? Can they
achieve second-level response time on large datasets to
support real-time user interactions?

• Q2: Can the proposed RCE model effectively capture user
interest? How is its accuracy performance comparing to
existing RCE approaches?

• Q3: Are the high-level knowledge spaces useful in reduc-
ing the number of user queries in RCD? Can they facilitate
systematic and deeper insights into the data?
Next, we first present the experimental settings, followed

by answering the above research questions one by one.

Experimental Settings

Datasets. Since there is a lack of benchmark datasets that
are specially tailored for rare category mining task, we con-
struct two datasets, Game and Bird, which come from two
practical problems and contain images and audio data, re-
spectively. Game consists of 331, 853 images from elec-
tronic games. The images are sampled from videos on the
web1 and have no category labels. Conventionally, in or-
der to discover interesting rare game images, the user has
to carefully sift through all the images, which is tedious
and time consuming (Changpinyo, Chao, and Sha 2017;
Ma and Zhang 2019; Huang, Long, and Wang 2019). Rare
category mining methods enable the user to fast identify in-
teresting rare game images out from the massive dataset.
We employed the ResNet-50 model (He et al. 2015) pre-
trained on ImageNet to extract a 2,048 dimensional fea-
ture for each image. Bird dataset consists of 6,495 audio

1Mainly from https://www.twitch.tv/directory
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recordings of various birds. We extracted acoustic features
from the audio utilizing the CNN network proposed in (Kahl
et al. 2017). Besides Game and Bird datasets, three public
datasets are also engaged in the experiments, namely Kdd-
cup (on network intrusion), Abalone (on physical measure-
ments of abalones), and Shuttle (on space shuttle), which
are widely used in existing works (He and Carbonell 2007;
Vatturi and Wong 2009; Zhou et al. 2018; Huang et al. 2013).
The properties of the 5 datasets are summarized in Table 1.

Table 1: Properties of different datasets.

Dataset Dimensions Number of Data Exmaples
Abalone 7 4,177

Bird 512 6,495
Shuttle 9 58,000
Game 2,048 331,853

Kddcup 41 494,021

Parameter Settings. For RCD, the lower bound kmin of
the k values is constantly set to 2 across different datasets,
while the upper bound kmax is set to 200, 500, 200, 1,000,
and 1,000 respectivley for Abalone, Bird, Shuttle, Kddcup,
and Game datasets. All experiments were conducted on a
server equipped with 40 Intel Xeon E5-2640V4 vCPUs and
96 GB RAM.
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Figure 3: Accuracy comparison between seven distinct RCE
methods on ten different rare categories. I and II denote the
first and second rare categories in the dataset.

Study of Response Time (Q1)

First, we benchmark our approach against state-of-the-art
methods on all the five datasets, with a concentration on the
response time required for a user interaction.

Response time in RCD. In RCD, the user interacts with
the model by specifying a query triple and requesting for
ranked rare category candidates that match this specification.
Table 2 illustrates the average response time of five state-of-
the-art methods for a single RCD query, where ’-’ denotes
longer than 24 hours (86,400 seconds). The five methods
presented are Interleave (Pelleg and Moore 2004), NNDM
(He and Carbonell 2007), HMS (Vatturi and Wong 2009),
Clover (Huang et al. 2013), and our IRim. (1) From the table,
our first observation is that as the dataset size n increases,
the response time of each method increases. (2) The second
observation is that our method consistently and significantly
outperform existing methods. In particular, for the Kddcup
dataset with 494, 021 data examples, our method is shown

to be 100 times faster than other methods. We conjecture the
reasons behind these observations are: the time complexity
for answering a user query in our RCD model is O(log(n))
while it is usually O(n2) for existing methods. We would
like to highlight that 1s response time is achieved by our
method even for large dataset with more than 0.49 million
data examples.

Table 2: Response time (in seconds) for an RCD query.

Methods Abalone Bird Shuttle Game Kddcup
Interleave (Pelleg and Moore 2004) 0.324 4.341 2.420 410.663 76.960
NNDM (He and Carbonell 2007) 0.175 0.536 393.894 - -
HMS (Vatturi and Wong 2009) 4.689 5.447 5406.318 - -

Clover (Huang et al. 2013) 0.498 2.696 1684.139 - -
our IRim 0.047 0.081 0.133 0.568 0.762

Response time in RCE. We further evaluate the effi-
ciency of different RCE methods. The time (in seconds) for
one round data example interestingness ranking in RCE is
shown in Table 3. A total of seven methods are studied, in-
cluding FRANK (Huang et al. 2013), RACH (He, Tong, and
Carbonell 2010), HMS (Vatturi and Wong 2009), R-HSKMS
(Tu et al. 2018), NN (nearest neighbor model), CC (clus-
ter centroid model), and our IRim approach. The NN model
ranks the unlabeled data example by their smallest distance
to a positive data example, while CC model ranks the unla-
beled data example by their smallest distance to the centroid
of all seeds (i.e., positive data examples). For fair compar-
ison, each time the seven methods were presented with the
same set of seeds. For each RCE method, we tried differ-
ent seed sets and report the averaged response time. From
Table 3, we can observe that IRim significantly outperforms
existing methods across different datasets. We can also see
that besides our model NN performs the best.

Table 3: Efficiency comparison of different RCE methods.
The time unit is seconds. ’-’ denotes longer than 24 hours.

Our IRim CC NN FRANK RACH HMS R-HSKMS
Abalone 0.271 0.475 0.398 0.284 1.848 0.553 0.597

Bird 0.265 0.571 0.545 0.294 2.32 0.629 0.753
Shuttle 0.284 1.088 1.073 6.427 91.549 1.078 1.104
Game 0.577 7.452 6.182 165.9 - 6.503 8.107

Kddcup 0.498 3.912 3.769 148.47 - 2.376 2.689

Accuracy Comparison with Existing RCE
Approaches (Q2)

In this subsection, we compare our RCE approach against
state-of-the-art methods employing the accuracy metric
(Zhou et al. 2018; He and Carbonell 2007; Huang et al.
2014), namely the ratio of true interesting data examples to
all sampled data examples.

In Fig. 3, the performance of seven different methods
are presented in terms of accuracy. In the figure, datasets
Abalone, Bird, Shuttle, Kddcup, and Game are abbreviated
as A, B, S, K, and G, respectively. For each of the five
datasets, we selected two rare categories for RCE. Thus, in
total ten different rare categories are engaged in the evalua-
tion. The two rare categories of each dataset are respectively
denoted as I and II . Empirical evidences in Fig. 3 show
that IRim consistently and significantly outperforms existing
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Figure 4: Analysis on the labeling strategies of our RCE method and existing methods.
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Figure 5: Query number comparison on five different datasets. The first row plotted in red represents the number of queries of
IRim. The second to fifth rows report the results for Clover, NNDM, HMS, and Interleave respectively.

methods on different datasets. More specifically, comparing
to the state-of-the-art method, IRim achieves a 11.75% im-
provement in accuracy. For RACH, since it exceeds the time
threshold (24 hours) on Kddcup and Game, its results on the
two datasets are omitted.

We attribute the good performance of our method to its
ability to actively learn from both positive and negative
neighboring contexts. Fig. 4 visualizes an example scenario
where the interesting data examples is non-separable from
uninteresting ones in the feature space. In Fig. 4 (a), the data
examples plotted in orange are interesting, while data exam-
ples plotted in blue are uninteresting. Red data example A is
a given seed data example. As shown by the data examples
with crosses in Fig. 4 (b), starting from A existing meth-
ods, such as CC, NN, and FRANK, blindly and consistently
sample data examples in the left since they only consider
the compactness assumption and ignore negative feedbacks.
This greatly reduces their accuracy. In contrast, as shown in
Fig. 4 (c), where the plus and minus signs represent positive
and negative labels respectively, our method will adjust to
sample data examples in the right side of A after few neg-
ative feedbacks in the left side. For HMS and R-HSKMS,
their poor performance mainly dues to the fact that they are
easily affected by noisy data examples and thus often drift
to invalid centroids. For RACH, a number of labeled data
examples are required, when the labeled data examples are
extremely limited, its performance degenerates.

Number of Queries Comparison with Existing
RCD Approaches (Q3)

In this subsection, we compare our RCD model against ex-
isting methods with respect to number of queries.

Labeling is tedious and time-consuming, a better RCD
model should require less queries to detect an interesting

rare category data example. Therefore, we evaluate our RCD
model on the number of queries required to detect a seed.
Fig. 5 demonstrate the results for detecting 20 rare cate-
gories in Abalone dataset, 30 in Bird, 7 in Shuttle, 12 in
KDDcup, and 20 in Game, respectively. For all the meth-
ods, the average query number over 17 participants are re-
ported. For NNDM, HMS, and CLOVER, since they exceed
the time threshold (24 hours) for a single query on Game
and Kddcup, their results are omitted for the two datasets. In
Fig. 5(a), the first row plotted in red represents the number
of queries of IRim for detecting the first seed of each rare
category in Abalone dataset. The second to fifth rows report
the results for Clover, NNDM, HMS, and Interleave respec-
tively. Query numbers larger than 100 are truncated to 100.
Figs. 5(b)–(e) follow the same convention. Empirical evi-
dences show that our method consistently requires much less
queries than other methods. We attribute this mainly to the
stable areas constructed in the parameter setting panorama.
Different from existing methods, for the infinite parameter
settings of a stable area, we only need to try one of them.
Other semantic knowledge spaces such as kNN relation-
ship further facilitate user’s insights and reduce number of
queries.

Conclusions

We have proposed a novel rare-category-of-interest mining
system termed IRim, which is able to interact with the user in
real time and actively learn true interest of the user. For RCE,
a collaborative-reconstruction based approach has been pro-
posed to explicitly incorporate positive and negative con-
texts for user interest modeling. For RCD, a logarithmic
time complexity method has been introduced. Extensive ex-
periments demonstrate that IRim addresses user interactions
within 1 second, and significantly outperforms state-of-the-
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art competitors. For future work, we will investigate incor-
porating expert knowledge graph in rare category mining.
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