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Abstract

We study incentivized exploration for the multi-armed bandit
(MAB) problem where the players receive compensation for
exploring arms other than the greedy choice and may provide
biased feedback on reward. We seek to understand the im-
pact of this drifted reward feedback by analyzing the perfor-
mance of three instantiations of the incentivized MAB algo-
rithm: UCB, ε-Greedy, and Thompson Sampling. Our results
show that they all achieve O(log T ) regret and compensa-
tion under the drifted reward, and are therefore effective in
incentivizing exploration. Numerical examples are provided
to complement the theoretical analysis.

Introduction

Multi-armed bandit (MAB) problem is a classical model
for sequential decision making under uncertainty, and finds
applications in many real world systems such as recom-
mender systems (Li et al. 2010; Bouneffouf, Bouzeghoub,
and Gançarski 2012), search engine systems (Radlinski,
Kleinberg, and Joachims 2008; Yue and Joachims 2009)
and cognitive radio networks (Gai, Krishnamachari, and Jain
2010), to just name a few. In the traditional MAB model, the
decision maker (the principal) who selects the arm to pull
and the action performers (the players) who actually pull the
arm are assumed to be the same entity. This is, however,
not true for several important real world applications where
the principal and players are different entities with different
interests. Take the Amazon product rating as an example:
Amazon (the principal) would like the customers (the play-
ers) to buy and try different products (arms) of certain type
in order to identify the best product (i.e., exploration), while
the customers are heavily influenced by the current ratings
on the products and behave myopically, i.e., select the prod-
uct that currently has the highest rating (i.e., exploitation).
It is well known that such exploitation-only behavior can
be far from the optimal (Bubeck and Cesa-Bianchi 2012;
Sutton and Barto 2018). In the traditional MAB setting, the
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principal, who is also the player, strives to find the optimal
tradeoff between exploration and exploitation and execute
it accordingly. When the principal and players are different
entities, misaligned interests between them need to be rec-
onciled in order to balance exploration and exploitation in
an optimal manner.

Incentivized learning has been proposed for the MAB
problem to reconcile different interests between the princi-
pal and the players (Frazier et al. 2014; Mansour, Slivkins,
and Syrgkanis 2015; Wang and Huang 2018; Immorlica et
al. 2019). In order to incentivize exploration, the principal
provides certain compensation to the player so that s/he will
pull the arm other than the greedy choice that currently has
the best empirical reward. The goal of the principal is to
maximize the cumulative reward while minimizing the to-
tal compensation to the players.

However, existing incentivized MAB models (Han,
Kempe, and Qiang 2015; Wang and Huang 2018; Immor-
lica et al. 2018; Liu and Ho 2018; Hirnschall et al. 2018)
assume that the players provide unbiased stochastic feed-
back on reward1even after they receive certain incentive
from the principal. This assumption does not always hold in
the real world scenarios: work based on industrial level ex-
periments in (Martensen, Gronholdt, and Kristensen 2000;
Razak, Nirwanto, and Triatmanto 2016; Ehsani and Ehsani
2015) shows that the customers are inclined to give higher
evaluation (i.e., increased reward) with incentive such as dis-
count and coupon. The compensation could even be the pri-
mary driver of customer satisfaction (Martensen, Gronholdt,
and Kristensen 2000; Lee and Lin 2005). This drift in reward
feedback may cause negative impact on the exploration and
exploitation tradeoff, e.g., a suboptimal arm is mistaken as
the optimal one because of the incentives and the players
will keep pulling it even after the compensation is removed.
This has been ignored in previous research.

In this paper, we aim to investigate the impact of drifted
reward feedback in the incentivized MAB problem. Specif-
ically, we consider a general incentivized exploration al-
gorithm where the player receives a compensation that is
the difference in reward between the principal’s choice and
the greedy choice, and provides biased feedback that is the

1We will use reward and feedback interchangeably in this paper
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sum of the true reward of an arm and a drift term that is
a non-decreasing function of the compensation received for
pulling this arm. We seek to answer the important question
if the compensation scheme is effective in incentivizing ex-
ploration under reward drift from two intertwining aspects:
(1) if the algorithm is robust to drifted reward so that the
sequential decisions based on biased feedback still enjoy a
small regret, and (2) if the proposed incentive mechanism
is cost-efficient to the principal. We analyze the regret and
compensation for three instantiations of the algorithm where
the principal employs UCB, ε-Greedy, and Thompson Sam-
pling, respectively. Our analytical results, complemented by
numerical experiments, show that with drifted reward the
proposed compensation scheme achieves both O(log T ) re-
gret and O(log T ) compensation, and is thus effective in in-
centivizing exploration.

Related Work

Incentivized learning has attracted a lot of attention since
the work (Frazier et al. 2014). In (Frazier et al. 2014), the
authors proposed a Bayesian incentivized model with dis-
counted regret and compensation, and characterized the re-
lationship between the reward, compensation, and discount
factor. In (Mansour, Slivkins, and Syrgkanis 2015), the au-
thors studied the non-discount case and proposed an algo-
rithm that has O(

√
T ) regret. In (Wang and Huang 2018),

the authors analyzed the non-Bayesian and non-discount re-
ward case and showed O(log T ) regret and compensation
for incentivized exploration based on simplified MAB al-
gorithms. But all the models and analysis are under the
assumption that the players’ feedbacks are unbiased under
compensation. In contrast, we consider biased feedback un-
der compensation, and show that the incentivized explo-
ration with reward drift can still achieve O(log T ) regret and
compensation.

Related work also includes those in robustness of
MAB under adversarial attack. In (Lykouris, Mirrokni, and
Paes Leme 2018), the authors proposed a multi-layer ac-
tive arm elimination race algorithm for stochastic bandits
with adversarial corruptions whose performance degrades
linearly to the amount of corruptions. In (Feng, Parkes, and
Xu 2019), the authors studied strategic behavior of rational
arms and show that UCB, ε-Greedy, and Thompson sam-
pling achieve O(max{B, log T}) regret bound under any
strategy of the strategic arms, where B is the total budget
across arms. On the other hand, in (Jun et al. 2018), the au-
thors constructed attacks by decreasing the reward of non-
target arms, and showed that their algorithm can trick UCB
and ε-Greedy to pull the optimal arm only o(T ) times un-
der an O(log T ) attack budget. All the modeled attacks are
from exogenous sources, e.g., malicious users, while in our
paper, the reward drift can have an interpretation as arising
from attacks but generated endogenously by the incentivized
exploration algorithm itself.

Model, Notation, and Algorithm

Consider a variant of the multi-armed bandit problem
where a principal has K arms, denoted by the set [K] =

{1, · · · ,K}. The reward of each arm i ∈ [K] follows
a distribution with support [0, 1] and mean μi that is un-
known. Without loss of generality, we assume that arm 1
is the unique optimum with the maximum mean. Denote
by Δi = μ1 − μi the reward gap between arm 1 and arm
i(i �= 1), and let Δ = mini Δi. At each time t = 1, · · · , T ,
a new player will pull one arm It ∈ [K] and receive a re-
ward rt that will fed back to the principal and other play-
ers. Let ni(t) =

∑t−1
τ=1 I(Iτ = i) denote the number of

times that arm i has been pulled up to time t and μ̂i(t) =
1

ni(t)

∑t−1
τ=1 rτ I(Iτ = i) the corresponding empirical aver-

age reward, where the indicator function I(A) = 1 if A is
true and I(A) = 0 otherwise.

In real world applications, the principal and players may
exhibit different behaviors. The principal would like to see
the players select the best arm and maximize the cumulative
reward. On the other hand, the players may be heavily influ-
enced by other players’ feedback, e.g., the reward history of
the arms, and behave myopically, i.e., pull the arm that cur-
rently achieves the highest empirical reward (exploitation).
It is well known that such a myopic exploitation-only be-
havior can be far from the optimum due to the lack of ex-
ploration (Sutton and Barto 2018). The principal cannot pull
the arm directly, but can provide certain compensation to in-
centivize the players to pull arms with suboptimal empirical
reward (exploration). However, this compensation may af-
fect the players’ feedback (Martensen, Gronholdt, and Kris-
tensen 2000), which results in a biased reward history and
disturbs both the principal and players’ decisions. Specifi-
cally, we assume that at time t there is a drift bt in feedback
that is caused by compensation x, captured by an unknown
function bt = ft(x) with the following properties.
Assumption 1. The reward drift function ft(x) is non-
decreasing with ft(0) = 0, and is Lipschitz continuous, i.e.,
for any x and y, there exists a constant lt such that

|ft(x)− ft(y)| ≤ lt|x− y|. (1)
The biased feedback rt+bt is then collected, and the prin-

cipal and players know only the sum and cannot distinguish
each part.

Let l = maxt lt for later use. Denote by Ei
t = 1 the event

that arm i is pulled with compensation at time t and Ei
t = 0

otherwise. Denote Bi(t) =
∑t−1

τ=1 bτ I(E
i
τ = 1) be the cu-

mulative drift of arm i up to time t and μ̄i(t) = μ̂i(t)+
Bi(t)
ni(t)

be the corresponding average drifted reward. The general
incentive mechanism and algorithm are described in Algo-
rithm 1.

We characterize the performance of the incentivized ex-
ploration algorithm in terms of two metrics – the expected
cumulative regret that quantifies the total loss because of not
pulling the best arm, and the cumulative compensation that
the principal pays for incentivizing exploration:

E(R(T )) = E(
T∑

t=1

(μ1 − μIt)) =

N∑
i=2

ΔiE(ni(T + 1)),

E(C(T )) = E(
T∑

t=1

(μ̄It − μ̄Gt
)).
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Algorithm 1: Incentivized MAB under Reward Drift
1 for t = 1, 2, 3, · · · , T do
2 The principal selects arm It according to certain

algorithm;
3 The player will choose Gt = argmax μ̄i(t) w/o

compensation;
4 if Gt = It then
5 The principal does not provide compensation;
6 The player pulls arm It and receives reward rt;
7 else
8 The principal provides compensation

μ̄Gt
− μ̄It ;

9 The player pulls arm It and receives reward
rt + bt, with bt = ft(μ̄Gt

− μ̄It).
10 end
11 Update average reward μ̄It

12 end

Notice that in Algorithm 1 the compensation and pulled arm
are decided based on biased feedback which may not be an
accurate reflection of an arm’s reward, while the regret is in
terms of the “true” reward that is unknown. We seek to an-
swer the important question if the proposed compensation
scheme is effective in incentivizing exploration from two in-
tertwining aspects: (1) if the algorithm is robust to drifted
reward so that the sequential decisions based on biased feed-
back still enjoy a sublinear regret, and (2) if the proposed
incentive mechanism is cost-efficient to the principal. There
are different arm selection strategies that the principal can
employ, i.e., Step 2 of Algorithm 1. In the next section, in or-
der to answer the above question, we analyze the cumulative
regret and compensation under several typical multi-armed
bandit algorithms such as UCB, ε-Greedy, and Thompson
Sampling.

Regret and Compensation Analysis

In this section, we consider three instantiations of Algorithm
1 when the principal employs UCB, ε-Greedy, and Thomp-
son Sampling at Step 2, respectively. As will be seen later,
our analysis shows that the proposed compensation scheme
is effective in incentivizing exploration under reward drift.

UCB policy

Consider first the case where the principal applies the UCB
policy, i.e., uses the sum of average biased reward and upper

confidence bound μ̄i(t) +
√

2 log t
ni(t)

as the criterion to choose
the arm to explore, as shown in Algorithm 2. The main result
is summarized in Theorem 1.

Theorem 1. For the incentivized UCB algorithm, the ex-
pected regret R(T ) and compensation C(T ) are bounded as
follows:

E(R(T )) ≤
N∑
i=2

8(l+1)2 log T

Δi
+
Δi(K−1)π2

3
, (2)

Algorithm 2: Incentivized UCB under Reward Drift
1 for t = 1, 2, 3, · · · , T do
2 The principal selects arm

It = arg maxi μ̄i(t) +
√

2 log t
ni(t)

;

3 Steps 3-11 of Algorithm 1.
4 end

E(C(T )) ≤
N∑
i=2

16(l+1) log T

Δi
+
16(l+1) log T

Δ

+2πK

√
2 log T

3
. (3)

Proof. Notice that compensation is incurred under the con-
ditions:

μ̄It(t) ≤ μ̄Gt
(t),

μ̄It(t) +

√
2 log t

nIt(t)
≥ μ̄Gt

(t) +

√
2 log t

nGt
(t)

.

By the second condition, the compensation

μ̄Gt
(t)− μ̄It(t) ≤

√
2 log t

nIt(t)
, (4)

and further by Assumption 1, the drift bt ≤ lt
√

2 log t
nIt (t)

. The

total drift Bi(t) of arm i can be bounded as follows (due
to space limit, the details of inequality (5) are provided in
supplementary material):

Bi(t) =

t∑
τ=1

bτ I(E
i
τ = 1) ≤ 2l

√
2ni(t) log t. (5)

For each sub-optimal arm i �= 1, if this arm is pulled by the
player at t (with or without compensation), it must hold that

μ̂i(t) +
Bi(t)

ni(t)
+

√
2 log t

ni(t)
≥ μ̂1(t) +

B1(t)

n1(t)
+

√
2 log t

n1(t)
.

So, the probability that arm i is pulled by the player at time
t can be bounded by the following:

Pr(It = i)

≤Pr

(
μ̂i(t)+

Bi(t)

ni(t)
+

√
2 log t

ni(t)
≥ μ̂1(t)+

B1(t)

n1(t)
+

√
2 log t

n1(t)

)

≤Pr

(
μ̂i(t)+(2l+1)

√
2 log t

ni(t)
≥ μ̂1(t)+

B1(t)

n1(t)
+

√
2 log t

n1(t)

)

≤Pr

(
μ̂i(t)+(2l+1)

√
2 log t

ni(t)
≥ μ̂1(t)+

√
2 log t

n1(t)

)
,

where the second inequality is due to the bound (5) on cumu-
lative drift. Similar to the analysis in (Auer, Cesa-Bianchi,
and Fischer 2002), notice that if the event μ̂i(t) + (2l +
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1)
√

2 log t
ni(t)

≥ μ̂1(t)+
√

2 log t
n1(t)

happens, one of the following
three events must happen:

Xi(t) : μ̂i(t) ≥ μi +

√
2 log t

ni(t)
,

Y1(t) : μ̂1(t) ≤ μ1 −
√

2 log t

n1(t)
,

Zi(t) : 2(l + 1)

√
2 log t

ni(t)
≥ Δi.

Therefore, Pr(It = i) ≤ Pr(Xi(t)) + Pr(Y1(t)) +
Pr(Zi(t)). By the Chernoff-Hoeffding’s inequality (Hoeffd-
ing 1994),

Pr(Xi(t)) ≤ 1

t2
, Pr(Y1(t)) ≤ 1

t2
,

and their sum from t = 1 to T is bounded by π2

3 . If

ni(t) ≥ 8(l+1)2 log T
Δ2

i
, the event Zi(t) will not happen,

and thus
∑T

t=1 Pr(Zi(t)) ≤ 8(l+1)2 log T
Δ2

i
. We can bound

E[ni(T )] as follows:

E(ni(T )) =

T∑
t=1

Pr(It = i)

≤
T∑

t=1

(Pr(Xi(t)) + Pr(Y1(t)) + Pr(Zi(t)))

≤ 8(l + 1)2 log T

Δ2
i

+
π2

3
.

So, the expected regret

E(R(T )) ≤
N∑
i=2

8(l + 1)2 log T

Δi
+

Δi(K − 1)π2

3
.

The calculation of compensation is a bit different from
that of regret since compensation can be incurred even if the
best arm is pulled. The player will be compensated to pull
arm 1 only when

μ̄1(t) ≤ μ̄i(t),

μ̄1(t) +

√
2 log t

n1(t)
≥ μ̄i(t) +

√
2 log t

ni(t)
,

which requires n1(t) ≤ ni(t). So, the average number of
times when the players are compensated to pull arm 1 is
smaller than maxi �=1 E(ni(T )). Denote by Ci(t) the total
compensation the players have received to pull arm i up to
time t. Recall the bound (4), we can bound the total com-
pensation as follows:

E(C(T )) = E

(
C1(T ) +

K∑
i=2

Ci(T )

)

≤
maxi �=1 E(ni(T ))∑

m=1

√
2 log T

m
+

K∑
i=2

E(ni(T ))∑
m=1

√
2 log T

m

≤ 16(l + 1) log T

Δ
+ 2Kπ

√
2 log T

3

+
K∑
i=2

16(l + 1) log T

Δi
.

ε-Greedy policy

We now consider the case where the principal uses the ε-
Greedy policy as shown in Algorithm 3, with the choice of
exploration probability εt from that shows diminishing εt
achieves better performance. Algorithm 3 involves a random
exploration phase (Step 3), and its analysis is more involved.
Recall that the “true” reward has a normalized support of
[0, 1], we therefore assume that the drifted reward rt + bt is
projected onto [0, 1]. This assumption is also consistent with
real world applications such as Amazon and Yelp as their
rating systems usually have lower and upper bounds.

Algorithm 3: Incentivized ε-Greedy under Reward Drift
1 for t = 1, 2, 3, · · · , T do

2 Let εt = min(1, cK
t );

3 With probability 1− εt, the principal chooses arm
It = arg maxi μ̄i(t); with probability εt, the
principal uniformly selects an arm It ∈ [K];

4 Steps 3-11 of Algorithm 1 with [rt + bt]
1
0 where [·]10

denotes the projection onto [0, 1]
5 end

Theorem 2. For the incentivized ε-Greedy algorithm with
εt = min{1, cK

t } and c ≥ 36
Δ , with a high probability the

expected regret R(T ) and compensation C(T ) are bounded
as follows:

E(R(T )) ≤
K∑
i=2

cSi(l)(log T + 1) + c(K−1)(K +
π2

6
),

(6)

E(C(T )) ≤ max(l, 1)(c+
√
3c)K log T, (7)

where Si(l) = 1.5 + 3(1 +
√

3/c)l + 18c/Δ2
i .

Proof. Since the biased feedback lies in the interval [0, 1],
the drift bt ≤ lt(μ̄Gt

−μ̄It) ≤ lt. A compensation for pulling
arm i will be incurred only when the arm is chosen by the
principal to explore. By Lemma 2 (Agarwal et al. 2014) in
supplementary material, the number of explorations that arm
i can receive up to time t is bounded by

mi(t) ≤ c(log t+ 1) +

√
3c log

K

δ
(log t+ 1) (8)

with a probability of at least 1 − δ. When t is large enough
such that log t ≥ log K

δ − 1, the right hand side of (8) is
upper bounded by

mi(t) = (c+
√
3c)(log t+ 1),
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and the total drift Bi(t) on arm i up to time t is upper
bounded by lmi(t) with a probability of at least 1− δ.

Let L = 3lmi(T )
Δi

that is chosen to facilitate the analysis.
We can bound E(ni(T )) as follows:

E(ni(T ))

≤
T∑

t=1

εt
K

+ E

(
T∑

t=1

(1− εt)I(It = i, ni(t) ≤ L)

)

+ E

(
T∑

t=1

(1− εt)I(It = i, ni(t) ≥ L)

)

≤
T∑

t=1

εt
K

+ L

︸ ︷︷ ︸
A

+E

(
T∑

t=1

I(It= i, ni(t)≥L)

)

≤A+

T∑
t=1

Pr

(
μ̂i(t)+

Bi(t)

ni(t)
≥ μ̂1(t)+

B1(t)

n1(t)
,ni(t)≥L

)

≤A+

T∑
t=1

Pr

(
μ̂i(t) +

Δi

3
≥ μ̂1(t)

)

≤A+

T∑
t=1

Pr

(
μ̂i(t)≥μi+

Δi

3

)
+

T∑
t=1

Pr

(
μ̂1(t)≤μ1−Δi

3

)
,

where the second last inequality is due to

Bi(t)

ni(t)
≤ gmi(t)

3gmi(T )/Δi
≤ Δi

3
,

and the last inequality uses the fact that μi = μ1 − Δi. By
Lemma 3 in supplementary material, when c ≥ 36

Δi
, we have

T∑
t=1

Pr

(
μ̂i(t)≥μi+

Δi

3

)
+

T∑
t=1

Pr

(
μ̂1(t)≤μ1−Δi

3

)

≤ (
c

2
+

18

Δ2
i

) log T + c(K +
π2

Δ2
i

) +
18

Δ2
i

.

We can also show that A≤c(1+3g(1+
√

3/c))(log T+1), and
further obtain the bound (6) on expected regret after some
straightforward mathematical manipulations.

For the compensation analysis, notice again that the
drifted reward is in [0, 1], so the compensation at each time
is less than 1 and the total compensation the players receive
to pull arm i is bounded by the bound mi on the number of
explorations it receives. To be consistent with the case with
no drift, we write the bound on expected compensation as

E(C(T )) ≤ max(l, 1)(c+
√
3c)K(log T + 1).

Thompson Sampling

Consider now the case where the principal uses Thompson
Sampling as shown in Algorithm 4. Thompson Sampling
starts with a (prior) distribution on each arm’s reward, and
updates the distribution after the arm being pulled. At each

time, the principal samples the reward of each arm according
to its posterior distribution, and then selects the arm with the
highest sample reward. In this paper, we consider Gaussian
prior adopted from (Agrawal and Goyal 2013) since the of-
ten used Beta priors are usually for binary reward feedback.

Before we analyze the performance of Algorithm 4,
we first introduce some definitions and notations that are
adopted from (Agrawal and Goyal 2017; 2013).

Algorithm 4: Incentivized Thompson Sampling under
Reward Drift

1 for t = 1, 2, 3, · · · , T do
2 The principal independently samples θi(t) from

distribution N (μ̄i(t),
1

ni(t)+1 ) and selects arm
It = arg maxi θi(t);

3 Steps 3-11 of Algorithm 1.
4 end

Definition 1. For each arm i, we denote two thresholds xi

and yi such that μi ≤ xi ≤ yi ≤ μ1. Eμ
i (t) denotes the

event μ̄i(t) ≤ xi and Eθ
i (t) the event θi(t) ≤ yi. Also, let

pi,t = Pr(θ1(t) ≥ yi|Ft−1) where Ft−1 is the history of
plays until time t.

Definition 2. For two arms i and j, if μ̄i(t) �= μ̄j(t), there
exists a constant Δij such that |μ̄i(t) − μ̄j(t)| ≥ Δij . Let
Δ = minΔij .

We have the following result on the frequency mi(T )
of compensation the players receive for pulling each arm i
when considering the concentration inequality of Gaussian
distribution (Abramowitz 1965).
Lemma 1. The expected frequency E(mi(T )) of compensa-
tion for pulling arm i is bounded by 2 log T

Δ2 .

Proof. The proof is provided in the supplemental material.

Our analysis of regret generalizes that in (Agrawal and
Goyal 2017; Feng, Parkes, and Xu 2019) to incorporate the
effect of drift caused by compensation.
Theorem 3. For the incentivized Thompson Sampling al-
gorithm, the expected regret R(T ) and compensation C(T )
can be bounded as follows:

E(R(T )) ≤
K∑
i=2

((4e11 + 21)Pi(T ) +
5

Δ2
i

+Qi(T ) +
π2

6
),

(9)

E(C(T )) ≤ 2max(l, 1)K
log T

Δ2 , (10)

where Pi(T ) =
18 log(TΔ2

i )

Δ2
i

and Qi(T ) =

� 9
2Δ2

i

(
(1 + 4Δil

3Δ2 ) log T +
√

1 + 8Δil log T
3Δ2

)
�.

Proof. The analysis of compensation is straightforward,
similar to that for the incentivized ε-Greedy algorithm.
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By Lemma 1, the expected compensation E(C(T )) ≤
2max(l, 1)K log T

Δ2 .
Consider now the regret for choosing suboptimal arm

i(i �= 1). We can bound E(ni(T )) as follows:

E(ni(T ))

≤
T∑

t=1

Pr(It = i, Eμ
i (t), E

θ
i (t))

+

T∑
t=1

Pr(It = i, Eμ
i (t), E

θ
i (t)) +

T∑
t=1

Pr(It = i, Eμ
i (t))

The first two terms can be bounded by the results of
(Agrawal and Goyal 2017), see the detail in supplemental
material, since their analysis will not be affected by the re-
ward drift. Specifically, by Lemma 4, the sum of first two
terms is upper bounded by cPi(T ) +

5
Δ2

i
, where c is certain

constant and Pi(T ) =
18 log(TΔ2

i )

Δ2
i

. As for the third term, the
analysis is similar to that of UCB and ε-Greedy algorithm
where the drift is bounded by O(log T ):

T∑
t=1

Pr(It = i, Eμ
i (t))

≤
T∑

t=1

Pr(Eμ
i (t)) =

T∑
t=1

Pr(μ̄i(t) ≥ xi)

=

T∑
t=1

Pr

(
μ̂i(t) +

Bi(t)

ni(t)
≥ xi

)

=

T∑
t=1

Pr
(
μ̂i(t)− μi ≥ Δi

3
− Bi(t)

ni(t)︸ ︷︷ ︸
Yi(t)

)

≤
T∑

t=1

Pr (μ̂i(t)− μi ≥ Yi(t), ni(t) ≤ Qi)

+

T∑
t=1

Pr (μ̂i(t)− μi ≥ Yi(t), ni(t) ≥ Qi)

≤ Qi +

T∑
t=1

e−2ni(t)Yi(t)
2 ≤ Qi +

π2

6
.

where the second last inequality is due to Hoeffding’s in-
equality. We then choose Qi such that, when ni(t) ≥ Qi,

Δi

3
− Bi(t)

ni(t)
≥ Δi

3
− 2l log T

Δ2ni(t)
≥ 0, (11)

ni(t)Yi(t)
2 ≥ log T. (12)

By (11), Qi ≥ 6l log T
ΔiΔ2 . Since ni(t)Yi(t)

2 is non-
increasing in Bi(t), equation (12) requires

Δ2
i

9
ni +

4l2 log2 T

Δ4

1

ni
≥ (1 +

4Δil

3Δ2 ) log T.

The above two equations lead to

Qi ≥ � 9

2Δ2
i

(
(1 +

4Δil

3Δ2 ) log T +

√
1 +

8Δil log T

3Δ2

)
�.

Discussion of Results

As can be seen from the above analysis, all three in-
stantiations of the incentivized exploration algorithm at-
tain O(log T ) regret and compensation upper bound under
drifted reward. Our results match both the theoretical lower
bound for regret in (Lai and Robbins 1985) and lower bound
for compensation in (Wang and Huang 2018) without re-
ward drift. Although explicit lower bounds of the regret and
compensation with drifted feedback in our setting remain
unknown, we argue that these lower bounds should be larger
or equal to the lower bound without reward drift since non-
drifting environment is a special case of the drifted reward
feedback with drift function ft = 0. On the other hand, the
proposed incentive mechanism is still cost-efficient even the
payment will lead to biased feedback, as the principal can re-
duce the regret from O(T ) for the players’ myopic choices
to O(log T ) by paying merely O(log T ) in incentive.

In terms of sensitivity to unknown drift functions ft, both
incentivized ε-Greedy and Thompson Sampling attain O(l)
regret and compensation, while the incentivized UCB attains
O((l + 1)2) regret and O(l + 1) compensation. This differ-
ence comes from two aspects: 1) UCB is deterministic given
the history while ε-Greedy and Thompson Sampling have a
randomized exploration phase which makes them less sen-
sitive to the drift. 2) For UCB, the drift effect is bounded by
the amount of compensation which affects the frequency of
compensation and in turn shapes the amount of compensa-
tion, while for ε-Greedy and Thompson Sampling, the cu-
mulative drift can be directly bounded by the frequency of
compensation. Numerical experiments reported in the next
section are consistent with these analytical results.

Numerical Examples

In this section, we carry out numerical experiments using
synthetic data to complement the previous analysis of the
incentivized MAB algorithms under reward drift, including
UCB, ε-Greedy and Thompson Sampling.

We generate a pool of K = 9 arms with mean reward
vector μ = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]. In each
iteration, after the player pulls an arm It, reward rt is set
to the arm’s mean reward plus a random term drawn from
N (0, 1), i.e. rt = μIt+N (0, 1). Because of the randomness
in sample rewards, the greedy algorithm without exploration
suffers a linear regret, e.g., we observe nearly 6000 regret for
20000 trials. For the reward drift under compensation, we
consider a linear drifting function bt = lxt where xt is the
compensation offered by the principle and coefficient l ≥ 0.
The player reveals drifted reward feedback rt + bt.

For the incentivized exploration, we first compare re-
gret and compensation in a non-drifting environment (l =
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Figure 1: Regret and Compensation for UCB, ε-Greedy and
Thompson Sampling without reward drift.

Figure 2: Regret and Compensation for UCB, ε-Greedy and
Thompson Sampling with drift coefficient l = 1.1.

0) and a drifted reward environment (l > 0). In a non-
drifting reward environment the player always gives un-
biased feedback even offered with compensation. The re-
sult is shown in Fig. 1. As expected, all three instantiations
of the incentivized MAB algorithms have a sub-linear re-
gret and compensation. Thompson Sampling outperforms
the other two both in the regret (which is consistent with
observation from previous work (Vermorel and Mohri 2005;
Chapelle and Li 2011)) and compensation.

In Fig. 2 we show the performance of the incentivzed
MAB algorithms under drifted reward with drift coefficient
l = 1.1. We first observe that over the three algorithms
Thompson Sampling still performs the best. While their rel-
ative performance are in same order as Fig. 1, the regret and
compensation are worse than non-drifting setting, e.g., re-
gret of UCB increases from 350 to 800 because of the biased
feedback.

To better understand the effect of drifted reward, we vary
the coefficient l from 0 to 1.1 and present the results in Table
1. We notice that the incentivized UCB incurs largest regret
and compensation. This is due to the fact that, as the time
goes, a larger UCB and uncertainty are assigned to those
arms that are less explored but may in fact have small mean

l 0 0.05 0.1 0.4 0.7 0.9 1.1
UCB(R) 348.5 432.1 451.9 522.8 615.1 712.9 854.2
UCB(C) 277.2 292.9 349.5 375.6 408.0 473.0 422.7

ε-Greedy(R) 160.0 170.3 218.0 260.1 266.2 272.6 317.0
ε-Greedy(C) 185.9 217.4 130.4 167.6 102.8 161.8 115.2

TS(R) 25.3 28.2 33.4 37.1 46.3 63.6 74.5
TS(C) 18.9 23.7 20.9 29.3 22.9 29.1 25.3

Table 1: Regret (R) and Compensation (C) with different
drift coefficients.

l 0 0.05 0.1 0.4 0.7 0.9 1.1
UCB(N) 1225 1639 1954 2172 2288 2912 3374
UCB(E) 0.4% 0.9% 0.5% 1.2% 1.9% 0.4% 3.1%

ε-Greedy(N) 273 329 304 303 276 293 308
ε-Greedy(E) 0.7% 1.5% 0.5% 1.0% 1.6% 0.4% 0.8%

TS(N) 60 79 58 98 131 109 106
TS(E) 0.7% 0.7% 1.6% 2.0% 0.1% 1.7% 0.7%

Table 2: Number of compensation (N) and relative error (E)
of estimation of arm 1 with different drift coefficients.

rewards, and the resulting higher chance of those suboptimal
arms being selected leads to larger regret and compensation.
We also notice that the gap between regret and compensa-
tion of UCB increase faster compared to the other two. This
is consistent with out theoretical analysis that the regret of
UCB is in the order of O((l + 1)2) and compensation is in
the order O(l + 1).

We then exam the frequency of compensation, as well as
the estimation error for arm 1 in terms of the relative error
of the average drifted reward compared to the mean reward,
and present the result in Table 2. We see that all three in-
centivized exploration algorithms achieve small estimation
errors that are not sensitive to the drift coefficient l. This is
expected, as the the expected compensation and thus the drift
per time approaches 0 as T increases. However, while the in-
centivized ε-Greedy and Thompson Sampling have roughly
a constant frequency of compensation across different l val-
ues, the incentivized UCB is more sensitive to the coefficient
in the frequency of compensation. The constant frequency of
compensation for ε-Greedy and Thompson Sampling can be
seen from the proof of Theorem 2 and Lemma 1 that show
the frequency does not depend on the drift. In contrast, seen
from the proof of Theorem 1, the frequency of compensation
for UCB depends on the drift through equation (6).

Conclusion

We propose and study multi-armed bandit algorithm with in-
centivized exploration under reward drift, where the player
provides a biased reward feedback that is the sum of the true
reward and a drift term that is non-decreasing in compen-
sation. We analyze the regret and compensation for three
instantiations of the incentivized MAB algorithm where
the principal employs UCB, ε-Greedy and Thompson Sam-
pling, respectively. Our results show that the algorithms
achieve O(log T ) regret and compensation, and are there-
for effective in incentivizing exploration. Our current anal-
ysis is based on the assumption that the reward drift is non-
decreasing over the compensation. In the future work, we
would like to study other assumptions about drift function
and their corresponding impact on regret and compensation.
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It is also important to explore if an algorithm can leverage
the drifted reward to reduce the compensation.
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