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Abstract

Traditional structured prediction models try to learn the con-
ditional likelihood, i.e., p(y|x), to capture the relationship be-
tween the structured output y and the input features x. For
many models, computing the likelihood is intractable. These
models are therefore hard to train, requiring the use of surro-
gate objectives or variational inference to approximate likeli-
hood. In this paper, we propose conditional Glow (c-Glow), a
conditional generative flow for structured output learning. C-
Glow benefits from the ability of flow-based models to com-
pute p(y|x) exactly and efficiently. Learning with c-Glow
does not require a surrogate objective or performing infer-
ence during training. Once trained, we can directly and effi-
ciently generate conditional samples. We develop a sample-
based prediction method, which can use this advantage to do
efficient and effective inference. In our experiments, we test
c-Glow on five different tasks. C-Glow outperforms the state-
of-the-art baselines in some tasks and predicts comparable
outputs in the other tasks. The results show that c-Glow is
versatile and is applicable to many different structured pre-
diction problems.

1 Introduction
Structured prediction models are widely used in tasks such
as image segmentation (Nowozin and Lampert 2011) and se-
quence labeling (Lafferty, McCallum, and Pereira 2001). In
these structured output tasks, the goal is to model a mapping
from the input x to the high-dimensional structured output y.
In many such problems, it is also important to make diverse
predictions to capture the variability of plausible solutions
to the structured output problem (Sohn, Lee, and Yan 2015).

Many existing methods for structured output learning
use graphical models, such as conditional random fields
(CRFs) (Wainwright and Jordan 2008), and approximate
the conditional distribution p(y|x). Approximation is nec-
essary because, for most graphical models, computing the
exact likelihood is intractable. Recently, deep structured
prediction models (Chen et al. 2015; Zheng et al. 2015;
Sohn, Lee, and Yan 2015; Wang, Fidler, and Urtasun 2016;
Belanger and McCallum 2016; Graber, Meshi, and Schwing
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2018) combine deep neural networks with graphical mod-
els, using the power of deep neural networks to extract high-
quality features and graphical models to model correlations
and dependencies among variables. The main drawback of
these approaches is that, due to the intractable likelihood,
they are difficult to train. Training them requires the con-
struction of surrogate objectives, or approximating the like-
lihood by using variational inference to infer latent variables.
Moreover, once the model is trained, inference and sampling
from CRFs require expensive iterative procedures (Koller
and Friedman 2009).

In this paper, we develop conditional generative flows (c-
Glow) for structured output learning. Our model is a vari-
ant of Glow (Kingma and Dhariwal 2018), with additional
neural networks for capturing the relationship between in-
put features and structured output variables. Compared to
most methods for structured output learning, c-Glow has the
unique advantage that it can directly model the conditional
distribution p(y|x) without restrictive assumptions (e.g.,
variables being fully connected (Krähenbühl and Koltun
2011)). We can train c-Glow by exploiting the fact that in-
vertible flows allow exact computation of log-likelihood, re-
moving the need for surrogates or inference. Compared to
other methods using normalizing flows (e.g., (Trippe and
Turner 2018; Kingma and Dhariwal 2018)), c-Glow’s out-
put label y is conditioned on both complex input and a high-
dimensional tensor rather than a one-dimensional scalar. We
evaluate c-Glow on five structured prediction tasks: binary
segmentation, multi-class segmentation, color image denois-
ing, depth refinement, and image inpainting, finding that c-
Glow’s exact likelihood training is able to learn models that
efficiently predict structured outputs of comparable quality
to state-of-the-art deep structured prediction approaches.

2 Related Work
There are two main topics of research related to our paper:
deep structured prediction and normalizing flows. In this
section, we briefly cover some of the most related literature.

2.1 Deep Structured Models
One emerging strategy to construct deep structured models
is to combine deep neural networks with graphical models.
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However, this kind of model can be difficult to train, since
the likelihood of graphical models is usually intractable.
Chen et al. (2015) proposed joint learning approaches that
blend the learning and approximate inference to alleviate
some of these computational challenges. Zheng et al. (2015)
proposed CRF-RNN, a method that treats mean-field vari-
ational CRF inference as a recurrent neural network to al-
low gradient-based learning of model parameters. Wang, Fi-
dler, and Urtasun (2016) proposed proximal methods for in-
ference. And Sohn, Lee, and Yan (2015) used variational
autoencoders (Kingma and Welling 2013) to generate la-
tent variables for predicting the output. While using a sur-
rogate for the true likelihood is generally viewed as a con-
cession, Norouzi et al. (2016) found that training with a
tractable task-specific loss often yielded better performance
for the goal of reducing specific task losses than training
with general-purpose likelihood approximations. Their anal-
ysis hints that fitting a distribution with a true likelihood may
not always train the best predictor for specific tasks.

Another direction combining structured output learning
with deep models is to construct energy functions with deep
networks. Structured prediction energy networks (SPENs)
(Belanger and McCallum 2016) define energy functions for
scoring structured outputs as differentiable deep networks.
The likelihood of a SPEN is intractable, so the authors used
structured SVM loss to learn. SPENs can also be trained in
an end-to-end learning framework (Belanger, Yang, and Mc-
Callum 2017) based on unrolled optimization. Methods to
alleviate the cost of SPEN inference include replacing the
argmax inference with an inference network (Tu and Gim-
pel 2018). Inspired by Q-learning, Gygli, Norouzi, and An-
gelova (2017) used an oracle value function as the objec-
tive for energy-based deep networks. Graber, Meshi, and
Schwing (2018) generalized SPENs by adding non-linear
transformations on top of the score function.

2.2 Normalizing Flows
Normalizing flows are neural networks constructed with
fully invertible components. The invertibility of the re-
sulting network provides various mathematical benefits.
Normalizing flows have been successfully used to build
likelihood-based deep generative models (Dinh, Krueger,
and Bengio 2014; Dinh, Sohl-Dickstein, and Bengio 2016;
Kingma and Dhariwal 2018) and to improve variational ap-
proximation (Rezende and Mohamed 2015; Kingma et al.
2016). Autoregressive flows (Kingma et al. 2016; Papa-
makarios, Pavlakou, and Murray 2017; Huang et al. 2018;
Ziegler and Rush 2019) condition each affine transformation
on all previous variables, so that they ensure an invertible
transformation and triangular Jacobian matrix. Continuous
normalizing flows (Chen et al. 2018; Grathwohl et al. 2018)
define the transformation function using ordinary differen-
tial equations. While most normalizing flow models define
generative models, Trippe and Turner (2018) developed ra-
dial flows to model univariate conditional probabilities.

Most related to our approach are flow-based generative
models for complex output. Dinh, Krueger, and Bengio
(2014) first proposed a flow-based model, NICE, for mod-
eling complex high-dimensional densities. They later pro-

posed Real-NVP (Dinh, Sohl-Dickstein, and Bengio 2016),
which improves the expressiveness of NICE by adding more
flexible coupling layers. The Glow model (Kingma and
Dhariwal 2018) further improved the performance of such
approaches by incorporating new invertible layers. Most re-
cently, Flow++ (Ho et al. 2019) improved generative flows
with variational dequantization and architecture design, and
Hoogeboom, Berg, and Welling (2019) proposed new invert-
ible convolutional layers for flow-based models.

3 Background
In this section, we introduce notation and background
knowledge directly related to our work.

3.1 Structured Output Learning
Let x and y be random variables with unknown
true distribution p∗(y|x). We collect a dataset D =
{(x1, y1), ..., (xN , yN )}, where xi is the ith input and yi is
the corresponding output. We approximate p∗(y|x) with a
model p(y|x, θ) and minimize the negative log-likelihood

L(D) = − 1

N

N∑
i=1

log p(yi|xi, θ).

In structured output learning, the label y comes from
a complex, high-dimensional output space Y with depen-
dencies among output dimensions. Many structured output
learning approaches use an energy-based model to define a
conditional distribution:

p(y|x) = eE(y,x)∫
y′∈Y eE(y′,x)dy

,

where E(., .) : X × Y → R is the energy function. In deep
structured prediction, E(x, y) depends on x via a deep net-
work. Due to the high dimensionality of y, the partition func-
tion, i.e.,

∫
y′∈Y eE(y′,x)dy, is intractable. To train the model,

we need methods to approximate the partition function such
as variational inference or surrogate objectives, resulting in
complicated training and sub-optimal results.

3.2 Conditional Normalizing Flows
A normalizing flow is a composition of invertible functions
f = f1◦f2◦· · ·◦fM , which transforms the target y to a latent
code z drawn from a simple distribution. In conditional nor-
malizing flows (Trippe and Turner 2018), we rewrite each
function as fi = fx,φi

, making it parameterized by both x
and its parameter φi. Thus, with the change of variables for-
mula, we can rewrite the conditional likelihood as

log p(y|x, θ) = log pZ(z) +

M∑
i=1

log

∣∣∣∣det
(
∂fx,φi

∂ri−1

)∣∣∣∣ , (1)

where ri = fφi
(ri−1), r0 = x, and rM = z.

In this paper, we address the structured output problem
by using normalizing flows. That is, we directly use the
conditional normalizing flows, i.e., Equation 1, to calculate
the conditional distribution. Thus, the model can be trained
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by locally optimizing the exact likelihood. Note that con-
ditional normalizing flows have been used for conditional
density estimation. Trippe and Turner (2018) use it to solve
the one-dimensional regression problem. Our method is dif-
ferent from theirs in that the labels in our problem are high-
dimensional tensors rather than scalars. We therefore will
build on recently developed methods for (unconditional)
flow-based generative models for high-dimensional data.

3.3 Glow
Glow (Kingma and Dhariwal 2018) is a flow-based
generative model that extends other flow-based mod-
els: NICE (Dinh, Krueger, and Bengio 2014) and Real-
NVP (Dinh, Sohl-Dickstein, and Bengio 2016). Glow’s
modifications have demonstrated significant improvements
in likelihood and sample quality for natural images. The
model mainly consists of three components. Let u and v be
the input and output of a layer, whose shape is [h× w × c],
with spatial dimensions (h,w) and channel dimension c.
The three components are as follows.
Actnorm layers. Each activation normalization (actnorm)
layer performs an affine transformation of activations using
two 1× c parameters, i.e., a scalar s, and a bias b. The trans-
formation can be written as

ui,j = s� vi,j + b,

where � is the element-wise product.
Invertible 1×1 convolutional layers. Each invertible 1x1
convolutional layer is a generalization of a permutation op-
eration. Its function format is

ui,j = Wvi,j ,

where W is a c× c weight matrix.
Affine layers. As in the NICE and Real-NVP models, Glow
also has affine coupling layers to capture the correlations
among spatial dimensions. Its transformation is

v1, v2 = split(v), s2, b2 = NN(v1),

u2 = s2 � v2 + b2, u = concat(v1, u2),

where NN is a neural network, and the split() and concat()
functions perform operations along the channel dimension.
The s2 and b2 vectors have the same size as v2.

Glow uses a multi-scale architecture (Dinh, Sohl-
Dickstein, and Bengio 2016) to combine the layers. This ar-
chitecture has a “squeeze” layer for shuffling the variables
and a “split” layer for reducing the computational cost.

4 Conditional Generative Flows for
Structured Output Learning

This section describes our conditional generative flow (c-
Glow), a flow-based model for structured prediction.

4.1 Conditional Glow
To modify Glow to be a conditional generative flow, we
need to add conditioning architectures to its three compo-
nents: the actnorm layer, the 1×1 convolutional layer, and
the affine coupling layer. The main idea is to use a neural
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(b) c-Glow architecture

Figure 1: Model architectures for Glow and conditional
Glow. For each model, the left sub-graph is the architecture
of each step, and the right sub-graph is the whole architec-
ture. The parameter L represents the number of levels, and
K represents the depth of each level.

network, which we refer to as a conditioning network (CN),
to generate the parameter weights for each layer. The details
are as follows.
Conditional actnorm. The parameters of an actnorm layer
are two 1 × c vectors, i.e., the scale s and the bias b. In
conditional Glow, we use a CN to generate these two vectors
and then use them to transform the variable, i.e.,

s, b = CN(x), ui,j = s� vi,j + b.

Conditional 1×1 convolutional. The 1×1 convolutional
layer uses a c × c weight matrix to permute each spatial
dimension’s variable. In conditional Glow, we use a condi-
tioning network to generate this matrix:

W = CN(x), ui,j = Wvi,j .

Conditional affine coupling. The affine coupling layer sep-
arates the input variable into two halves, i.e., v1 and v2. It
uses v1 as the input to an NN to generate scale and bias pa-
rameters for v2. To build a conditional affine coupling layer,
we use a CN to extract features from x, and then we con-
catenate it with v1 to form the input of NN.

v1, v2 = split(v), xr = CN(x),

s2, b2 = NN(v1, xr), u2 = s2 � v2 + b2,

u = concat(v1, u2).

We can still use the multi-scale architecture to combine
these conditional components to preserve the efficiency of
computation. Figure 1 illustrates the Glow and c-Glow ar-
chitectures for comparison.

Since the conditioning networks do not need to be invert-
ible when optimizing a conditional model, we define the
general approach without restrictions to their architectures
here. Any differentiable network suffices and preserves the
ability of c-Glow to compute the exact conditional likeli-
hood of each input-output pair. We will specify the architec-
tures we use in our experiments in Section 5.1.

4.2 Learning
To learn the model parameters, we can take advantage of the
efficiently computable log-likelihood for flow-based mod-
els. In cases where the output is continuous, the likelihood
calculation is direct. Therefore, we can back-propagate to
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differentiate the exact conditional likelihood, i.e., Eq. 1, and
optimize all c-Glow parameters using gradient methods.

In cases where the output is discrete, we follow (Dinh,
Sohl-Dickstein, and Bengio 2016; Kingma and Dhariwal
2018; Ho et al. 2019) and add uniform noise to y during
training to dequantize the data. This procedure augments the
dataset and prevents model collapse. We can still use back-
propagation and gradient methods to optimize the likelihood
of this approximate continuous distribution. By expanding
the proofs by Theis, Oord, and Bethge (2015) and Ho et al.
(2019), we can show that the discrete distribution is lower-
bounded by this continuous distribution.

With a slight abuse of notation, we let q(y|x) be our dis-
crete hypothesis distribution and p(v|x) be the dequantized
continuous model. Then our goal is to maximize the likeli-
hood q, which can be expressed by marginalizing over val-
ues of v that round to y:

q(y|x) =
∫
u∈[−0.5,0.5)d

p(y + u|x)du,

where d is the variable’s dimension, and u represents the dif-
ference between the continuous variable v and the rounded,
quantized y.

Let pd(x, y) be the true data distribution, and p̃d(x, y) be
the distribution of the dequantized dataset. The learning pro-
cess maximizes Ep̃d(x,y)[log p(v|x)]. We expand this and ap-
ply Jensen’s Inequality to obtain the bound:

Ep̃d(x,y)[log p(v|x)]
=

∫
x

∑
y

pd(x, y)dx

∫
u

log p(y + u|x)du

≤
∫
x

∑
y

pd(x, y)dx log

∫
u

p(y + u|x)du

= Epd(x,y)[log q(y|x)].
Therefore, when y is discrete, the learning optimization,
which maximizes the continuous likelihood p(v|x), maxi-
mizes a lower bound on q(y|x).
4.3 Inference
Given a learned model p(y|x), we can perform efficient sam-
pling with a single forward pass through the c-Glow. We first
calculate the transformation functions given x and then sam-
ple the latent code z from pZ(z). Finally, we propagate the
sampled z through the model, and we get the corresponding
sample y. The whole process can be summarized as

z ∼ pZ(z), y = gx,φ(z), (2)

where gx,φ = f−1
x,φ is the inverse function.

The core task in structured output learning is to predict
the best output, i.e., y∗, for an input x. This process can be
formalized as looking for an optimized y∗ such that

y∗ = argmax
y

p(y|x). (3)

To compute Equation 3, we can use gradient-based op-
timization, e.g., to optimize y based on gradient descent.

However, in our experiments, we found that this method is
always slow, i.e., it takes thousands of iterations to converge.
Worse, since the probability density function is non-convex
with a highly multi-modal surface, it often gets stuck in lo-
cal optima, resulting in sub-optimal prediction. Therefore,
we use a sample-based method to approximate the inference
instead. Let {z1, ..., zM} be samples drawn from pZ(z). Es-
timated marginal expectations for each variable can be com-
puted from the average:

y∗ ≈ 1

M

M∑
i=1

gx,φ(zi). (4)

This sample-based method can overcome the gradient-based
method’s problems. In our experiments, we found that we
only need 10 samples to get a high quality prediction, so in-
ference is faster. The sample average can smooth out some
anomalous values, further improving prediction. One illus-
tration of difference between the gradient-based method and
the sample-based method is in Figure 2.

When y is a continuous variable, we can directly get y∗
from the above sample-based prediction. When y is dis-
crete, we follow previous literature (Belanger and McCal-
lum 2016; Gygli, Norouzi, and Angelova 2017) to round y∗
to discrete values. In our experiments, we find that the pre-
dicted y∗ values are already near integral values.

Input Image Ground Truth Gradient-based Sampled-based

Figure 2: Illustration of difference between a gradient-based
method and a sample-based method. From left to right: the
input image, the ground truth label, the gradient-based pre-
diction, and the sample-based prediction. In the third image,
the horse has a horn on its back. This is because the gradient-
based method is trapped into a local optimum, which as-
sumes the head of this horse should be in that place. In the
fourth image, the sample average smooths out the horn be-
cause most samples do not have the horn mistake.

5 Experiments
In this section, we evaluate c-Glow on five structured predic-
tion tasks: binary segmentation, multi-class segmentation,
image denoising, depth refinement, and image inpainting.
We find c-Glow is among the class of state-of-the-art meth-
ods while retaining its likelihood and sampling benefits.

5.1 Architecture and Setup
To specify a c-Glow architecture, we need to define condi-
tioning networks that generate weights for the conditional
actnorm, 1×1 convolutional, and affine layers.

For the conditional actnorm layer, we use a six-layer con-
ditioning network. The first three layers are convolutional
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layers that downscale the input x to a reasonable size. The
last three layers are then fully connected layers, which trans-
form the resized x to the scale s and the bias b vectors.
For the downscaling convolutional layers, we use a simple
method to determine their kernel size and stride. Let Hi and
Ho be the input and output sizes. Then we set the stride to
Hi/Ho and the kernel size to 2× padding + stride.

For the conditional 1×1 convolutional layer, we use a
similar six-layer network to generate the weight matrix. The
only difference is that the last fully connected layer will gen-
erate the weight matrix W . For the actnorm and 1×1 convo-
lutional conditional networks, the number of channels of the
convolutional layers, i.e., nc, and the width of the fully con-
nected layers, i.e., nw, will impact the model’s performance.

For the conditional affine layer, we use a three-layer con-
ditional network to extract features from x, and we concate-
nate it with v1. Among the three layers, the first and the last
layers use 3× 3 kernels. The middle layer is a downscaling
convolutional layer. We vary the number of channels of this
conditional network to be {8, 16, 32}, and we find that the
model is not very sensitive to this variation. In our experi-
ments, we fix it to have 16 channels. The affine layer itself is
composed of three convolutional layers with 256 channels.

We use the same multi-scale architecture as Glow to con-
nect the layers, so the number of levels L and the number
of steps of each level K will also impact the model’s per-
formance. We use Adam (Kingma and Ba 2014) to tune the
learning rates, with α = 0.0002, β1 = 0.9, and β2 = 0.999.
We set the mini-batch size to be 2. Based on our empirical
results, these settings allow the model to converge quickly.
For the experiments on small datasets, i.e., semantic seg-
mentation and image denoising, we run the program for
5×104 iterations to guarantee the algorithms have fully con-
verged. For the experiments on inpainting, the training set is
large, so we run the program for 3× 105 iterations.

5.2 Binary Segmentation
In this set of experiments, we use the Weizmann Horse Im-
age Database (Borenstein and Ullman 2002), which contains
328 images of horses and their segmentation masks indicat-
ing whether pixels are part of horses or not. The training set
contains 200 images, and the test set contains 128 images.
We compare c-Glow with DVN (Gygli, Norouzi, and An-
gelova 2017), NLStruct (Graber, Meshi, and Schwing 2018),
and FCN1 (Long, Shelhamer, and Darrell 2015). Since the
code for DVN and NLStruct is not available online, we re-
produce results of DVN and NLStruct by Gygli, Norouzi,
and Angelova (2017), and Graber, Meshi, and Schwing
(2018). We use mean intersection-over-union (IOU) as the
metric. We resize the images and masks to be 32 × 32,
64×64, and 128×128 pixels. For c-Glow, we follow Kingma
and Dhariwal (2018) to preprocess the masks; we copy each
mask three times and tile them together, so y has three chan-
nels. This transformation can improve the model perfor-
mance. We set L = 3, K = 8, nc = 64, and nw = 128.

1We use code from https://github.com/wkentaro/pytorch-fcn.

Table 1: Binary segmentation results (IOU).

Image Size c-Glow FCN DVN NLStruct
32× 32 0.812 0.558 0.840 —
64× 64 0.852 0.701 — 0.752
128× 128 0.858 0.795 — —

Table 1 lists the results. DVN only has result on 32 × 32
images, and NLStruct only has result on 64 × 64 images.
The NLStruct is tested on a smaller test set with 66 im-
ages. In our experiments, we found that the smaller test set
does not have significant impact on the IOUs. DVN and NL-
Struct are deep energy-based models. FCN is a feed-forward
deep model specifically designed for semantic segmentation.
Energy-based models outperform FCN, because they use en-
ergy functions to capture the dependencies among output la-
bels. Specifically, DVN performs the best on 32×32 images.
The papers on DVN and NLStruct do not include results
for large images. Thus, we only include small image results
for DVN and NLStruct. In contrast, c-Glow can easily han-
dle larger size structured prediction tasks, e.g., 128 × 128
images. Even though c-Glow performs slightly worse than
DVN on small images, it significantly outperforms FCN and
NLStruct on larger images. The IOUs of c-Glow on larger
images are also better than DVN on small images.

5.3 Multi-class Segmentation
In this set of experiments, we use the Labeled Faces in the
Wild (LFW) dataset (Huang, Jain, and Learned-Miller 2007;
Kae et al. 2013). It contains 2,927 images of faces, which
are segmented into three classes: face, hair, and background.
We use the same training, validation, and test split as previ-
ous works (Kae et al. 2013; Gygli, Norouzi, and Angelova
2017), and super-pixel accuracy (SPA) as our metric. Since
c-Glow predicts the pixel-wise label, we follow previous pa-
pers (Tsogkas et al. 2015; Gygli, Norouzi, and Angelova
2017) and use the most frequent label in a super-pixel as
its class. We resize the images and masks to be 32 × 32,
64×64, and 128×128 pixels. We compare our method with
DVN and FCN. For c-Glow, we set L = 4, K = 8, nc = 64,
and nw = 128. Note that comparing with binary segmenta-
tion experiments, we increase the model size by adding one
more level. This is because the LFW dataset is larger and
multi-class segmentation is more complicated.

Table 2: Multi-class segmentation results (SPA).

Image Size c-Glow FCN DVN
32× 32 0.914 0.745 0.924
64× 64 0.931 0.792 —
128× 128 0.945 0.951 —

The results are in Table 2. On 32× 32 images, DVN per-
forms the best, but c-Glow is comparable. C-glow performs
better than FCN on 64× 64 images, but slightly worse than
FCN on 128× 128 images. FCN performs well on large im-
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ages, but worse than other methods on small images. We at-
tribute this to two reasons. First, for small images, the input
features do not contain enough information. The inferences
of c-Glow and DVN combine the features as well as the de-
pendencies among output labels to lead to better results. In
contrast, FCN predicts each output independently, so it is
not able to capture the relationship among output variables.
On larger images, the higher resolution makes segmented
regions wider in pixels (Long, Shelhamer, and Darrell 2015;
Gygli, Norouzi, and Angelova 2017), so a feed-forward net-
work that produces coarser and smooth predictions can per-
form well. C-Glow’s performance is stable. Whether on
small images or large images, it is able to generate good
quality results. Even though it is slightly worse than the best
methods on 32 × 32 and 128 × 128 images, it significantly
outperforms FCN on 64 × 64 images. Moreover, c-Glow’s
SPAs are better than DVN on small images.

5.4 Color Image Denoising

In this section, we conduct color image denoising on the
BSDS500 dataset (Arbelaez et al. 2010). We train models
on 400 images and test them on the commonly used 68
images (Roth and Black 2009). Following previous work
(Schmidt and Roth 2014), we crop a 256 × 256 region for
each image and resize it to 128 × 128. We then add Gaus-
sian noise with standard deviation σ = 25 to each im-
age. We use peak signal-to-noise ratio (PSNR) as our met-
ric, where higher PSNR is better. We compare c-Glow with
some state-of-the-art baselines, including BM3D (Dabov et
al. 2007), DnCNN (Zhang et al. 2017), and McWNNM (Xu
et al. 2017). DnCNN is a deep feed-forward model specifi-
cally designed for image denoising. BM3D and McWNNM
are traditional non-deep models for image denoising. For c-
Glow, we set L = 3, K = 8, nc = 64, and nw = 128. Let
x be the clean images and x̂ be the noisy images. To train
the model, we follow Zhang et al. (2017) and use (x̂) as the
input and x̂−x as the output. To denoise the images, we first
predict y∗ and then compute (x̂− y∗).

Table 3: Color image denoising results (PSNR).

c-Glow McWNNM BM3D DnCNN
27.61 25.58 28.21 28.53

The PSNR comparisons are in Table 3. C-Glow produces
reasonably good results. However, it is worse than DnCNN
and BM3D. To further analyze c-Glow’s performance, we
show qualitative results in Figure 3. One main reason the
PSNR of c-Glow is lower than DnCNN is that the images
generated by DnCNN are smoother than the images gen-
erated by c-Glow. We believe this is caused by one draw-
back of flow-based models. Flow-based models use squeeze
layers to fold input tensors to exploit the local correlation
structure of an image. The squeeze layers use a spatial pixel-
wise checkerboard mask to split the input tensor, which may
cause values of neighbor pixels to vary non-smoothly.

Noisy Image Ground Truth c-Glow DnCNN

Figure 3: Example qualitative results.

5.5 Denoising for Depth Refinement
In this set of experiments, we use the seven scenes
dataset (Newcombe et al. 2011), which contains noisy depth
maps of natural scenes. The task is to denoise the depth
maps. We use the same method as Wang, Fidler, and Urta-
sun (2016) to process the dataset. We train our model on 200
images from the Chess scene and test on 5,500 images from
other scenes. The images are randomly cropped to 96× 128
pixels. We use PSNR as the metric. We compare c-Glow
with ProximalNet (Wang, Fidler, and Urtasun 2016), Filter-
Forest (Ryan Fanello et al. 2014), and BM3D (Dabov et al.
2007). For c-Glow, the parameters are set to be L = 3,K =
8, nc = 8, and nw = 32. Note that we use smaller condi-
tioning networks for this task, because the images for this
task are one-dimensional grayscale images.

We list the metric scores in Table 4. ProximalNet is a deep
energy-based structured prediction model, and FilterForest
and BM3D are traditional filter-based models. ProximalNet
works better than filter-based baselines, and c-Glow gets a
slightly better PSNR.

Table 4: Depth refinement scores (PSNR).

c-Glow ProximalNet FilterForest BM3D
36.53 36.31 35.63 35.46

5.6 Image Inpainting
Inferring parts of images that are censored or occluded re-
quires modeling of the structure of dependencies across pix-
els. In this set of experiments, we test c-Glow on the task
of inpainting censored images from the CelebA dataset (Liu
et al. 2015), which has around 200,000 images of faces. We
randomly select 2,000 images as our test set. We centrally
crop the images and resize them to 64 × 64 pixels. We use
central block masks such that 25% of the pixels are hidden
from the input. For c-Glow, we set L = 3,K = 8, nc = 64,
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and nw = 128. For training the model, we set the fea-
tures x to be the occluded images and the labels y to be
the center region that needs to be inpainted. We compare
our method with DCGAN inpainting (DCGANi) (Yeh et al.
2017), which is the state-of-the-art deep model for image
inpainting. We use PSNR as our metric.

Table 5: Image inpainting scores (PSNR). “DCGANi-b”
represents DCGANi with Poisson blending.

c-Glow DCGANi-b DCGANi
24.88 23.65 22.73

Ground Truth Corrupted Image DCGANi DCGANi-b c-Glow

Figure 4: Sample results of c-Glow and DCGAN inpainting.

The PSNR scores are in Table 5. Figure 4 contains sample
inpainting results. C-Glow outperforms DCGAN inpainting
in both the PSNR scores and the quality of generated im-
ages. Note that the DCGAN inpainting method largely de-
pends on postprocessing the images with Poisson blending,
which can make the color of the inpainted region align with
the surrounding pixels. However, the shapes of features like
noses and eyes are still not well recovered. Even though the
images inpainted by c-Glow are slightly darker than the orig-
inal images, the shapes of features are well captured.

5.7 Discussion
We evaluated c-Glow on five different structured prediction
tasks. Two tasks require discrete outputs (binary and multi-
class segmentation) while the other three tasks require con-
tinuous variables. C-Glow works well on all the tasks and
scores comparably to the best method for each task. We
compare c-Glow with different baselines for each task, some

specifically designed for that task and some that are general
deep energy-based models. Our results show that c-Glow
outperforms deep energy-based models on many tasks, e.g.,
scoring higher than DVN and NLStruct on binary segmenta-
tion. C-Glow also outperforms some deep models on some
tasks, e.g., DCGAN inpainting. However, c-Glow’s gener-
ated images are not smooth enough, so its PSNR scores are
slightly below DnCNN and BM3D for denoising. C-Glow
handles these different tasks with the same CN architec-
ture with only slight changes to the size of latent networks,
demonstrating c-Glow to be a strong general-purpose model.

6 Conclusion
In this paper, we propose conditional generative flows (c-
Glow), which are conditional generative models for struc-
tured output learning. The model allows the change-of-
variables formula to transform conditional likelihood for
high-dimensional variables. We show how to convert the
Glow model to a conditional form by incorporating condi-
tioning networks. In contrast with existing deep structured
models, our model can train by directly maximizing ex-
act likelihood, so it does not need surrogate objectives or
approximate inference. With a learned model, we can ef-
ficiently draw conditional samples from the exact learned
distribution. Our experiments test c-Glow on five structured
prediction tasks, finding that c-Glow generates accurate con-
ditional samples and has predictive abilities comparable to
recent deep structured prediction approaches.
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