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Abstract

An ellipsoid-based, improved kNN entropy estimator based
on random samples of distribution for high dimensionality is
developed. We argue that the inaccuracy of the classical kNN
estimator in high dimensional spaces results from the local
uniformity assumption and the proposed method mitigates
the local uniformity assumption by two crucial extensions, a
local ellipsoid-based volume correction and a correction ac-
ceptance testing procedure. Relevant theoretical contributions
are provided and several experiments from simple to compli-
cated cases have shown that the proposed estimator can ef-
fectively reduce the bias especially in high dimensionalities,
outperforming current state of the art alternative estimators.

Introduction

The differential entropy of a continuous-valued random vari-
able X is defined as

H(X) = −
∫
p(x) log p(x)dx. (1)

where p(x) is the probability density function of X . En-
tropy has been an important numerical quantity in Statistics,
Machine Learning and other disciplines such as Physics. It
provides a summary measurement of the degree of uncer-
tainty of a system. Entropy is also related to other important
information theoretic measures, including Kullback-Leibler
divergence (Kullback and Leibler 1951) and mutual infor-
mation (Cover and Thomas 2006) , which is defined for ran-
dom variables X and Y as

I(X,Y ) =

∫
Y

∫
X

log
p(x,y)

p(x)p(y)
dxdy = −H(Y |X) +H(Y ) .

(2)

Classical kNN Estimator

In theory, to obtain the entropy of a system, the underlying
probability distribution must be known, that is, the analytical
form of the probability density function (PDF) needs to be
available. However, in real-world cases, it is common that
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the underlying PDF is not available but only a set of sam-
ples are observed. This raises the research problem of esti-
mating the entropy from the observed data only; in partic-
ular, flexible estimation approaches that do not assume the
distribution to lie in a particular parametric model family
are known as non-parametric entropy estimation. Estimators
such as the k-nearest neighbor estimator (kNN; Kozachenko
and Leonenko 1987 and Goria et al. 2005) and the kernel
density estimator (KDE; Silverman 2018) or hybrid methods
(Orava 2011) have been proposed. Note that there is another
important group of approaches, called ensemble estimators
(Sricharan, Wei, and Hero 2013; Moon, Sricharan, and Hero
2017; Moon et al. 2018), which use weighted combinations
of different estimators. This work focuses on the kNN esti-
mator and approaches related to it.

Assume there are N i.i.d. D-dimensional samples
x1, ...,xN ∼ P , where the probability density function p
is unknown. The classical kNN estimator is written as

H(X) ≈ − 1

N

N∑
i=1

log p(xi)

≈ ψ(N)− ψ(k) + log(cD) +
D

N

N∑
i=1

log εi (3)

where ψ denotes the digamma function, εi denotes the
Euclidean distance from xi to its nearest neighbor, cD =

π
D
2

Γ(1+D
2 )

, and ψ(N)− ψ(k) is the correction term.
The classical estimator has been widely applied in many

different research problems. It has been also adopted to non-
parametrically estimate the mutual information (Kraskov,
Stögbauer, and Grassberger 2004) of Equation (2) and KL
divergence (Pérez-Cruz 2008; Wang, Kulkarni, and Verdú
2009).

Bias of the classical kNN

Although the classical kNN estimator has shown promising
applicability, it has been found biased especially in higher
dimensional cases (Noh et al. 2014; Chauveau and Vandek-
erkhove 2014). Theoretical bounds relating the convergence
to the data dimension include (Gao, Oh, and Viswanath
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2018; Singh and Póczos 2016b; 2014; 2016a), for exam-
ple (Gao, Oh, and Viswanath 2018) showed the the bias of
the classical kNN estimator is Õ(N−1/D), where Õ denotes
limiting behavior up to polylogarithmic factors in N .

One explanation of the bias can be that the local uniform
assumption of the classical kNN cannot always hold (Lom-
bardi and Pant 2016; Gao, Ver Steeg, and Galstyan 2015;
Gao, Steeg, and Galstyan 2015; Gao, Oh, and Viswanath
2016; Lord, Sun, and Bollt 2018) especially when the di-
mension is high. In other words, the hyperspherical structure
(ε-ball) is not capable of capturing the twisted shape of the
underlying distribution of the random variable around the
sample; such a situation can have increasingly strong effect
on the bias when dimensionality becomes higher.

The rest of the paper is organized as follows. In Sec-
tion we describe our proposed method and bias analysis
of the proposed method including the corresponding correc-
tion term and the bias bound. In Section we review related
work based on local approximations. In Section we describe
comparison experiments both in estimation of entropy and
estimation of mutual information. Lastly, Section provides
conclusions.

Method

We now introduce our novel entropy estimation method,
called the kNN estimator with Ellipsoidal correction (EC-
kNN); the resulting method will be directly applicable both
to entropy estimation and to mutual information estimation.
The idea is to construct a local ellipsoid instead of a ε-ball,
so that inside of the local ellipsoid samples can be assumed
more uniformly distributed and hence will better fit the uni-
formity assumption of kNN based entropy estimation. The
proposed method comprises two parts: the first part is the lo-
cal Ellipsoidal correction where a local ellipsoid is learned
via performing a local principal component analysis (PCA)
algorithm, the second part is an acceptance testing proce-
dure which is performed in a boot-strapping manner. Note
that the local-PCA approach has been adopted by other sim-
ilar works but the bootstrap step is an significant novelty in
our approach.

The classical kNN estimator of Equation (3) can be
rewritten as

H(X) ≈ 1

N
HkNN (xi) (4)

where HkNN (xi) is an approximation of − log p(xi) based
on a D-dimensional ball of radius εi encompassing k neigh-
bors, where

HkNN (xi) = ψ(N)− ψ(k) + log(Vi) (5)

and the log(Vi) term denotes the logarithm of the volume Vi
of the ball, computed as:

log(Vi) = log(cD) +D log εi (6)

where cD = π
D
2

Γ(1+D
2 )

as before.
Our aim is to generalize the above by a logarithmic vol-

ume correction term log(ΔṼi), corresponding to the differ-
ence between logarithmic volume of a local ellipsoid versus

the epsilon-ball. Furthermore, as a result of the local ellip-
soid the number of neighbors k may slightly change around
each point xi, yielding an individual ki for each point.

Theorem 1. The correction term of the ellipsoid-based es-
timator is ψ(N) − ψ(k), which is the same as the classical
estimator.

Proof. Let E(xi, r(xi)) denote the ellipsoid around xi de-
fined by axes r(xi) = [r1(xi), r2(xi), . . . , rD(xi)] where
r1(xi) and rD(xi) are the longest and shortest axes respec-
tively. For any choice of r(xi) the E(xi, r(xi)) can also be
defined by introducing a Mahalanobis matrix Mxi such that
∀ξ ∈ E(xi, r(xi))√

(ξ − xi)�Mxi
(ξ − xi) ≤ r1(xi). (7)

In this definition the matrix controls the shape of the ellip-
soid and r1(xi) controls its overall size.

Let p(r1(xi) denote the probability mass inside the Ellip-
soid controlled by r1(xi) and Mxi

; for brevity the notation
p(r1(xi) shows the dependence on r1(xi) only. The proba-
bility mass is

p(r1(xi)) =

∫
ξ∈E(x,r(x))

p(ξ)dξ

=

∫
√

(ξ−x)�Mxi
(ξ−x)≤r1(xi)

p(ξ)dξ (8)

Similar to the work of (Kraskov, Stögbauer, and Grass-
berger 2004), let μ(r1(xi)) be the probability density of
r1(xi), μ(r1(xi))dr1(xi) is the probability that the Maha-
lanobis distance of the kth nearest neighbor and the xi is in
the interval [r1(xi), r1(xi) + dr1(xi)]. It can be written as

μ (r1 (xi)) dr1(xi) =
(N − 1)!

1!(k − 1)!(N − k − 1)!

× dp(r1(xi))

dr1(xi)
dr1(xi)

× p(r1(xi))
k−1 × (1− p(r1(xi)))

N−k−1 (9)

by using the trinomial formula. The correction term can
be obtained via taking the expectation of − log p((r1(xi))

E [− log p(r1(xi))] =

∫ ∞

0
μ(r1(xi))dr1(xi) (− log p(r1(xi)))

= ψ(N)− ψ(k). (10)

Under the assumption that inside of E(xi, r(xi)), the
probability density is p(xi) a constant such that p(xi) ×
VEi

≈ p(r1(xi)) and log VEi
= log(Vi) + log(ΔṼi),

E [− log p(xi)] ≈ ψ(N)− ψ(k) + log VEi

= ψ(N)− ψ(k) + log(Vi) + log(ΔṼi) (11)
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, the resulting entropy estimator EC-kNN will be of the form

H(X) ≈ 1

N
HEC−kNN (xi) (12)

where

HEC−kNN (xi) = ψ(N)− ψ(ki) + log(Vi) + log(ΔṼi)
(13)

and log(Vi) is defined by Equation (6). However, since
the local ellipsoid is learned from a small amount of local
data points, we must guard against potential over-correction
to the shape learned from this limited amount of data; we
do this by an acceptance testing procedure, and apply the
logarithmic correction term log(ΔṼi) only if the test is suc-
cessful.

Next, in Section we describe the local ellipsoidal correc-
tion for computing the correction term ΔṼi and in Section
we describe the bootstrap based acceptance testing.

Local Ellipsoidal Correction

The ε-ball in the classical kNN entropy estimator treats all
directions equally. In a high-dimensional space the under-
lying probability distribution around a data point xi may
be curved or stretched so that, due to the shape of the dis-
tribution, the density along some directions of the high-
dimensional space may be larger than along other directions,
and moreover, the density may experience larger changes
along some directions than along others. In such a situation,
it can still be a reasonable approximation to assume the den-
sity to be approximately uniform in a small hyper-region,
but it is no longer a good assumption that the hyper-region
would be an ε-ball. We instead aim to learn an ellipsoid as
a better representation of a local hyper-region with approxi-
mately uniform density.

To learn a local ellipsoid structure, we propose to use a
local PCA based approach as follows. In the local PCA ap-
proach, we first find the k nearest neighbors of xi by small-
est Euclidean distance as usual. We then compute the sam-
ple covariance matrix of the resulting neighborhood of xi

(including xi itself) and rotate the neighborhood to a new
coordinate system by projecting the data onto the eigenvec-
tors of the obtained covariance matrix. The eigenvectors are
used as the axes of the local ellipsoid. Next, the widths of the
local ellipsoid along each axis are then computed via search-
ing for the maximum distance from xi to the neighbor points
along each coordinate axis (see Figure 1).

After performing the local PCA, the sum of the log of
ratios of the longest axis to other each of the axes of the
estimated ellipsoid is then taken as the logarithmic volume
correction term; additionally, the number of neighbors is re-
counted based on the ellipsoid.

In detail, since the volume of an ellipsoid with axes
r1(xi), r2(xi), ..., rD(xi) is defined as

π
D
2

Γ(1 + D
2 )

D∏
d=1

rd(xi) , (14)

we assume that the longest axis r1, the distance from the
origin to the farthest point alone the longest axis, represents

Figure 1: (a) The ε-ball of the classical kNN estimator. (b)
Local ellipsoid learned via local PCA. Lines extending from
the center denote local axes found by local PCA; the widths
rd of the lines denote distance from the central point to the
furthest neighbor along each axis, and the width of the el-
lipsoid along the axis is defined based on that distance. Note
that as a result, due to the curvature of the ellipsoid bound-
ary, the furthest neighbor along an axis may not lie inside of
the ellipsoid.

the original radius, the correction term is obtained as

ΔV̂ (xi,X) =

D∏
d=1

rd(xi)

r1(xi)
. (15)

Algorithm 1 shows the computation of the correction term.
In the complete entropy estimation algorithm described in
the next section, we denote the correction term as ΔṼi.

Algorithm 1 Local ellipsoid-based volume correction
Require: xi: sample point

X = {x1, . . . ,xN}: all sample points
D: dimention
k: number of neighbors

Ensure: ΔV̂ (xi,X): local ellipsoid-based volume correc-
tion

1: Find the k-th neighbor of the xi, compute the distance
εi

2: Perform a PCA on the set of the k + 1 points
3: Project the k + 1 points to the new coordinate system,

get the new center via averaging all the projected points
4: Find the lengths r1, ..., rd of the axes of the projected

ellipsoid through computing the maximum difference of
the point from the center to the center along the PCA
projection axis

return ΔV̂ (xi,X) =
∏D

d=1
rd
r1

Bootstrap Testing for Correction Acceptance

A nonuniform empirical distribution of a finite set of data
samples along different coordinate axes can also happen due
to random sampling variation. That is, a nonuniform distri-
bution of the data subset in an ε-ball around a data point
can be observed even under the uniformity assumption of
the underlying distribution. Therefore, it can happen that the
volume corrections from some points are not necessary and
an over-correction problem can occur if the correction is per-
formed for every sample point.

5015



Hence, we introduce a bootstrap style acceptance testing
procedure to amend the potential over-correction issue. For
each sample point, a reference correction ΔV̂u is generated,
representing a rough estimate of the correction that can oc-
cur due to random sampling alone, under a uniformity as-
sumption of the underlying density in the ε-ball around the
sample point. The reference correction is then used in the
acceptance testing procedure as an acceptance threshold.

The reference correction ΔV̂u is simply a volume correc-
tion obtained from a set of k + 1 samples generated inside
of a uniformly distributed ε-ball around the xi. The details
of generating the ΔV̂u are shown in Algorithm 2.

Since the data point xi has itself been randomly generated
from an underlying distribution, the center point of the ε-ball
is itself a random variable. Therefore, in order to simulate a
true random configuration, the randomness of whether the
xi is the center of the ε-ball should also be taken into ac-
count. Therefore, after simulating the k + 1 points inside of
the ε-ball, the center of the ball is not necessarily the origi-
nal xi but is instead redefined by choosing the point among
the k + 1 points which is closest to the original point.

The proposed kNN estimator with ellipsoidal correc-
tion (EC-kNN) is then developed. It combines the above-
proposed Algorithm 1 and Algorithm 2. For each sample
point, the volume correction is performed with a bootstrap
acceptance test. The correction term ΔṼi and the referenced
correction term ΔVu are generated respectively. Then the
bootstrap acceptance test is conducted via comparing the
values of the two ΔṼi and ΔVu. The correction is accepted
if ΔṼi < ΔVu, otherwise the algorithm uses the result of
the classical kNN estimator.

Note that, in high dimensional cases, it can happen that
when the number of neighbors inside the new ellipsoid are
counted, it turns out that there are no points of the finite
data set inside of the ellipsoid. When encountering this is-
sue, the axes of the ellipsoid are increased slightly until
there is at least one data point inside of the ellipsoid. Here,
in the proposed algorithm, every one of the axes is length-
ened by multiplying the rd by a small ratio (e.g., 1.01).
The volume correction is changed accordingly. By defini-
tion, xi = [xi,1, ..., xi,D]�is inside of the ellipsoid if

D∑
d=1

(xi,d − cd)
2

r2d
≤ 1 (16)

where c = [c1, ..., cD]� is the origin of the ellipsoid.
After going through every data point in the data set, the al-

gorithm produces the final corrected result by averaging the
corrected entropy values from each data point from the data
set. Note that, there is not hyper-parameter setting required
and since the bootstrap acceptance test procedure is a result
of a randomly generated value ΔVu, therefore, the result of
the computation can be slightly different every time.

The final algorithm including the local correction compu-
tation, reference correction computation, bootstrap testing,
enlargement of ellipsoids, and computation of the entropy
estimate is summarized as Algorithm 3.

Algorithm 2 Reference correction
Require: D: dimension

k: number of neighbors
ε: radius

Ensure: V̂u: Acceptance variable
1: Generate random samples U = {u1, ...,uk+1} from a
D-dimensional uniformly distributed ε-ball

2: Select the point uj which is the closest to the origin
among the k + 1 random samples

return V̂u = ΔV̂k(uj ,U) using Algorithm 1

Bias analysis

Theorem 2. The bias EX∼p

[| log p(x)− log p̂r(x)(x)|
]

is
bounded.

Proof. By the mean value theorem (Lebesgue 1910) for any
0 < a < b we have (log(b) − log(a))/(b − a) = 1/c for
some c in the open interval (a, b) Applying this inside the
expectation EX∼p [| log p(x)− log p̂(x)|] we get the bound

EX∼p [| log p(x)− log p̂(x)|] ≤M∗EX∼p [|p(x)− p̂(x)|]
(18)

where p̂(x) is an arbitrary estimator of p(x), and M∗ =
supX∼p max(1/p(x), 1/p̂(x)) which is finite if p and p̂ are
both bounded above zero inside the support of p . We make
use of the result that EX∼p

[|p(x)− p̂ε(x)(x)|
]

is bounded
for the classical estimator (Singh and Póczos 2016b).

Consider the classical estimator p̂ε(x)(x) which assumes
the density is uniform inside the ball. In the asymptotic case
of increasing data the estimate becomes the integral over
density inside the ball,

p̂ε(x)(x) =
1

VB

∫
ξ∈E(x,ε(x))

p(ξ)dξ

where, by an abuse of notation, VB denotes the volume of
the Ball. The bias of the estimator then becomes

EX∼p

[|p(x)− p̂ε(x)(x)|
]
=

EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈E(x,ε(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

(19)

Similarly, for the case of the proposed estimator, let r(x)
denote the axes of the ellipsoid E(x, r(x)) around x so that

EX∼p

[|p(x)− p̂r(x)(x)|
]

= EX∼p

[∣∣∣∣∣ 1

VE

∫
ξ∈E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

(20)

Since by construction the ellipsoid is contained within the
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Algorithm 3 EC-kNN
Require: X = {x1, . . . ,xN}: all sample points

D: dimension
k: number of neighbors

Ensure: ĤX : corrected entropy estimation
1: for each xi do
2: Find the k nearest neighbors, compute the distance
εi and the volume of the εi-ball Vi

3: Compute the empirical volume correction

ΔṼi = ΔV̂ (xi,X) (17)

using Algorithm 1
4: Compute the reference volume ΔV̂u correction us-

ing Algorithm 2
5: if ΔṼi < ΔV̂u then
6: Find the number of samples inside of the ellip-

soid
7: while No samples inside of the ellipsoid do

Lengthen every axis by multiplying each rd with a
small ratio (1.01), adjust the ΔṼi accordingly

8: end while
9:

HEC−kNN (xi) = ψ(N)− ψ(ki)

+ log(Vi) + log(ΔṼi)

10: else
11: HEC−kNN (xi) = ψ(N)− ψ(ki) + log(Vi)
12: end if
13: end for

return H(X) = 1
N

∑N
i=1HEC−kNN (xi)

corresponding ball, (20) becomes

EX∼p

[∣∣∣∣∣VBVE
1

VB

∫
ξ∈E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

≤ C · EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

≤ C ·
(
EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

+ EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈E(x,ε(x))\E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
])

= C · EX∼p

[∣∣p(x)− p̂ε(x)(x)
∣∣] (21)

where C = supX∼p
VB
VE

is bounded above by any suitable
regularization keeping the ellipsoids at non-zero volume, the
right-hand term is for the classical estimator which is know
to be bounded, thus the ellipsoid case is bounded as well.

Theorem 3. Bound of EX∼p

[| log p(x)− log p̂r(x)(x)|
]

is
less or equal to bound of EX∼p

[| log p(x)− log p̂ε(x)(x)|
]
.

Proof. We continue from (18). Assume that the probability
density p is second order differentiable. Then, with Taylor
expansion the density bias term of the classical estimator
can be approximated as

EX∼p

[∣∣p(x)− p̂ε(x)(x)
∣∣] =

EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈E(x,ε(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

= EX∼p

[∣∣∣∣∣ 1

2VB

∫
ξ∈B(x,ε(x))

(ξ − x)�H(x)(ξ − x)dξ

∣∣∣∣∣
]
+ εB

(22)

where, again by an abuse of notation, VB denotes the volume
of the ball and εB denotes the remainder term of the Taylor
series; we assume εB is small enough to be neglected. Sim-
ilarly, for the case of the proposed estimator, let r(x) again
denote the axes of the ellipsoid E(x, r(x)) around x,

EX∼p

[∣∣p(x)− p̂r(x)(x)|
∣∣]

= EX∼p

[∣∣∣∣∣ 1

VE

∫
ξ∈E(x,r(x))

p(x)− p(ξ)dξ

∣∣∣∣∣
]

= EX∼p

[∣∣∣∣∣ 1

VE

∫
ξ∈E(x,r(x))

�p(x)�(ξ − x)dξ

∣∣∣∣∣
]

+ EX∼p

[∣∣∣∣∣ 1

2VE

∫
ξ∈E(x,r(x))

(ξ − x)�H(x)(ξ − x)dξ

∣∣∣∣∣
]
+ εE

(23)

where VE denotes the volume of the ellipsoid, and again,
εE is assumed ignorable. Due to the symmetry of the el-
lipsoid, EX∼p

[∣∣∣ 1
VE

∫
ξ∈E(x,r(x)) �p(x)�(ξ − x)dξ

∣∣∣] = 0.
Hence,

EX∼p

[∣∣p(x) − p̂r(x)(x)
∣∣]

≈ EX∼p

[∣∣∣∣∣ 1

2VE

∫
ξ∈E(x,r(x))

(ξ − x)
�
H(x)(ξ − x)dξ

∣∣∣∣∣
]

= EX∼p

⎡
⎣
∣∣∣∣∣∣

1

2VE

∫
· · ·

∫
∑D

d=1
(ξd−xd)

2

rd(x)2
≤1

(ξ − x)
�
H(x)(ξ − x)dξ

∣∣∣∣∣∣
⎤
⎦

= EX∼p

[∣∣∣∣
∏

d
rd(x)

2VE

∫
· · ·

∫
u�u≤1

(r(x) � u)
�
H(x)(r(x) � u)du

∣∣∣∣
]

≤ EX∼p

[∣∣∣∣ ε(x)D2VB

∫
· · ·

∫
u�u≤1

(ε(x)u)
�

H(x) (ε(x)u) du

∣∣∣∣
]

= EX∼p

[∣∣∣∣∣ 1

2VB

∫
ξ∈B(x,ε(x))

(ξ − x)
�
H(x)(ξ − x)dξ

∣∣∣∣∣
]

≈ EX∼p

[∣∣∣∣∣ 1

VB

∫
ξ∈B(x,ε(x))

p(x) − p(ξ)dξ

∣∣∣∣∣
]

= EX∼p

[∣∣p(x) − p̂ε(x)(x)|
∣∣] (24)

where the ≈ denotes the Taylor approximation and we used
the knowledge that rd(x) ≤ ε(x) ∀rd(x) ∈ r(x). With the
proven inequality, the mean value theorem indicates that the
asymptotic bias bound of the proposed estimator is less or
equal to the bias bound of the classical estimator.
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Related Works

Local PCA approximation

Several approaches based on local PCA approximation
(Gao, Ver Steeg, and Galstyan 2015; Lord, Sun, and Bollt
2018) have been developed. Gao et al. have proposed LNC
(Local Nonuniformity Correction) estimator which com-
prises a local PCA based correction and a test procedure.
However, the testing procedure highly depends on an arbi-
trary ”small value” α and the way of how to determine the
α is not addressed. Where as in our proposed method, no
hyper-parameter for the testing procedure is required.

Likewise, Lord et al. have proposed a similar approach
with a re-centralizing local points and applying SVD to es-
timate the local volume. Nonetheless, there is no testing or
filtering procedure in the method which might lead to over-
correction. Besides, in the their paper, only the estimation of
mutual information is performed. It is possible that the over-
correction resulted error has been cancelled out during the
computation. Also note that, both of the above-mentioned
works, in their papers, haven’t applied their methods in re-
alistically high dimensional cases. The highest dimension
used to evaluate LNC is D = 3 whereas in Lord et al.’s
work the highest dimension is D = 4.

Local Gaussian approximation

Approaches based on local Gaussian approximation have
been proposed (Gao, Steeg, and Galstyan 2015; Lord, Sun,
and Bollt 2018). One approach, kNN-bw (bandwidth) (Gao,
Oh, and Viswanath 2016) utilizes a local Gaussian kernel
to determine the bandwidth of the kNN estimator; as this
method is the only one of this group having a public imple-
mentation by authors available, we chose it as the represen-
tative for this group of approaches.

Simulation Experiments

We carry out several experiments comparing our estimator
EC-kNN to other methods in two tasks, entropy estimation
and mutual information estimation1. For both tasks we com-
pare to state of the art alternatives, using implementations
from their respective authors with default values. We also
compare to the baseline kNN estimator using several values
of k, whereas for our method EC-kNN k simply fixed to 25
in every dimension, which already turns out to work well.
We next describe the data distributions used in the experi-
ments, and then describe the entropy estimation and mutual
information tasks along with their respective results.

Designed Cases

To verify the usability of the proposed approach, three cases
are set from simple to complicated, details are as follows.

1. Symmetric Gaussian. Samples are generated from a d-
dimensional Gaussian distribution N(μ,Σ). The mean
vector μ is set to a zero-vector

μ = [0, 0, . . . , 0] (25)

1R implementation can be found in online repository
https://github.com/hummmblelu/eckNN

and the covariance matrix Σ is generated as follow

Σ = s× s� + diag(1, . . . , 1) (26)

where s ∼ N(0, diag(3, 3, ...3)). The generation of the
Σ creates the random dependence between dimensions.

2. Asymmetric Gaussian. Similar to the previous case, the
mean vector μ is set to a zero-vector but the covariance
matrix Σ is generated as follow

Σ = s× s� + diag(1, . . . , D) (27)

where s ∼ N(0, diag(3, 3, ...3)). When the dimension-
ality D grows, the variation increases accordingly.

3. Mixture Gaussian. A mixture of two Gaussian distribu-
tions is selected to evaluate the performance of the pro-
posed method in a scenario which is more complicated
than the previous two cases. The probability density func-
tion of a mixture of two Gaussian distributions is

p(x) = πp(x|μ1,Σ1) + (1− π)p(x|μ2,Σ2) (28)

where μ1 and μ2 are mean vectors; Σ1 and Σ2 are co-
variance matrices of the two different Gaussian distribu-
tions and the π is the mixture weight. Here we set π to
0.4,

μ1 = [0, 0, . . . , 0] (29)

μ2 = [10, 10, . . . , 10] (30)

Σ1 = s1 × s1
� + diag(1, . . . , 1) (31)

Σ2 = s2 × s2
� + diag(1, . . . , D) (32)

where s1 and s2 are sampled from
N(0, diag(3, 3, ...3)).

Entropy Estimation

We compare our approach (EC-kNN) with the classical kNN
estimator (Kozachenko and Leonenko 1987) and kNN-bw
estimator (Gao, Oh, and Viswanath 2016) 2 with three dif-
ferent cases. The ground truth value of entropy of the first
two cases can be obtained analytically

H(X) =
1

2
log det (2πeΣ) (33)

for the mixture Gaussian case, since the entropy value can-
not be analytically obtained, Monte Carlo estimation with
100000 samples sampled from the distribution is employed.

In each case, each dimension and each method, we repeat
10 times simulating 1000 samples and computing the esti-
mation to compare with the ground truth entropy and mu-
tual information. The average of the root mean square error
(RMSE) is taken as the performance measure. The result can
be found in Figure 2. EC-kNN outperforms both the classi-
cal kNN and kNN-bw especially in high dimensionalities.

2We directly use the program from https://github.com/wgao9/
lnn, input parameters are set to the default values
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Figure 2: Performance comparisons for entropy estimation. (Average RMSE) (a): Symmetric Gaussian Case (b): Asymmetric
Case (c) Mixture Gaussian Case. EC-kNN outperforms other approaches in all cases when dimensionality becomes higher.

Figure 3: Performance comparisons for mutual information estimation. In order to fit the LNC dot line (grey) into the plot, we
apply a logarithm scale on the y axis after around 50 (a): Symmetric Gaussian Case (b): Asymmetric Case (c) Mixture Gaussian
Case. The proposed EC-kNN outperforms other approaches in all cases when dimensionality becomes higher.

Mutual Information Estimation

For multivariate extension of mutual information between
random variables X = [X1, . . . , XD], where Xd denote the
component random variables of the vector-valued random
variable X , here we adopt the following definition

D∑
d=1

H(Xd)−H(X). (34)

It is also called the total correlation or multi-information
(Van de Cruys 2011) and it is also used in one of the above-
mentioned works (Gao, Ver Steeg, and Galstyan 2015).

The ground truth value of mutual information for the first
two cases can be obtained analytically using the Equation
(33). For the third case (mixture Gaussian), the ground true
value of mutual information for the mixture Gaussian case
is obtained using Monte-Carlo integration with 100000 sam-
ples.We compare our approach with kNN estimator, KSG
estimator, LNC 3 estimator and kNN-bw estimator.

Again, in each case, each dimension and each method,
we repeat 10 times simulating 1000 samples and computing
the estimation to compare with the ground truth entropy and
mutual information. The average of the root mean square er-
ror (RMSE) is taken as the performance measure. The result

3We use the program from https://github.com/BiuBiuBiLL/
NPEET LNC for the computations of KSG and LNC and the in-
put parameters are set to the default values

can be found in Figure 3. EC-kNN again outperforms both
the classical kNN and other alternatives especially in high
dimensionalities.

Conclusions and Discussions

The contribution of this paper is the novel approach for
entropy estimation called the EC-kNN estimator which re-
duces the bias of the kNN estimator. The proposed EC-kNN
comprises the local PCA learning and the boot-strap style
correction acceptance procedure which together address the
bias resulting from the uniformity assumption.

The advantage of the EC-kNN has been shown to be
prominent especially when the data set is high-dimensional
and complicated. The experiments have implied that the lo-
cal ellipsoidal correction and the boot-strap type acceptance
procedure can properly capture the local uniformity region.

Our approach provides several interesting directions of fu-
ture work. Our method using a fixed value of k already out-
performed alternatives and performance with optimized k
could be even better. Secondly, we proved here a bias bound
and additional bounds of variance of the estimator would
also be valuable.
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