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Abstract

Unsupervised domain adaptation is effective in leveraging
the rich information from the source domain to the unsuper-
vised target domain. Though deep learning and adversarial
strategy make an important breakthrough in the adaptabil-
ity of features, there are two issues to be further explored.
First, the hard-assigned pseudo labels on the target domain
are risky to the intrinsic data structure. Second, the batch-
wise training manner in deep learning limits the description
of the global structure. In this paper, a Riemannian mani-
fold learning framework is proposed to achieve transferabil-
ity and discriminability consistently. As to the first problem,
this method establishes a probabilistic discriminant criterion
on the target domain via soft labels. Further, this criterion
is extended to a global approximation scheme for the sec-
ond issue; such approximation is also memory-saving. The
manifold metric alignment is exploited to be compatible with
the embedding space. A theoretical error bound is derived
to facilitate the alignment. Extensive experiments have been
conducted to investigate the proposal and results of the com-
parison study manifest the superiority of consistent manifold
learning framework.

Introduction

In machine learning, large-scale datasets with annotations
play a crucial role during the learning process. Convolu-
tional Neural Networks (CNNs) achieves a significant ad-
vance in various tasks via a huge number of well-labeled
samples (LeCun, Bengio, and Hinton 2015). Unfortunately,
such data is actually prohibitive in many real-world sce-
narios. Applying the learned model in the new environ-
ment, i.e., the cross-domains scheme, will cause a signifi-
cant degradation of recognition performance (Ren, Xu, and
Yan 2018; Kim et al. 2019).

Unsupervised Domain Adaptation (UDA) is designed to
deal with the shortage of labels by leveraging the rich la-
bels and strong supervision from the source domain to the
target domain, where the target domain has no access to the
annotations. In fact, datasets composed of specifically ex-
ploratory factors and variants, such as background, style,
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illumination, camera views or resolution, often lead to the
shifting distributions (i.e., the domain shift) (Shimodaira
2000; Moreno-Torres et al. 2012). According to the trans-
fer theory established by Ben-David et al. (Ben-David et al.
2007; 2010), the primary task for cross-domain adaptation
is to learn the discriminative feature representations while
narrowing the discrepancy between domains.

Recent literature indicates that CNNs learn abstract
representations with nonlinear transformations (Bengio,
Courville, and Vincent 2013), which suppress the nega-
tive effects caused by variant explanatory factors in domain
shift (Long et al. 2015). Pioneer works (Long et al. 2015;
Ganin et al. 2016; Long et al. 2017; Sankaranarayanan et
al. 2018) attempt to transfer the source classifier with suf-
ficient supervision to the target domain by minimizing the
discrepancy between the source and target domains. Though
early adversarial confusion methods (Ganin et al. 2016;
Sankaranarayanan et al. 2018; Pinheiro 2018), which is in-
spired by Generative Adversarial Nets (GANs) (Goodfel-
low et al. 2014), promise the generated features are domain-
indistinguishable and form a well-aligned the marginal dis-
tributions, the conditional distributions are still not guaran-
teed (Long et al. 2018; Saito et al. 2018; Chen et al. 2019b).

Some latest methods achieve remarkable improvement in
accuracy by employing the uncertainty information on the
target domain, e.g., pseudo labels and soft labels (Long et al.
2018; Saito et al. 2018; Pinheiro 2018; Chen et al. 2019b).
Though such information transduced from the source do-
main strengthens the discriminative ability of the target do-
main, there are still two points to be further explored. First,
direct utilization of uncertainty information is risky and
should be treated cautiously (Long et al. 2018), as the hard-
assigned pseudo labels may change the intrinsic structure
of data space (Ding and Fu 2019). Second, the batch-wise
training in deep learning limits the capture of global infor-
mation; thus models may be misled by some extreme local
distributions.

In this paper, we develop a novel Riemannian manifold
embedding and alignment framework. As the transferability
and discriminability are both valuable (Chen et al. 2019b),
the proposal reaches a consistent rule for these two proper-
ties. The main idea is to describe the domains by a sequence
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of abstract manifolds. Enlightened by the successful applica-
tion of soft labels for conditional coding and the multilayer
embedding in (Long et al. 2017; 2018), a probabilistic dis-
criminant criterion is proposed. Further, we extend this cri-
terion to a global approximation scheme, which overcomes
the dilemma of discriminant learning in batch-wise training.
Inspired by previous attempts on manifold learning (Gong
et al. 2012; Huang et al. 2017), we employ manifold metric
to measure the domain discrepancy. The contributions are
summarized as follows.
• To optimize the structure of the target domain and re-

duce the risk of uncertainty information simultaneously, a
probabilistic discriminant criterion is developed. Specif-
ically, an inter-class penalty supervised by ground-truth
labels is built on the source domain; this penalty aims to
construct a separable structure for classes. Then a proba-
bilistic and truncated intra-class agreement is proposed on
the target domain, which treats the classes of the source
domain as anchors and acquires the inter-class separabil-
ity transductively.

• Based on the above criterion, a global approximation
scheme is extended. To capture the global structure, it
combines the global information in the last epoch with
data in the current batch. Since such approximation only
requires access to the class-wise centers, it is actually
memory-saving.

• The manifold alignment is developed to be compatible
with the embedding discriminant space. It establishes a
series of abstract descriptors (i.e. the basis) for original
data, and aligns the domains by minimizing the discrep-
ancy between the abstract descriptors, while most of noise
are filtered. Further, a theoretical error bound is derived to
facilitate the selection of components.

Related Work

Traditional UDA models usually focus on learning domain-
invariant and discriminative features (Pan et al. 2010; Long
et al. 2013). Based on the manifold assumption, plentiful
metrics are developed to measure the distance between in-
stances from source and target (Gong et al. 2012; Fernando
et al. 2013). Deep learning methods enhance the transfer-
ability by exploring the representations that disentangle ex-
ploratory factors of variants hidden behind the data (Ben-
gio, Courville, and Vincent 2013; Yosinski et al. 2014).
The distribution alignment methods minimize the discrep-
ancy of domains based on common statistics directly, e.g.,
the first-order statistic based on maximum mean discrep-
ancies (MMD) (Sejdinovic et al. 2013; Long et al. 2015;
Ren et al. 2019) and the second-order statistic based on co-
variance matrices (Sun, Feng, and Saenko 2016; Chen et al.
2019a). Inspired by the GANs (Goodfellow et al. 2014), lots
of adversarial approaches with different purposes are de-
veloped. The most common usage of adversarial networks
is to generate the representations that fool the domain dis-
criminator, thus the distributions of domains are more sim-
ilar (Ganin et al. 2016; Long et al. 2017; Pinheiro 2018).
Domain-specific and Task-specific methods aim to tackle the
issue of compact representations in high-level layers (Long

et al. 2017; Saito et al. 2018; Kim et al. 2019; Lee et al. 2019;
Ding and Fu 2019).

Though adversarial alignment generates well marginal
distributions, the conditional distributions still need to be
explored. Recent researches suggest that discriminability
plays a crucial role in the formation of class distribu-
tions (i.e., the conditional distributions) (Long et al. 2018;
Ding and Fu 2019; Chen et al. 2019b). Conditional Domain
Adversarial Network (CDAN) (Long et al. 2018) encodes
the target predictions into deep features and then models the
joint distributions of features and labels. Batch Spectral Pe-
nalization (BSP) (Chen et al. 2019b) revisits the relation be-
tween transferability and discriminability via the largest sin-
gular value of batch features.

Multi-layer Remannian Manifold Embedding

and Alignment

In this section, we propose the Discriminative Remannian
Manifold Embedding and Alignment (DRMEA) framework.

Backgrounds and Motivations

In the classical manifold learning paradigm, to construct
a compact and discriminative embedding space, a low-
dimensional manifold is usually extracted from the origi-
nally high-dimensional data space. Specifically, the Rieman-
nian manifold M usually consists of a certain object such as
linear subspace, affine/convex hull, symmetric positive defi-
nite (SPD) matrix (Huang et al. 2017).

From the perspective of discriminative embedding, graph-
based criterion (Yan et al. 2007) is widely adopted in the area
of manifold learning and domain adaptation. Basically, those
methods establish the instances-based connection graph or
similarity graph to construct a separable space. Besides, as
the primary assumption of domain adaptation is based on
statistical distribution, the alignment based on covariance
matrices, which lie on the Riemannian manifold, equips the
domain with the manifold and statistical properties. Moti-
vated by it, our work aims to embed the graph-based dis-
criminant criterion to the target domain, which is repre-
sented as manifolds (i.e., the covariance matrices).

Given features X ∈ R
d×n and its mean vector x̄ ∈ R

d,
where d denote the dimension of features and n represent the
sample sizes. Denote by S the input space (e.g., Euclidean
space, Hilbert space or Manifold space), the manifold learn-
ing aims to learning a specific nonlinear mapping

f : S → M,

where M is the low-dimensional embedding manifold.
Based on the SPD representation setting, the image of a
given covariance matrix C(X) = 1

n−1 (X − x̄1T
n )(X −

x̄1T
n )

T ∈ R
d×d is a low-dimensional SPD matrix C′ =

f(C) ∈ R
d′×d′

, where 1n is n-dimensional vector with all
one elements and (·)T is the transpose operation. Intuitively,
learning of mapping function f can be deduced to find a
nonlinear transformation

g : X �→ g(X)
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Figure 1: Overview of the proposed multilayer Riemannian manifolds embedding and alignment network. Stage 1: deep fea-
tures based on CNNs. Stage 2: Riemannian manifold layers, where fully connected layers with proposed “weak” discriminant
criterion and manifold metric domain alignment are employed to transfer the discriminative information.

and the image of mapping f can be approximated by the
inner product of g(X), i.e., f(C) ≈ g(X)g(X)T .

For domain adaptation, the source and target domains
can be taken as two Euclidean spaces, where the discrim-
inative information is relatively inadequate. Thus the ideal
manifolds are expected to be discriminative, representative
and compact. Besides, the features distribution of domains,
which is represented by manifolds, should be aligned with
manifold metric for the better transfer of discriminative
structure.

Low-Dimensional Manifold Layers

As previously stated, we aim to learn a nonlinear transforma-
tion g for the input features X directly. In this paper, CNNs
are used to obtain such projection g. To explore the latent
Riemannian representations of the Euclidean features (i.e.,
the deep features in stage 1), the output features of CNN
backbone are sent into progressive low-dimensional mani-
fold layers in the second stage. Since there is a naturally geo-
metric difference between Euclidean Space and Riemannian
Space, a multilayer scheme is adopted to reduce the dimen-
sion of features progressively.

Figure 1 shows the network architecture of the proposed
method. Let Θ be the parameters of networks. The progres-
sive Riemannian manifold layers {Mi|i = 1, 2, . . . , l} are
represented as a sequence of functions {gi|i = 1, 2, . . . , l},
and implemented on fully connection layers. In fact, the
CNNs and Riemannian manifold layers are generalized and
share by both two domains. It means that the common
projections are explored to map two domains to a general
low-dimensional space. Therefore, any manifold layers Mi

should be equipped with the following properties:

• Discriminative Structure: To strengthen the discriminative
power of manifold space, the intra-class samples are re-

quired to be compact, while the inter-class samples are
separable, respectively.

• Consistent Structure: The source and target domains are
aligned with manifold metric to match the manifold as-
sumption. As a result, the domain discrepancy is rep-
resented as the distance between two submanifolds on
Mi, and then minimized based on the defined manifold
metric (e.g., Grassmannian representations metric, Log-
Euclidean metric and manifold principal angle similarity).

To reach the above goals, we propose to model the properties
by losses LDS and LAL, which will be detailed later. Then,
the objective is formulated as following:

min
Θ

L = LCE + λ1LDS + λ2LAL,

where LCE is the cross-entropy loss of classifier on source
domain and {λ1, λ2} are the penalty parameters.

Discriminative Structure Loss

In this section, we describe how to embed the discriminative
structure into the manifold layers. The main idea is shown
in Figure 2. Since there exists a distribution discrepancy be-
tween different domains (e.g., (a) in Figure 2), conventional
discriminant criterion is too strong to satisfy in this case. To
relax the constraint, our method only focuses on the inter-
class separability of the source domain and the intra-class
compactness of the target domain.

Without loss of generality, we only introduce the formula-
tion of the loss terms in l-th Riemannian manifold layer Ml.
Let Hs

l ∈ R
dl×ns and Ht

l ∈ R
dl×nt be the feature matrices

of Ml. Since class centers of the source domain are used in
both two loss terms, the source mean vector h̄s

l ∈ R
dl and

source class-wise mean matrix H̄s
l ∈ R

dl×c are computed,
where c is the number of classes.
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Figure 2: Illustration of the discriminative structure loss. (a)
The target intra-class similarity constructs a compact space
for the samples from same category. (b) The source inter-
class similarity forms a separable space for source sam-
ples by finding a optimal rotations. (c) The final embedding
space, where the target domain is discriminative.

Source Inter-Class Similarity Though the traditional
inter-class discriminant criterion is applicable on the source
domain, a nice geometric structure of the class distribution
is actually not guaranteed under the distance metric. To this
end, the similarity measurement is utilized here, which has
also shown in Figure 2 (b). Rather than compute the similar-
ities between class-wise centers and total center directly, we
process the class-wise centers as following

Ĥs
l � H̄s

l − h̄s
l 1

T
c .

We call Ĥs
l = [ĥs

1, ĥ
s
2, . . . , ĥ

s
c] the centralized class-wise

means hereinafter. Further, if the columns of Ĥs
l are normal-

ized with �2 norm, the cosine similarity matrix is derived
as Sl

inter = ĤsT

l Ĥs
l . Because Sl

inter(i, j) = ĥsT

i ĥs
j indi-

cates the similarity between i-th class and j-th class, the di-
agonal elements are meaningless. Then the separable struc-
ture is reached by maximizing the dissimilarities between
the centralized class-wise mean vectors. Equivalently, it can
be achieved by minimizing the following inter-class loss:

Ll
inter(H

s
l ) =

2

c(c− 1)

∑
i<j

Sl
inter(i, j). (1)

Let us take Figure 2 (b) as an example. There is a 2-
dimensional space with 3 classes. Let {1,2,3} denotes the
labels of “Ball”, “Pyramid” and “Cube”, respectively. Un-
der this situation, Sl

inter(1, 2) and Sl
inter(1, 3) are depicted

as cos(β1) and cos(β2), respectively. According to the goal
of Eq. (1) and ignoring the constraints, the optimal solution
occurs at β1 = β2 = 2

3π, and the minimal Ll
inter equals

to − 1
2 (which can also be seen as the lower bound of con-

strained scenarios).

Target Intra-Class Similarity On the other hand, since
there are no labels on the target domain, the discriminant
learning is facilitated by the soft labels (i.e., the output of
softmax layer). Let Pt = [pt

1,p
t
2, . . . ,p

t
nt
] ∈ R

c×nt be
the softmax predictions of classifier layer. Since Pt can be
regarded as the confidence or probability of classification,

the predictions are used to weight the importance or confi-
dence of the supervised information provided by soft labels.
Similarly, assuming the columns of H̄s

l and Ht
l have unit

length. The similarities under all classification cases can be
written as Sl

intra = H̄sT

l Ht
l . It means that the source class-

wise centers are utilized instead of the target. The main rea-
sons can be summarized as follows: the inter-class structure
learned from the source domain can be transduced to the
target domain; the source class-wise centers computed from
ground-truth labels are more reliable. Because there is so
much uncertainty when pseudo labels are straightforwardly
used on the target domain, we establish a probabilistic dis-
criminative criterion to make the most of the information
provided by soft labels. Intuitively, Pt is a natural choice for
the probabilistically weighting model. Then the probabilistic
intra-class loss is formalized as

Ll
intra(H

t
l ,P

t) = − 1

ntc

c∑
i=1

nt∑
j=1

Pt(i, j)Sl
intra(i, j). (2)

However, there are much noise in Pt, whose values are
very small. Especially when the softmax classifier comes
to converging, the columns of Pt tend to be the one-hot
vectors. As truncation is a efficient way for denoising, we
develop a Top-k preserving scheme for the truncated intra-
class loss. Let Vj = {(i, j)|i = v1j , v2j , . . . , vkj} be the
index set of k-largest elements in pt

j , j = 1, 2, . . . , nt. Then
a characteristic function like matrix is defined as

χ(i, j) =

{
1, (i, j) ∈ Vj ,

0, (i, j) /∈ Vj .

Then, the intra-class loss is modified by the truncated matrix
χ and written as

Ll
intra(H

t
l ,P

t) = − 1

ntk

c∑

i=1

nt∑

j=1

χ(i, j)Pt(i, j)Sl
intra(i, j). (3)

A simple illustration is also shown in Figure 2 (a).
Based on the previous notations, Sl

intra(1, 1), S
l
intra(1, 2),

Sl
intra(1, 3) are computed as cos(α1), cos(α2) and cos(α3),

respectively. Suppose the softmax output of the “Ball” sam-
ple in figure is pt

1 = [0.75, 0.15, 0.1]T . According to Eq.
(2), all three similarities are taken into consideration, while
cos(α2) and cos(α3) are noise. If we adopt the Top-2 strat-
egy in Eq. (3), the perturbation from the “Cube” cos(α3) can
be excluded.

In conclusion, the proposed two loss terms build a prob-
abilistic discriminant criterion on the target domain. The
ground-truth labels on the source domain provide a reliable
separable structure directly, where the intra-class structure
is unnecessary. Then the target samples are attached to the
corresponding source class-wise center via soft labels. As
shown in Figure 2 (c), the intra-class relationship on the
source domain does not change much while the discrimi-
native property of the target domain is satisfied. Finally, the
discriminative structure loss is noted by

LDS =
∑
i

(Li
inter + Li

intra),
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Global Structure Learning For the batch scheme in deep
models, it is hard to obtain the complete relation graph be-
tween the instances. The direct application of classical graph
embedding may be misled by some extreme local distribu-
tions, which will result in a suboptimal solution.

Supposing that the geometry of manifolds does not
change drastically after several updates, we can built some
anchors in the whole data space to acquire the global infor-
mation. In this work, we propose to fix the anchors in each
batch iteration and update them after every epoch. Specifi-
cally, the anchors, i.e., h̄s

l in inter-class loss Eq. (1) and H̄s
l

in intra-class loss Eq. (3), are computed from the last epoch.
Note that the anchors are treated as constants in optimiza-
tion. H̄s

l in Eq. (1) and Ht
l in Eq. (3) are obtained from batch

data. The inter-class loss strongly supervised by source la-
bels is imposed at the beginning. While the intra-class loss
facilitated by soft label is equipped after a certain number of
iterations/epoches.

Manifold Metric Alignment Loss

To satisfy the second property, i.e., Consistent Structure, a
manifold metric alignment method is developed. As men-
tioned before, the covariance matrix is an important tool to
represent a manifold M. Therefore, the alignment based on
covariance not only meets the requirements of manifold met-
ric, but also reaches some nice statistical properties, such as
distribution assumption.

Grassmannian Metric Let Cs
l and Ct

l be the covariance
matrices of source and target domains computed from batch-
wise features, respectively. Assume Ms

l and Mt
l are two

submanifolds of Ml, which are represented by their cor-
responding covariance matrices. Before the alignment pro-
cess, these two submanifolds are partially overlapped, and
our goal is to minimize the discrepancy under the metric of
Ml. In general, the manifold metric alignment loss of the
l-th layer is expressed as

Ll
align � dist(Ms

l ,Mt
l) = dM(Cs

l ,C
t
l), (4)

where dM(·, ·) is the manifold metric to be determined.
Grassmannian manifold is a well-known type of Rieman-

nian manifold. It is a projection subspace R
d′
l deduced from

the originally high-dimensional space R
dl , d′l < dl. Thus

the two submanifolds Ms
l and Mt

l lying on the Grass-
mannian manifold Ml are represented as two individual
points. The distance between such two points is measured
by the discrepancy between their projection orthogonal ba-
sis Us

l and Ut
l . Specifically, the orthogonal basis of such

d′l-dimensional Grassmannian manifold consists of d′l dom-
inant singular vectors with respect to its representation ma-
trix. Thus Us

l and Ut
l are two dl × d′l column-orthogonal

matrices, which can be obtained from the Singular Value
Decomposition (SVD) of covariance matrices Cs

l and Ct
l ,

respectively. Finally, the Grassmannian distance is measured
by

dM(Cs
l ,C

t
l) =

1

d2l
‖Us

lU
sT

l −Ut
lU

tT

l ‖2F , (5)

where ‖·‖F is the Frobenius norm. Thus the manifold metric
alignment loss can be written as

LAL =
∑
i

Li
align,

Error Bound of Grassmannian Metric As the dimen-
sion d′l is needed in Grassmannian distance, we establish an
theoretical error bound for it. Inspired by the previous works
(Zwald and Blanchard 2006; Fernando et al. 2013), we shall
denote the covariance of given distribution D by C, and co-
variance drawn i.i.d. from D with sample size n by C̃. Then
Zwald et al. (Zwald and Blanchard 2006) give the following
theorem.
Theorem 1. (Zwald and Blanchard 2006) Let B be s.t. for
any vector x, ‖x‖ ≤ B, let Ud′

C and Ud′

C̃
be the orthogonal

projectors of the subspaces spanned by the first d′ eigenvec-
tors of C and C̃, respectively. Let λ1 > λ2 > · · · > λd′ >
λd′+1 ≥ 0 be the first d′ + 1 eigenvalues of C, then for

any n ≥
(

4B
λd′−λd′+1

(
1 +

√
ln(1/δ)

2

))2

with probability

at least 1− δ we have:

‖Ud′
C −Ud′

C̃
‖ ≤ 4B√

n (λd′ − λd′+1)

(
1 +

√
ln(1/δ)

2

)
.

(6)
Above theorem shows the relation between the error and

d′. Defining the right side of Eq. (6) as E(δ)
λd′−λd′+1

. To ex-
tend the inequality to the Grassmannian distance, we derive
following lemma.
Lemma 2. Based on the condition in Theorem 1, we have

‖Ud′
CUd′T

C −Ud′

C̃
Ud′T

C̃
‖F ≤ 2

√
2E(δ)

√
d′

λd′ − λd′+1

with probability at least 1− δ.
Based on Lemma 2, following theorem gives the error of

dM(Cs,Ct) with respect to its n samples approximation
dM̃(C̃s, C̃t).
Theorem 3. Assuming the condition in Theorem 1 is spec-
ified by domains. Specifically, λs

i and λt
i denote the i-th

largest eigenvalue of domain-specific covariance matrices
Cs and Ct, respectively. Denote by

e(d′) =

√
d′

λs
d′ − λs

d′+1

+

√
d′

λt
d′ − λt

d′+1

the error index. Then the following error bound holds with
probability at least 1− δ:

|dM(Cs,Ct)− dM̃(C̃s, C̃t)| ≤ 2
√
2E(δ)e(d′).

Theorem 3 suggests that the upper bound of error is pro-
portional to e(d′). It means that we should search the max-
imal gap between the continuous eigenvalues with the con-
sideration of inflation factor

√
d′. Recall that in batch learn-

ing setting, the batch size bs is usually smaller than d, thus
d′ only need to be searched in {1, 2, . . . , bs−1}. The proofs
are given in the Supplementary.
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Table 1: Recognition Rates (%) on VisDA-2017 (ResNet-101) and Office-Home (ResNet-50).
VisDA-2017 Plane bcycl bus car horse knife mcyle person plant sktbrd train truck Mean

ResNet-101 (He et al. 2016) 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN (Long et al. 2015) 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN (Ganin et al. 2016) 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD (Saito et al. 2018) 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
SimNet (Pinheiro 2018) 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9

GTA (Sankaranarayanan et al. 2018) - - - - - - - - - - - - 77.1
CDAN (Long et al. 2018) 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.7
GPDA (Kim et al. 2019) 83.0 74.3 80.4 66.0 87.6 75.3 83.8 73.1 90.1 57.3 80.2 37.9 73.3

BSP+DANN (Chen et al. 2019b) 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
BSP+CDAN (Chen et al. 2019b) 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

DRMEA (No AL) 92.8 15.3 86.7 86.3 93.8 70.7 95.2 68.9 95.8 40.4 85.1 5.6 69.7
DRMEA (No DS) 90.2 66.5 70.2 65.8 79.8 81.8 84.7 70.1 82.0 46.5 88.1 27.7 71.1

DRMEA 92.1 75.0 78.9 75.5 91.2 81.9 89.0 77.2 93.3 77.4 84.8 35.1 79.3

Office-Home Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Mean
ResNet-50 (He et al. 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN (Long et al. 2015) 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN (Ganin et al. 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6

JAN (Long et al. 2017) 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN (Long et al. 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

CDAN+E (Long et al. 2018) 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP+DANN (Chen et al. 2019b) 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
BSP+CDAN (Chen et al. 2019b) 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

DRMEA (No AL) 51.9 72.8 77.1 63.0 72.0 71.3 60.5 49.5 78.4 71.5 54.4 82.8 67.1
DRMEA (No DS) 51.2 72.4 77.7 63.0 71.4 71.4 58.6 44.6 79.1 71.1 53.4 81.5 66.3

DRMEA 52.3 73.0 77.3 64.3 72.0 71.8 63.6 52.7 78.5 72.0 57.7 81.6 68.1
±0.4 ±0.6 ±0.3 ±0.3 ±0.7 ±0.5 ±0.6 ±0.7 ±0.2 ±0.1 ±0.6 ±0.2 ±0.2

Experiments and Comparative Analysis

In this section, three popular domain adaptation datasets are
selected and the standard evaluation protocols are adopted.

Office-Home (Venkateswara et al. 2017) contains 4 do-
mains, i.e., Art (Ar), Clipart (Cl), Product (Pr) and Real-
World (Rw).

Image-CLEF-DA1 consists of 4 domains. Following the
previous protocol (Long et al. 2018), we conduct adaptation
task between Caltech (C), ImageNet (I) and Pascal (P).

VisDA-2017 (Peng et al. 2017) is a large-scale visual do-
main adaptation challenge dataset. The synthetic data to
real-image track is evaluated here.

Setup

Two layers Riemmanian manifold learning scheme is car-
ried out in all experiments (i.e., l = 2), where the first layer
(1024d) is activated by Leaky ReLU (α = 0.2) and the sec-
ond layer (512d) by Tanh. Adam Optimizer (lr = 0.0002,
β1 = 0.9, β2 = 0.999) with batch size of 50 is utilized
on Office-Home and Image-CLEF-DA datasets; the modi-
fied mini-batch SGD (Ganin et al. 2016) (lr = 0.003, mo-
mentum = 0.9, weight decay = 5e − 4) with batch size of
32 is employed on VisDA-2017 challenge. The learning rate
of CNN backbone layers is set as 0.1lr. The hyperparame-
ters are determined by try-and-error approach. Specifically,
λ1 and λ2 are set as 1e1 and 5e3, respectively. The Top-1
scheme is adopted for the target intra-class loss in Eq. (3).
For ablation study, the model without discriminative struc-
ture loss and manifold metric alignment loss are abbreviated
as DRMEA (No DS) and DRMEA (No AL), respectively.

Results Analysis

1https://www.imageclef.org/2014/adaptation
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Figure 3: Left: Error and eigenvalue curves w.r.t. d′. Right:
Recognition rate curves and loss curve.

Error Bound of Grassmannian Distance The numerical
simulation is conducted on Image-CLEF-DA dataset to ex-
plore the minimal error index e(d′). As a fact that the eigen-
values always decrease rapidly at the beginning and enter
into a flat state, the error bounds of dimensionality d′ located
in the flatten area are too high to assess. As shown in Figure
3, the trend of eigenvalues is consistent with the description.
Though the dramatic decrease in the beginning stage results
in a lower error, the information in that area is unconvincing
and insufficient to support the measurement of manifolds.
Since there is a natural gap between the (bs − 1)-th and bs-
th dominant eigenvalues, e(bs − 1) is smaller than most of
other errors. We highlight the error index of e(bs−1) by blue
dash line, and observe only errors of d′ = {1, 2, . . . , 12, 14}
are lower than e(bs − 1). Empirically, the dimensionality of
Grassmannian manifold d′ is set as bs − 1 hereinafter.

Convergence The convergence cures on Office-31 A→W
adaptation task are displayed in Figure 3. It the beginning,
the objective loss value decreases quickly and the recog-
nition rate tends to enter a stable region in the epoch 10-
15. However, the intra-class constraint is imposed after 15
epoches, which further activates the learning of discrimina-

5034



Table 2: Recognition Rates (%) on Image-CLEF-DA (ResNet-50).
Image-CLEF-DA I→P P→I I→C C→I C→P P→C Mean

ResNet-50 (He et al. 2016) 74.8 ± 0.3 83.9 ± 0.1 91.5 ± 0.3 78.0 ± 0.2 65.5 ± 0.3 91.2 ± 0.3 80.7
DAN (Long et al. 2015) 74.5 ± 0.4 82.2 ± 0.2 92.8 ± 0.2 86.3 ± 0.4 69.2 ± 0.4 89.8 ± 0.4 82.5

DANN (Ganin et al. 2016) 75.0 ± 0.3 86.0 ± 0.3 96.2 ± 0.4 87.0 ± 0.5 74.3 ± 0.5 91.5 ± 0.6 85.0
JAN (Long et al. 2017) 76.8 ± 0.4 88.0 ± 0.2 94.7 ± 0.2 89.5 ± 0.3 74.2 ± 0.3 91.7 ± 0.3 85.8

CDAN (Long et al. 2018) 76.7 ± 0.3 90.6 ± 0.3 97.0 ± 0.4 90.5 ± 0.4 74.5 ± 0.3 93.5 ± 0.4 87.1
CDAN+E (Long et al. 2018) 77.7 ± 0.3 90.7 ± 0.2 97.7 ± 0.3 91.3 ± 0.3 74.2 ± 0.2 94.3 ± 0.3 87.7

DRMEA (No AL) 78.0 ± 0.1 91.1 ± 0.1 95.6 ± 0.2 88.7 ± 0.3 74.8 ± 0.1 94.8 ± 0.2 87.3
DRMEA (No DS) 78.9 ± 0.1 90.5 ± 0.2 94.0 ± 0.1 87.8 ± 0.1 76.7 ± 0.2 93.0 ± 0.1 86.8

DRMEA 80.7 ± 0.1 92.5 ± 0.1 97.2 ± 0.1 90.5 ± 0.1 77.7 ± 0.2 96.2 ± 0.2 89.1
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Figure 4: Visualization of the feature space on VisDA-2017
dataset. Rows are colored by domains or classes.

tive structure. Thus the second ascent of accuracy on target
domain occurred after 15 epoches, which leads to the con-
tinuous improvement of recognition rate and alleviates the
over-fitting the on the source domain.

Comparison Several state-of-the-art UDA approaches are
selected and shown in Table 1-2. The experimental result
on Visda-2017 dataset is shown in the top of Table 1. We
observe that DRMEA outperforms others by a large margin
in average accuracy from the result. Performance on Office-
Home dataset is provided at the bottom of Table 1, the pro-
posed method improves the accuracy to 68.1% and obtains
the highest accuracy in most of the adaptation tasks. Re-
sults on Image-CLEF-DA dataset are provided in Table 2.
As the discrepancy between the source and target domains
on Image-CLEF-DA dataset is relatively smaller than oth-
ers, a more discriminative model is essential to the improve-
ment of recognition accuracy. DRMEA encodes the discrim-
inant criterion and alignment constraint simultaneously, thus
it outperforms other methods by 1.4% at least.

The ablation results also prove that the whole Riemannian
manifold learning framework effect when both loss terms

are equipped. As the discriminative structure loss provides
a separable structure and manifold metric alignment loss
bridges the distribution discrepancy between the source and
target domains based on Grassmannian distance, both two
losses are important.

Visualization Figure 4 shows the 2-D representation
spaces obtained from t-SNE (Maaten and Hinton 2008) al-
gorithm on VisDA-2017 dataset. CDAN+E shortens the dis-
tance between source and target by using adversarial align-
ment. A part of classes has been dragged away from the cen-
ter, e.g., plant, car, horse, aeroplane and bicycle. In the third
column, our method further optimizes the structure of the
representation space. The categories are aligned better than
ResNet-101 and CDAN+E, which leads to more compact
target space.

Conclusion

In this paper, we develop a Riemannian manifold embed-
ding and alignment framework for UDA, where the trans-
ferability and discriminability are reached consistently. To
optimize the structure of the target domain, the soft labels
are encoded into the discriminant criterion probabilistically
and transductively. Then a globally discriminative structure
is approximated via a memory-saving manner. A theoreti-
cal error bound is derived, which is guaranteed to find an
appropriate dimension for manifolds during the alignment.
Numerical simulation and extensive comparisons demon-
strate the effectiveness of the derived theorem and proposed
method. How to further reduce dependence of our proposal
on temporal target predictions is our future work.
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