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Abstract

Shapelets are discriminative subsequences for time series
classification. Recently, learning time-series shapelets (LTS)
was proposed to learn shapelets by gradient descent directly.
Although learning-based shapelet methods achieve better re-
sults than previous methods, they still have two shortcomings.
First, the learned shapelets are fixed after training and cannot
adapt to time series with deformations at the testing phase.
Second, the shapelets learned by back-propagation may not
be similar to any real subsequences, which is contrary to
the original intention of shapelets and reduces model inter-
pretability. In this paper, we propose a novel shapelet learning
model called Adversarial Dynamic Shapelet Networks (AD-
SNs). An adversarial training strategy is employed to pre-
vent the generated shapelets from diverging from the actual
subsequences of a time series. During inference, a shapelet
generator produces sample-specific shapelets, and a dynamic
shapelet transformation uses the generated shapelets to ex-
tract discriminative features. Thus, ADSN can dynamically
generate shapelets that are similar to the real subsequences
rather than having arbitrary shapes. The proposed model has
high modeling flexibility while retaining the interpretability
of shapelet-based methods. Experiments conducted on exten-
sive time series data sets show that ADSN is state-of-the-art
compared to existing shapelet-based methods. The visualiza-
tion analysis also shows the effectiveness of dynamic shapelet
generation and adversarial training.

Introduction

Time series classification is a problem where a set of time
series from different categories are given to an algorithm
that learns to map them to their corresponding categories.
Such problems are ubiquitous in daily life, including cat-
egorizing financial records, weather data, electronic health
records, and so on. In recent years, a novel approach called
shapelets (Ye and Keogh 2009) has attracted a great deal of
attention in this domain. Shapelets are discriminative subse-
quences of time series, and have been successfully applied to
time series classification tasks. The category of a time series
is distinguished by the presence or absence of one or more
shapelets somewhere in the whole series. Since time series
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from different categories are often distinguished by their
local pattern rather than by global structure, shapelets are
an effective approach to this problem. Moreover, shapelet-
based methods can provide interpretable decisions (Ye and
Keogh 2009) since the important local patterns found from
original subsequences are used to identify the category of
time series.

The original shapelet-based algorithm constructs a deci-
sion tree classifier by recursively searching the best shapelet
data split (Ye and Keogh 2009). The candidate subsequences
are assessed by information gain, and the best shapelet is
found at each node of the tree through enumerating all candi-
dates. Lines et al. (Lines et al. 2012) proposed an algorithm
called shapelet transformation that finds the top k shapelets
in a single pass and then uses the shapelets to transform the
original time series, where each attribute of the new repre-
sentation is the distance between the original series and one
of the shapelets. The transformed data can be used in con-
junction with any sort of classifier. Thus it can achieve better
performance while simultaneously reducing the run time.

Recently, Grabocka et al. (Grabocka et al. 2014) proposed
a novel shapelet discovery approach called learning time-
series shapelets (LTS), which uses gradient descent to learn
shapelets directly rather than searching over a large num-
ber of candidates. Since LTS learns the shapelets jointly
with the classifier, it further improves the classification ac-
curacy. Motivated by LTS, other learning-based shapelet
methods (Shah et al. 2016; Zhang et al. 2016) have been
proposed. However, although these learning-based meth-
ods achieve better performance than previous methods, they
still have two main shortcomings. First, since the shapelets
learned with these methods are fixed after training, they can-
not deal with novel deformations of local patterns, which
will result in the failure to recognize important patterns
at test time. Second, the original shapelet-based methods
provide interpretability because the shapelets are based on
discriminative subsequences. However, there is no con-
straint for existing learning-based shapelet methods that
the shapelets should resemble subsequences, which reduces
their interpretability. Learning-based methods can have ar-
bitrary shapes and even diverge from the real subsequences,
contrary to the original intent of shapelet methods.
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In this paper, we propose a novel model called Adversar-
ial Dynamic Shapelet Networks (ADSNs). Inspired by Jia et
al. (Jia et al. 2016) who proposed Dynamic Filter Networks
(DFNs) that generate the convolutional filters conditioned on
input data, ADSNs use a shapelet generator to generate a set
of shapelets conditioned on subsequences of the input time
series. Here, although the parameters of the shapelet gener-
ator are fixed after training, the shapelet generator can gen-
erate different shapelets according to different input sam-
ples at test phase. The time series is then transformed by the
sample-specific shapelets, and the new representations are
passed through a softmax layer to calculate the final prob-
ability distribution for each label. We model the shapelet
generating process as a two-player minimax game following
the Generative Adversarial Network (GAN) (Goodfellow et
al. 2014) approach. Specifically, a discriminator is trained
to distinguish the generated shapelets from the actual sub-
sequences of the input. Therefore, the generated shapelets
will be similar to the subsequences of the input time se-
ries. Moreover, we add a shapelet diversity regularization
term (Zhang et al. 2018) to the objective function to increase
the diversity of the generated shapelets and avoid mode col-
lapse (Salimans et al. 2016). Our contributions can be sum-
marized as follows:
• We propose a shapelet generator to dynamically produce

shapelets that are sample-specific, improving the model-
ing flexibility and classification performance.

• In order to prevent the generated shapelets from creating
arbitrary shapes, an adversarial training strategy is em-
ployed to ensure the generated shapelets are similar to the
actual subsequences of the time series. To the best of our
knowledge, this is the first work that uses an adversarial
training strategy to learn shapelets.

• Our experimental results on a large number of time series
datasets show that the proposed model achieves state-of-
the-art performance and the effectiveness of our model is
demonstrated through visualization analysis.

Related Work

The original shapelet classifier has two major limitations.
First, it is slow: the shapelet discovery process is extremely
time-consuming. Second, by making the decision tree an in-
tegral part of the algorithm, it cannot combine the shapelets
with other classifiers. More recent shapelet-based methods
address these deficiencies, and can be roughly divided into
two categories: 1) accelerating shapelet discovery; 2) using
the shapelets to transform the data into a feature space that
can be used by other classification algorithms.

Accelerating Shapelet Discovery. Ye and Keogh (Ye
and Keogh 2009) stop the distance computation early, and
use entropy pruning to avoid large calculations when search-
ing for the best shapelet. Chang et al. (Chang et al. 2012)
implemented a parallel version of shapelet discovery on
GPUs, significantly reducing the runtime. Rakthanmanon
and Keogh (Rakthanmanon and Keogh 2013) used a tech-
nique called symbolic aggregate approximation (SAX) (Lin
et al. 2007) to transform the raw time series into a discrete
and low dimensional representation, accelerating the search

process. Grabocka et al. (Grabocka, Wistuba, and Schmidt-
Thieme 2015) proposed pruning the shapelets that are sim-
ilar, and using a supervised selection process to choose
shapelets based on how well they improve classification ac-
curacy. Hou et al. (Hou, Kwok, and Zurada 2016) proposed
a novel shapelet discovery approach that learns the shapelet
positions by using a generalized eigenvector method, and
a fused lasso regularizer to get a sparse and “blocky” so-
lution. This approach treats the shapelet discovery task as
a numerical optimization problem and is faster than previ-
ous shapelet-based methods. Although the above-mentioned
methods improved computational efficiency, there is still
room for improving accuracy.

Shapelet Transformation. Instead of embedding
shapelet discovery within a decision tree classifier, the
Shapelet Transformation (ST) algorithm finds the most
discriminative subsequences as shapelets in a single pass
through the data (Lines et al. 2012). The shapelets are used
to transform the time series data into new representations, in
which each attribute is the distance of a time series to one of
the shapelets.

Grabocka et al. (Grabocka et al. 2014) proposed using
gradient descent to learn the top k shapelets directly, rather
than searching among candidate subsequences. A shapelet
transformation is then applied to the time series. Shah et
al. (Shah et al. 2016) also used gradient descent to learn
shapelets, but replaced the Euclidean distance measure with
Dynamic Time Warping (DTW) distance (Berndt and Clif-
ford 1994). Zhang et al. (Zhang et al. 2016) used learned
shapelets for time series clustering task, using the shapelet
transformation before clustering.

Whether obtaining shapelets by searching or learning,
these shapelet-based methods use fixed shapelets after train-
ing, and thus cannot be adapted to time series with defor-
mations, reducing the modeling flexibility. In contrast, we
propose a sample-specific shapelet learning model that dy-
namically generates the shapelets according to the input se-
ries, and use an adversarial training strategy to constrain the
shapelets to be similar to the actual subsequences.

Proposed Method
The general structure of an ADSN is illustrated in Figure 1.
The shapelet generator is used to generate a set of shapelets
conditioned on subsequences of input time series. Then the
dynamic shapelet transformation is performed on the input
time series to extract the discriminative features, and a soft-
max layer is used to calculate the final probability distri-
bution for each class. A diversity regularization term con-
strains the generated shapelets to be different from each
other, while the adversarial training strategy ensures the gen-
erated shapelets are similar to the actual subsequences.

Shapelet Generator.

To generate shapelets of length L conditioned on the input
time series, we first use an L-length sliding window with a
stride of 1 to extract the subsequences of the time series, and
then use one convolutional layer to generate the shapelets.

Given a set of n time series T = {t1, t2, . . . , tn}, each
time series ti contains m ordered real values, denoted as ti =
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Figure 1: General architecture of the Adversarial Dynamic Shapelet Network (ADSN).

(ti,1, ti,2, . . . , ti,m)T . With a sliding window length L and
stride of 1, we can obtain P subsequences with length L,
where P = m− L+ 1 is the number of subsequences.

We concatenate all the subsequences of i-th time series
and denote the result as Oi, where Oi ∈ RL×P is given by

Oi = ti,1:L ⊕ ti,2:L+1 ⊕ · · · ⊕ ti,P :m (1)

where ti,p:p+L−1 ∈ RL×1 denotes the L-length subse-
quence of i-th time series starting at time step p and ⊕ de-
notes the concatenation operator. Then a convolution opera-
tion is applied on Oi along the direction of the length with
stride of 1 to obtain the generated shapelets. Let si,j ∈ RL×1

denote the j-th generated shapelet conditioned on the i-th
time series, then the shaplet si,j is defined by

si,j = Wj ∗ Oi + bj (2)

where Wj ∈ Rw×P denotes the j-th filter with w-width,
bj is the bias, ∗ denotes the convolution operation. The
activation function is not used here because the generated
shapelets are trained to be similar to the actual subsequences
and their values should not be limited to the range of an
activation function. Similarly, we can generate the top k
shapelets of i-th input time series as follows:

Si = {si,1, si,2, · · · , si,j , · · · , si,k} (3)

Hence, multiple sample-specific shapelets are obtained
from each input time series.

Dynamic Shapelet Transformation.

After the shapelet generating procedure, the sample-specific
shapelets are used to transform the original time series to
the new representations, where each attribute is the distance
between the original series and one of the shapelets. Let h ∈
Rn×k denote the shapelet-transformed representation, and
its each element hi,j denotes the Euclidean distance between
ti and shapelet si,j as follows:

hi,j = min
p=1,···,P

√√√√ L∑
l=1

(ti,p+l−1 − si,j,l)2 (4)

where si,j,l is the l-th value of shapelet si,j . Since the
shapelets used here are generated dynamically conditioned
on input time series, we call this transformation the dynamic
shapelet transformation.

Finally, the transformed representation is fed into a soft-
max layer to obtain the conditional distribution over each
category label as follows:

ŷi = Wouthi (5)
P (C|ti) = softmax(ŷi) (6)

where hi is the feature vector generated by Equation 4, Wout

is the weights of softmax layer, ŷi denotes the output vector
and P (C|ti) denotes the conditional label distribution of the
i-th sample. Dropout is applied to h to avoid overfitting.

Adversarial Training Strategy.

Since shapelets are discriminative subsequences, the
shapelets generated by the shapelet generator should be sim-
ilar to the actual subsequences. However, if we generate the
shapelets without any constraint, the shapelets could be ar-
bitrary shapes. Hence, we need to constrain the shapelets
to be similar to real subsequences in order to preserve in-
terpretability. Note that we don’t expect that the shapelets
should be exactly the same as subsequences, which will re-
sult in an all-zero representation after shapelet transforma-
tion. We just bridge the gap between the distribution of gen-
erated shapelets and subsequences of time series.

To this end, a discriminator D is trained to determine
whether the shapelets are generated by the shapelet network,
or are subsequences from the actual time series. We model
the training process as a two-player minimax game. By
adding an adversarial loss, the shapelet generator is trained
to generate the shapelets similar to the actual subsequences
and to fool the discriminator D. We alternately update the
parameters of discriminator D and the parameters of ADSN.
This enhances both the discriminator to be more power-
ful and the generated shapelets to be more similar to sub-
sequences. Formally, the discriminator D is implemented
with a two-layer convolutional neural network and trained
by minimizing the following loss function:
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LD = −
∑
i

∑
p

log(D(ti,p:p+L−1))−
∑
i

∑
j

log(1−D(si,j))

(7)
where D(·) denotes the classification result of the discrim-
inator. To optimize discriminator, the target label is 1 for
D(ti,p:p+L−1) and 0 for D(si,j).

Diversity Regularization Term.

Similar shapelets will lead to similar transformation results,
which will create correlated features from the shapelet trans-
formation. However, mode collapse in adversarial training
will make the generated shapelets similar to each other.
Therefore, enhancing the diversity of shapelets is necessary.

We introduce a diversity regularization term to prevent
the model from generating shapelets that are similar to each
other and alleviate the mode collapse problem. Specifically,
the Frobenius norm of the shapelets similarity matrix is
used. The similarities between shapelets of i-th time series
are denoted as a matrix Gi ∈ Rk×k, where each element
of Gi(si,j , si,j′) denotes the similarity between shapelet si,j
and shapelet si,j′ . Following the protocol used in previous
work (Zhang et al. 2018), a radial basis function (RBF) is
employed to calculate the similarity between two shapelets
as follows:

Gi(si,j , si,j′) = exp(−d(si,j , si,j′)

σ2
) (8)

where d(si,j , si,j′) is the Euclidean distance between two
shapelets and σ denotes the parameter for RBF kernel. The
σ are fixed to 1 in our methods.

Overall Loss Function. Finally, the overall training loss
LADSN of ADSN is defined by

Lcls = − 1

n

n∑
i=1

c∑
r=1

1{yi,r = 1} log exp(ŷi,r)∑c
l=1 exp(ŷi,l)

(9)

Ldiv = ‖G1 ⊕ G2 ⊕ · · · ⊕ Gn‖2F (10)

Ladv = − 1

n× k

n∑
i=1

k∑
j=1

log(D(si,j)) (11)

LADSN = Lcls + λdivLdiv + λadvLadv (12)
where Lcls, Ldiv and Lcls are classification loss, diversity
regularization term and adversarial loss, respectively. yi is
the target label of the i-th sample, c is the number of cate-
gories, Gi is defined by Equation 8, ‖ · ‖2F is the Frobenius
norm, λdiv and λadv are the regularization parameters.

In practice, we find that the discriminator can easily
distinguish the generated shapelets from the actual subse-
quences. Thus, we alternately optimize the discriminator
once and ADSN three times to ensure the training process is
stable. Also, the number of actual subsequences P of a sam-
ple time series depends on the length of the sample. P may
be much larger or much smaller than the number of gener-
ated shapelets k (a hyperparameter) for some datasets, which
also leads the training of discriminator to be unstable. There-
fore, we randomly sample k subsequences for each sample
to decrease P if P > k, while copying more subsequences
when P < k. In this way, we can ensure there is a similar
number of subsequences compared to the shapelets.

Experiments

We conduct experiments on the 85 UCR (Chen et al. 2015)
and 8 UEA (Hills et al. 2014) time series datasets. Due to
the space limitation, we follow the protocol used in previ-
ous shapelet-based papers (Grabocka et al. 2014; Lines et
al. 2012; Rakthanmanon and Keogh 2013; Hou, Kwok, and
Zurada 2016) and only report the results on 18 UCR datasets
and 8 UEA datasets in this section. The full results are shown
in section G of the supplementary material. Each data set
was split into training and testing set using the standard split.
The statistics of these 26 datasets are shown in section A of
the supplementary material.

The width of the convolutional filter in the generator
and discriminator are fixed to 3. The number of channels
of the first and second convolution layer in the discrim-
inator are 16 and 32, respectively. λdiv and λadv are set
to 0.01 and 0.05, respectively. The hyper-parameters of
ADSN are tuned through a grid search approach based on
cross validation. The number of shapelets is chosen from
k ∈ {30, 60, 90, 120}. The dropout rate applied to the soft-
max layer is evaluated over {0, 0.25, 0.5}. We choose the
shapelet lengths according to the length of the time series.
In fact, we use two shapelet lengths for each time series, i.e.,
L is better denoted as L1 and L2. We try a variety of lengths
(L1, L2) from the set {(0.1, 0.2), (0.2, 0.3), · · · , (0.7, 0.8)}.
Each value is a fraction of the time series length (e.g., L =
(0.1, 0.2) means 10% and 20% of the time series length).
The hyperparameters of ADSN on each dataset are shown
in section A of the supplementary material.

The experiments are run on the TensorFlow platform us-
ing an Intel Core i7-6850K, 3.60-GHz CPU, 64-GB RAM
and a GeForce GTX 1080-Ti 11G GPU. The Adam (Kingma
and Ba 2014) optimizer is employed with an initial learning
rate of 0.001. The pseudo code of ADSN is shown in section
F of the supplementary material. The supplementary mate-
rial mentioned in this paper is available on github1.

Comparison with Shapelet-based Methods

ADSN is compared with 6 shapelet-based methods, in-
cluding the fast shapelet algorithm (FSH) (Rakthanmanon
and Keogh 2013), the scalable discovery algorithm (SD)
(Grabocka, Wistuba, and Schmidt-Thieme 2015), learning
time-series shapelets (LTS) (Grabocka et al. 2014), the
ultra-fast shapelet algorithm (UFS) (Wistuba, Grabocka, and
Schmidt-Thieme 2015), shapelet transformation with lin-
ear SVM classifier (IGSVM) (Hills et al. 2014) and the
fused lasso generalized eigenvector method (FLAG) (Hou,
Kwok, and Zurada 2016). The details of these methods
are described in section B of the supplementary material.
The results of these shapelet-based methods are collected
from (Hou, Kwok, and Zurada 2016) (AAAI-2016). To ver-
ify the effectiveness of the diversity regularization term and
the adversarial training, we also show a comparison be-
tween the full ADSN model and its three ablation models: 1)
ADSN without adversarial loss (w/o adv); 2) ADSN without
diversity regularization (w/o div); 3) ADSN without diver-
sity regularization and adversarial loss(w/o div&adv).

1https://github.com/qianlima-lab/ADSN.
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Table 1: Accuracy of ADSN and 6 shapelet-based methods.

Dataset FSH SD IGSVM FLAG UFS LTS w/o
div&adv

w/o
adv

w/o
div ADSN

Adiac 57.3 52.2 23.5 75.2 69.8 51.9 77.0 80.1 79.3 79.8
Beef 50.0 50.0 90.0 83.3 66.7 76.7 86.7 90.0 90.0 93.3
Chlorine. 58.8 59.6 57.1 76.0 73.8 73.0 87.7 87.7 87.0 88.0
Coffee 92.9 96.4 100.0 100.0 96.4 100.0 100.0 100.0 100.0 100.0
Diatom. 87.3 86.6 93.1 96.4 95.8 94.2 96.7 97.8 98.0 98.7
DP Little 60.6 55.7 66.6 68.3 67.4 73.4 71.6 71.3 70.7 72.7
DP Middle 58.8 55.3 69.5 71.3 66.5 74.1 74.3 74.1 77.4 78.4
DP Thumb 63.4 54.4 69.6 70.5 68.6 75.2 71.8 72.1 73.5 73.6
ECGFiveDays 99.8 91.5 99.0 92.0 100.0 100.0 100.0 100.0 100.0 100.0
FaceFour 92.0 83.0 97.7 90.9 93.2 94.3 95.5 95.5 95.5 97.7
GunPoint 94.0 93.1 100.0 96.7 98.7 99.6 96.7 97.3 97.7 98.7
ItalyPower. 91.0 88.0 93.7 94.6 94.0 95.8 96.2 96.8 96.9 97.2
Lightning7 65.2 65.2 63.0 76.7 68.5 79.0 79.5 79.6 76.7 80.8
MedicalImages 64.7 66.0 55.2 71.4 71.1 71.3 71.4 71.7 71.6 72.0
MoteStrain 83.8 78.3 88.7 88.8 87.2 90.0 87.5 90.9 89.0 90.6
MP Little 56.9 62.7 70.7 69.3 71.7 74.3 75.7 75.7 75.5 75.8
MP Middle 60.3 64.5 76.9 75.0 74.8 77.5 78.3 79.8 78.1 79.1
Otoliths/Herring 60.9 64.1 64.1 64.1 57.8 59.4 67.2 70.3 65.6 70.3
PP Little 57.6 55.8 72.1 67.1 66.8 71.0 71.0 71.4 74.1 71.5
PP Middle 61.6 60.5 75.9 73.8 75.4 74.9 78.1 77.4 78.4 78.6
PP Thumb 55.8 61.8 75.5 67.4 67.2 70.5 69.1 71.2 69.3 69.5
Sony. 68.6 85.0 92.7 92.9 79.0 91.0 91.0 91.2 91.3 91.5
Symbols 92.4 86.5 84.6 87.5 88.8 94.5 94.8 95.5 95.2 96.3
SyntheticC. 94.7 98.3 87.3 99.7 99.7 97.3 99.7 99.7 99.3 100.0
Trace 100.0 96.0 98.0 99.0 96.0 100.0 100.0 100.0 100.0 100.0
TwoLeadECG 92.5 86.7 100.0 99.0 83.6 100.0 97.9 98.4 97.4 98.6
AVG rank 8.6 9.1 6.2 6.0 7.1 5.0 4.3 3.1 3.7 2.0
best 1 0 5 2 1 6 3 7 5 15
p-value 1.23E-05 8.30E-06 4.91E-04 2.86E-05 1.82E-05 2.35E-03 2.68E-05 8.05E-03 3.29E-04 -

As shown in Table 1, ADSN achieves the best results on
15 of the 26 datasets and also the highest average rank of 2.0.
Among the other classifiers, LTS performs better by learn-
ing the shapelets jointly with the classifier. Due to the dy-
namic generation of shapelets, ADSN outperforms LTS. The
full ADSN model is always superior to all of its ablations,
demonstrating the effectiveness of the adversarial training
and diversity regularization. To further analyze the perfor-

Figure 2: Critical difference diagram over the average rank
of ADSN and 6 shapelet-based methods using Nemenyi test.

mance, we make a pairwise comparison for each shapelet-
based method against ADSN. Specifically, we conducted the
Wilcoxon signed rank test (Demšar 2006) to measure the
significance of the difference. As shown in Table 1, ADSN
is significantly superior to all of the other shapelet methods
at p <0.01 level.

We also conduct the Nemenyi non-parametric statistical
test (Demšar 2006) and plot the critical difference diagram.
The results are shown in Figure 2. Classifiers that are not
statistically significantly different are joined by horizontal
lines. The critical difference is 2.657, which means that two
classifiers are not significantly different at p <0.05 level

when the rank difference is less than 2.657. While ADSN
is numerically superior to the three baseline methods, their
performance is not statistically different. However, ASDN is
statistically superior to all of the other shapelet methods.

Comparison with State-of-the-art Methods

We further compare ADSN with 11 state-of-the-art methods.
These 11 classifiers can be divided into 4 categories:
1. Distance-based methods include derivative DTW

(DDDTW ) (Górecki and Łuczak 2013) and derivative
transform distance (DTDC) (Górecki and Łuczak 2014);

2. Feature-based methods include bag of SFA symbols
(BOSS) (Schäfer 2015), time series fores (TSF) (Deng
et al. 2013), time series bag of features (TSBF) (Baydo-
gan, Runger, and Tuv 2013) and learned pattern similar-
ity (LPS) (Baydogan and Runger 2016);

3. Ensemble-based methods include elastic ensembles
(EE) (Lines and Bagnall 2015) and collection of trans-
formation ensembles (COTE) (Bagnall et al. 2015);

4. Deep learning methods (Wang, Yan, and Oates 2017) in-
clude multilayer perceptrons (MLP), fully convolutional
networks (FCN) and residual network (ResNet). The re-
sults of these methods are collected from (Bagnall et al.
2017; Wang, Yan, and Oates 2017).

The details of these methods are also described in section B
of the supplementary material.

As shown in Table 2, ADSN achieves the highest aver-
age rank of 3.4. Although ADSN and FCN both achieve the
best result on 9 datasets, ADSN is numerically superior in
average rank. Similarly, we conduct the Wilcoxon signed
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Table 2: Accuracy of ADSN and 11 state-of-the-art methods.

Dataset DDDTW DTDC BOSS TSF TSBF LPS EE COTE MLP FCN ResNet ADSN
Adiac 70.1 70.1 76.5 73.1 77.0 77.0 66.5 79.0 75.2 85.7 82.6 79.8
Beef 66.7 66.7 80.0 76.7 56.7 60.0 63.3 86.7 83.3 75.0 76.7 93.3
Chlorine. 70.8 71.3 66.1 72.0 69.2 60.8 65.6 72.7 87.2 84.3 82.8 88.0
Coffee 100.0 100.0 100.0 96.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Diatom. 96.7 91.5 93.1 93.1 89.9 90.5 94.4 92.8 96.4 93.0 93.1 98.7
ECGFiveDays 76.9 82.2 100.0 95.6 87.7 87.9 82.0 99.9 97.0 98.5 95.5 100.0
FaceFour 83.0 81.8 100.0 93.2 100.0 94.3 90.9 89.8 83.0 93.2 93.2 97.7
Gun Point 98.0 98.7 100.0 97.3 98.7 99.3 99.3 100.0 93.3 100.0 99.3 98.7
Otoliths/Herring 54.7 54.7 54.7 60.9 64.1 57.8 57.8 62.5 68.7 70.3 59.4 70.3
ItalyPower. 95.0 95.1 90.9 96.0 88.3 92.3 96.2 96.1 96.6 97.0 96.0 97.2
Lightning7 67.1 65.8 68.5 75.3 72.6 74.0 76.7 80.8 64.4 86.3 83.6 80.8
MedicalImages 73.7 74.5 71.8 75.5 70.5 74.6 74.2 75.8 72.9 79.2 77.2 72.0
MoteStrain 83.3 76.8 87.9 86.9 90.3 92.2 88.3 93.7 86.9 95.0 89.5 90.6
Sony. 74.2 71.0 63.2 78.7 79.5 77.4 70.4 84.5 72.7 96.8 98.5 91.5
Symbols 95.3 96.3 96.7 91.5 94.6 96.3 96.0 96.4 85.3 96.2 87.2 96.3
SyntheticC. 99.3 99.7 96.7 98.7 99.3 98.0 99.0 100.0 95.0 99.0 100.0 100.0
Trace 100.0 99.0 100.0 99.0 98.0 98.0 99.0 100.0 82.0 100.0 100.0 100.0
TwoLeadECG 97.8 98.5 98.1 75.9 86.6 94.8 97.1 99.3 85.3 100.0 100.0 98.6
AVG rank 8.3 8.4 6.8 7.7 8.0 7.6 7.8 4.1 7.9 3.5 4.7 3.4
best 2 1 6 0 2 1 1 4 1 9 5 9
p-value 1.12E-03 1.79E-03 5.38E-03 4.55E-04 1.34E-03 1.92E-03 1.39E-03 9.62E-02 5.03E-04 7.76E-01 2.01E-01 -

(a) LTS (b) ADSN

Figure 3: Three samples from the ECGFiveDays dataset and
the learned shapelets corresponding to the T-wave.

ranks test. As shown in Table 2, ADSN is significantly better
than all the non-deep-learning methods at p <0.01 level ex-
cept COTE. However, it is noteworthy that COTE ensembles
35 classifiers and thus inevitably suffers from high compu-
tational complexity, while ADSN is a single, more elegant
model. Although ADSN is superior in average rank, it is not
significantly better than FCN and ResNet. These two meth-
ods are two deep learning methods containing multiple hid-
den layers, while ADSN uses only one convolution layer to
generate the shapelets and has fewer parameters. More im-
portantly, as a shapelet-based method, ADSN has better in-
terpretability compared to deep learning models.

Visualization Analysis

Dynamic shapelet generation. Shapelets can represent the
local patterns existing in time series. However, the shapelets
learned by LTS are fixed after training. They cannot deal
with the deformations of the local patterns and may fail to
recognize the important local patterns at the test phase. In
contrast, ADSN can generate different shapelets according
to different input time series and improve modeling flexibil-
ity. To explore the effectiveness of dynamic shapelet gen-
eration, we show the shapelets learned by LTS and ADSN
on the ECGFiveDays dataset. Specifically, we randomly
choose three samples of class 1 from the test set, and plot
these samples and the learned shapelets corresponding to
the T-wave. The T-wave of the electrocardiogram represents
the period of the heart relaxing and preparing for the next
contraction2. The learned shapelet corresponding to the T-
wave is the shapelet with the smallest distance to the T-wave
subsequences.

As shown in Figure 3, since the shapelet learned by LTS
is fixed after training, it can not recognize different T-waves
of the same category well at the testing phase (fixed shapes
for three different samples). In contrast, ADSN can gener-
ate different shapelets according to different input time se-
ries and improve modeling flexibility. Therefore, the impor-
tant local patterns of different samples of the same category
can be identified, and this makes the samples of the same
category classified as the same category more easily. To il-
lustrate this, we employ t-SNE (Maaten and Hinton 2008)
to map the original time series and the shapelet transforma-
tion representation into a 2-D space, and then visualize the
2-D coordinates. As shown in Figure 4, after the dynamic
shapelet transformation of ADSN, the samples of class 1 are
clustered together more compactly compared to LTS. This
is evidence that sample-specific shapelets that are dynami-
cally generated by ADSN improve the modeling flexibility
and performance (More visualization analysis verify the ef-

2https://en.m.wikipedia.org/wiki/T wave
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Figure 4: The visualizations with t-SNE on the ECGFiveDays datasets.

fectiveness of dynamic shapelet transformation see Section
C of the supplementary material).
Adversarial training. To explore the effectiveness of ad-
versarial training, we first explore the effects of the adver-
sarial training strategy on the shapelets generated by the
ADSN. As shown in Figure 7 in the supplementary material,
without adversarial training, ADSN will generate shapelets
that are dissimilar to the real subsequence. In contrast, the
shape of shapelets is more closer to real subsequences when
increasing the value of λadv . The impact of λadv is quanti-
tatively analyzed in the supplementary material.

(a) (b) (c)

Figure 5: Two samples from the ItalyPower dataset and the
corresponding shapelet with smallest distance.

Furthermore, we compare the shapelets generated by LTS
and ADSN. As shown in Figure 5, we choose 2 sam-
ples from the ItalyPower dataset, and plot the shapelet
with smallest distance to the sample. We call this shapelet
the smallest-distance-shapelet. The distances are calculated
by Equation 4. In Figure 5(a), without k-means initializa-
tion, the smallest-distance-shapelet learned by LTS is dis-
similar to the real subsequence. In Figure 5(b), although
LTS initializes the shapelets through a k-means clustering
of subsequences, there is no constraint on the shape of
the shapelets during the training process, and the smallest-
distance-shapelet learned by LTS is still dissimilar to the real
subsequence. Moreover, using the k-means centroids of all
subsequences as the initial value suffers from high compu-
tational complexity when the number of time series is large
or the sequence is long. In contrast, the smallest-distance-
shapelets generated by ADSN are very similar to the real
subsequences.
Diversity regularization. To explore the effects of diversity

regularization, we show the generated shapelets of ADSN
under different values of λdiv . As shown in Figure 9 in the
supplementary material, the generated shapelets converge to
similar shapes when the value of λdiv is 0. When we in-
crease the value of λdiv , the generated shapelets become
more and more dissimilar from each other and diverge to
different shapes. This shows that the diversity regularization
can increase the diversity of generated shapelets and thus
alleviate the mode collapse problem. The impact of λdiv is
also quantitatively analyzed in the supplementary material.

Conclusion

In this paper, we propose a novel model called Adversar-
ial Dynamic Shapelet Networks (ADSNs) that dynamically
generates the shapelets for each time series, and use the ad-
versarial training strategy to restrict the generated shapelets
to be similar to the actual subsequences of the samples rather
than arbitrary shapes. Previous shapelet learning methods
achieve better results than traditional shapelet-based clas-
sifiers, but there are some drawbacks to these methods.
First, the shapelets are fixed after training and cannot adapt
well to time series with deformations. More importantly,
the learned shapelets may not be similar to any real sub-
sequences, which will reduce model interpretability. In con-
trast, ADSN generates sample-specific shapelets via a dy-
namic generating process, improving model flexibility. The
adversarial training strategy is used to restrict the generated
shapelets to be similar to the real subsequences. The ex-
tensive experimental results verify the performance of the
proposed method. Furthermore, the visualization analysis
demonstrates the effectiveness of the dynamic shapelet gen-
erating and adversarial training.
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