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Abstract

This paper considers online convex optimization (OCO)
problems - the paramount framework for online learning al-
gorithm design. The loss function of learning task in OCO
setting is based on streaming data so that OCO is a pow-
erful tool to model large scale applications such as online
recommender systems. Meanwhile, real-world data are usu-
ally of extreme high-dimensional due to modern feature en-
gineering techniques so that the quadratic regression is im-
practical. Factorization Machine as well as its variants are
efficient models for capturing feature interactions with low-
rank matrix model but they can’t fulfill the OCO setting due
to their non-convexity. In this paper, We propose a projec-
tive quadratic regression (PQR) model. First, it can capture
the import second-order feature information. Second, it is a
convex model, so the requirements of OCO are fulfilled and
the global optimal solution can be achieved. Moreover, ex-
isting modern online optimization methods such as Online
Gradient Descent (OGD) or Follow-The-Regularized-Leader
(FTRL) can be applied directly. In addition, by choosing a
proper hyper-parameter, we show that it has the same order of
space and time complexity as the linear model and thus can
handle high-dimensional data. Experimental results demon-
strate the performance of the proposed PQR model in terms
of accuracy and efficiency by comparing with the state-of-
the-art methods.

1 Introduction

In the setting of online learning, the training data arrive in a
streaming fashion and the system should provide a response
immediately. Specifically, online learning is performed in
a sequence of consecutive rounds indexed by time t. At
round t, the learner updates a learning variable using sim-
ple calculations that are usually based on a single sample
only. Online learning is a powerful tool for a wide range
of applications such as online rating, news feeding, and
ad-click prediction. The paramount framework for online
learning is online convex optimization (OCO) (Hazan 2016;
Shalev-Shwartz 2012) which can be solved by many state-
of-the-art online optimization algorithms such as Online
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Gradient Decent (OGD) (Zinkevich 2003) or Follow-The-
Regularized Leader (FTRL) (McMahan et al. 2013). It is
worth to note that the study of OCO and theoretical analysis
about above algorithms are based on convex requirement of
OCO. The convexity is two folds. First, the loss function is
convex. Second, the feasible set of learning variables is also
convex.

Meanwhile, in real-world applications, the feature dimen-
sion could be extremely high. Therefore, traditional linear
models are still the most popular model in such scenario.
However, linear models fail to utilize the interaction be-
tween features so that lots of artificial feature engineering
work is needed. Quadratic regression captures first-order
information of each input feature as well as second-order
pairwise feature interactions. However, it is usually unac-
ceptable in terms of space complexity when dealing with
high-dimensional data because the model size is of order
O(d2) with d-dim features. Factorization Machine (FM)
(Rendle 2010) is an efficient mechanism for capturing up
to second-order feature information with a low-rank matrix
in factorized form. It only needs O(md) space with rank m.
FM achieves state-of-the-art performance in various appli-
cations (Juan, Lefortier, and Chapelle 2017; Li et al. 2016;
Lu et al. 2017; Nguyen, Karatzoglou, and Baltrunas 2014;
Rendle et al. 2011; Zhong et al. 2016; Chen et al. 2019b;
2019a) and has recently regained significant attention from
researchers (Blondel et al. 2016a; 2016b; He et al. 2017;
Xu et al. 2016). Unfortunately, the vanilla FM (Rendle 2010)
and its variants (Blondel et al. 2016a; Cheng et al. 2014;
Juan, Lefortier, and Chapelle 2017; Lu et al. 2017) are non-
convex formulations and unable to fulfill the fundamental re-
quirements demanded in OCO. Several convexified FM for-
mulations (Blondel, Fujino, and Ueda 2015; Lin et al. 2018;
Yamada et al. 2017) are proposed to address this weakness
but the computation cost is high and thus impractical in high-
dimensional problems.

The above formulations are all based on the low-rank as-
sumption of the feature-interaction matrix and thus to reduce
the number of learning variables. However, the question is
whether we really need the low-rank assumption? Is there
any other way to save parameters? Our answer is that we
don’t need the low-rank assumption and we can save param-
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Figure 1: Distribution of Feature Occurrence

eters by the intuition of sharing parameters.
This intuition is based on our observation that the frequen-

cies of different features occurring in real-world datasets
vary a lot. For instance, figure 1 shows the numbers of oc-
currences of different features in two public datasets, i.e.
MovieLens1 and Avazu2 respectively. It is shown that a large
number of features scarcely occur in the datasets, while only
a few features frequently occur. So we separate the features
into two categories: high frequent features and low frequent
features. We assume that the high frequent features are more
important so that their interaction are more valuable. To
this background, we propose a Projective Quadratic Regres-
sion (PQR) model. Specifically, for high frequent features,
we adopt the full quadratic form. Within low frequent fea-
tures, we just ignore their interactions. We then use a set
of sharing parameters for high and low frequent feature in-
teractions. In fact, we can rewrite the global bias, the fea-
ture weight vector and the feature interaction matrix into an
augmented symmetric matrix. The intuiton of sharing pa-
rameters we mentioned above is equivalent to restricting the
feasible set to be a subset of symmetric matrices. We show
that the feasible set are actually convex and then satisfy the
first requirement of OCO. Then we rewrite the loss function
into a convex function with respect to the augmented ma-
trix and thus fulfill the second requirement of OCO. Based
on this scheme, the resulting formulation of PQR can seam-
lessly meet the aforementioned requirements of the OCO
framework. Moreover, due to its convexity, most optimiza-
tion algorithms such as FTRL can be directly applied to PQR
model and theoretical analyses such as regret bounds and
convergence rates are still valid. In addition, by choosing a
proper hyper-parameter, this kind of matrices can be rep-

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/c/avazu-ctr-prediction/data

resented by O(d) parameters so that it has the same space
complexity with linear models.

We conduct extensive experiments on real-world datasets
to evaluate the empirical performance of PQR. As shown in
the experimental results in both online rating prediction and
online binary classification tasks, PQR outperforms state-of-
the-art online learning algorithms in terms of both accuracy
and efficiency, especially for high-dimensional problems.

Contribution

• PQR model captures first-order feature information as
well as second-order pairwise feature interaction. It is a
convex formulation so that it fulfills the requirements of
online convex optimization setting and the optimal solu-
tion is theoretically guaranteed.

• Optimization algorithms for convex models can be ap-
plied directly to PQR and all the theoretical analyses are
still valid.

• PQR is a general framework and can be applied to many
other tasks such as batch and stochastic settings besides
online learning.

• PQR is efficient in terms of space complexity and compu-
tation cost. It has the same order of space and time com-
plexity with linear model with a proper hyper-parameter.

• We evaluate the performance of the proposed PQR model
on both online rating prediction and online binary classifi-
cation tasks. Experimental results show that PQR outper-
forms state-of-the-art online learning methods.

2 Method

In this section, we first introduce preliminaries in online
learning and then turn to the development of the proposed
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projective quadratic regression (PQR) model for online con-
vex problem. The PQR model is essentially a quadratic re-
gression model with a constraint on the feasible set. The idea
behind this model is sharing parameters. We prove the con-
vexity of PQR so that it fits into the online learning setting
and state-of-the-art online optimization algorithms can be
applied directly.

2.1 Online Convex Optimization

The online learning algorithms are built upon the assump-
tion that the training instances arrive sequentially rather than
being available prior to the learning task. The paramount
framework for online learning is Online Convex Optimiza-
tion (OCO) (Hazan 2016; Shalev-Shwartz 2012). It can be
seen as a structured repeated game between a learner and an
adversary. At each round t ∈ {1, 2, . . . , T}, the learner is
required to generate a decision point θt from a convex set
S ⊆ R

n. Then the adversary replies to the learner’s decision
with a convex loss function ft : S −→ R and the learner
suffers the loss ft(θt). Specifically, the online learning set-
ting can be described as follows.

For index t = 1, 2, . . . , T , the learner chooses learning
parameters θt ∈ S , where S is convex. Then the environ-
ment responds with a convex function ft : S −→ R and the
output of the round is ft(θt).

The regret is defined by

regretT =

T∑
t=1

ft(θt)− min
θ∗∈S

T∑
t=1

ft(θ
∗). (1)

The goal of the learner is to generate a sequence of deci-
sions {θt|t = 1, 2, . . . , T} so that the regret with respect
to the best fixed decision in hindsight is sub-linear in T ,
i.e. limT→∞regretT /T = 0. The sub-linearity implies that
when T is large enough, the learner can perform as well as
the best fixed decision in hindsight.

Based on the OCO framework, many online learning
algorithms have been proposed and successfully applied
in various applications (DeMarzo, Kremer, and Mansour
2006; Li and Hoi 2014; Zhao and Hoi 2013). Follow-The-
Regularized-Leader (FTRL) (McMahan et al. 2013) is one
of the most popular online learning algorithms, which is
summarized in Algorithm 1 and the regret bound of FTRL
is shown in Theorem 1 (Hazan 2016).

Algorithm 1: Follow-The-Regularized-Leader
Input: η > 0, regularization function R, and convex set
S

Initialize: θ1 = argmin
θ∈S

R(θ)

for t = 1 to T do
Predict θt
Observe the loss function ft and let gt = ∇ft(θt)
Update
θt+1 = argmin

θ∈S
{η

∑t
s=1 gs · θ +R(θ)}

end

Theorem 1. The FTRL Algorithm 1 attains the following
bound on regret

regretT ≤ 2η

T∑
t=1

||gt||2F +
R(θ)−R(θ1)

η
.

If an upper bound on the local norms is known, i.e. ||gt||F ≤
GR for all time t, then we can further optimize over the
choice of η to obtain

regretT ≤ 2DRGR

√
2T .

2.2 Quadratic Regression

The general quadratic regression is a combination of linear
model with pairwise feature interaction. Given an input fea-
ture vector x ∈ R

d, the prediction ŷ can be obtained with
the following formula:

ŷ = b+w · x+
∑

1≤i≤j≤d

Ai,jxixj (2)

where b ∈ R is the bias term, w is the first-order feature
weight vector and A ∈ R

d×d is the second-order feature
interaction matrix. Clearly we only need the upper triangle
of the matrix so that we can assume the matrix is symmetric,
i.e., A = AT ∈ R

d×d. Then we rewrite the bias term b,
the first-order feature weight vector w and the second-order
feature interaction matrix A into a single matrix C:

C =

[
A w
wT b

]
(3)

Therefore, the prediction ŷ can be represented by a quadratic
form with extended feature vector x̂ = (xT , 1)T . In fact, we
can define the quadratic regression model by

ŷ(C) =
1

2
x̂TCx̂ (4)

C ∈ S (5)

where S is the set of all (d+1)×(d+1) symmetric matrices.
Clearly, ŷ is linear and thus convex in C. Under this setting,
we can show that the composition of any convex function
and the quadratic regression form is still convex in C. Actu-
ally we have

Proposition 2. Let K ⊆ R
(d+1)×(d+1) be a convex set, f :

R −→ R a convex function, and ŷ a quadratic form defined
in (4). Then f ◦ ŷ : K −→ R is convex in C ∈ K.

Proof. Consider λ ∈ [0, 1] and C1, C2 ∈ K. By the convex-
ity of K, C = λC1 + (1− λ)C2 ∈ K. Then by the linearity
of ŷ and convexity of f , we have

f(ŷ(C)) = f(ŷ(λC1 + (1− λ)C2))

= f(λŷ(C1) + (1− λ)ŷ(C2))

≤ λf(ŷ(C1)) + (1− λ)f(ŷ(C2)),

which shows f ◦ ŷ is convex.
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Figure 2: A(H,L) withH = {1, 2, . . . , k} and L = {k + 1, k + 2, . . . , d}

2.3 Projective Quadratic Regression

The major problem of quadratic regression is that the fea-
sible set contains all symmetric matrices which is too large
and impractical in real-world applications. Existing formu-
lations are usually based on the low-rank assumption. The
vanilla FM is just decomposing the matrix into a product of
a low-dimensional matrix and its transpose. But this formu-
lation makes it a non-convex model. Several convexified FM
formulations (Lin et al. 2018; Yamada et al. 2017) are based
on the same assumption and adding low-rank constraint by
restricting the nuclear norm of the candidate matrix. How-
ever, it introduces operations such as singular value decom-
position and the overall computation cost is actually high
and thus it is impractical in real applications with large and
high-dimensional datasets.

The main idea of our proposed projective quadratic re-
gression model is to restrict the feasible set to a subset of
symmetric matrices. It is not based on low-rank assumption
but the intuition of sharing parameters. This is based on the
assumption that the frequencies of different features occur-
ring vary a lot as shown in Figure 1. We then separate the
features into two categories: high frequent features and low
frequent features. We assume that the high frequent features
are more important so that their interaction are more valu-
able. Therefore, for high frequent feature interactions, we
adopt the full quadratic form. And within low frequent fea-
tures, we just ignore their interactions. Finally, we use a set
of sharing parameters for high and low frequent feature in-
teractions.

We denote I = {1, 2, . . . , d} as the index set of all fea-
tures where d is the dimension of the feature space. The sep-
aration of high and low frequent features can be defined as
follows.

Definition 1. A feature separation is a bi-partition of index
set I, i.e.,

I = H ∪ L withH ∩ L = ∅, (6)

where H is the set of indices of all high frequent features
while L for low frequent features.

In practice, we have various ways to separate the high
and low frequent features. For example, we can sample the

Table 1: Computation complexity
Linear Models FM Models PQR

Time O(nd) O(nmd) O(nd+ nk2)
Space O(d) O(md) O(d+ k2)

training data and calculates the features counts. Then we can
choose the top-k features as the high frequent features and
the rest as low frequent features. Another way may be setting
a threshold, any feature whose occurrence is greater than the
threshold can be considered as a high frequent feature, and
otherwise a low frequent feature. In this paper, we use the
top-k method where k is a hyper-parameter and can be called
the order of the model.

After separating the indices, i.e., I = H ∪ L, the key
idea of PQR is using the following matrix to catch feature
interactions:

Ai,i = 0 for all i ∈ I
Ai,j = pi,j if i < j and i, j ∈ H
Ai,j = qi if i < j, i ∈ H and j ∈ L
Ai,j = 0 if i �= j and i, j ∈ L (7)

where pi,j and qi are learning parameters.

Definition 2. Given a separation I = H∪L, the matrix with
the form in (7) can be called a PQR matrix with respect to
this separation. The PQR matrix can be denoted as A(H,L).

Let us assume that the size of H is k, i.e., |H| = k.
So |L| = d − k. Without losing generality, if we assume
H = {1, 2, . . . , k} and L = {k + 1, k + 2, . . . , d}, then the
matrix looks like in Figure 2. We can easily see that there are
1
2k(k+1) learning parameters for the PQR matrix. Combin-
ing with the linear part of the model, the space complexity
of learning parameters is of the order O(k2 + d). In partic-
ular, if we choose k in the order of O(

√
d), the PQR model

have the same order of computation cost as linear models.
The computation cost is summarized in Table 1.

Now we can show that the PQR model fulfills the OCO
framework. For a given separation I = H ∪ L, Let
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T (H,L) = {C|C =

[
A(H,L) w
wT b

]
} (8)

where A(H,L) is the PQR matrix. We then have

Proposition 3. T (H,L) is a convex set for any separation
I = H ∪ L.

Proof. It is easy to verify that T (H,L) is closed under ad-
dition and scalar multiplication. By the definition of convex
set, T (H,L) is convex.

Now we define our projective quadratic regression model
(PQR) as a quadratic regression model with restriction the
feature-interaction matrices to be the PRQ matrices. In sum-
mary, the proposed PQR model can be represented by

ŷ(C) =
1

2
x̂TCx̂ (9)

s.t. C ∈ T (H,L)

By Proposition 2 and 3, we can see that PQR model (9)
fulfills the OCO setting.

Examples There are two important examples: online rat-
ing prediction and online binary classification.

In the online rating prediction task, at each round, the
model receives a pair of user and item sequentially and then
predicts the value of the incoming rating correspondingly.
Denote the instance arriving at round t as (ut, it, yt), where
ut, it and yt represent the user, item and the rating (a number
from 1 to 5) given by user ut to item it. The user feature and
item feature (still denoted by ut and it to save notation) can
be represented by a concatenation of one-hot vectors. The in-
put feature vector xt is constructed as a concatenation of ut

and it. Upon the arrival of each instance, the model predicts
the rating with ŷt = 1

2 x̂tCx̂t, where x̂t = [xT
t , 1]

T . The
convex loss function incurred at each round is the squared
loss:

ft(ŷ(Ct)) =
1

2
||ŷ(Ct)− yt||22 (10)

The online binary classification task is usually applied
to the click-through-rate (CTR) prediction problem. In this
task, the instances are denoted as (xt, yt) indexed by t ∈
[1, 2, . . . , T ], where xt is the input feature vector and yt ∈
{−1, 1} is the class label. At round t, the model predicts the
label with sign(ŷt) = sign( 12 x̂

T
t Ctx̂t), where x̂t = [xT

t , 1]
T .

The loss function is a logistic loss function:

ft(ŷ(Ct)) = log(1 +
1

e−yt·ŷ(Ct)
) (11)

Implementation Details We first calculate the separation
I = H ∪ L. We can achieve this by sampling the data, cal-
culating the feature counts and selecting top-k features asH
and the rest as L. Then we find that PQR model is actually a
set of rules to cross features. If x is a feature vector, we can

Algorithm 2: FTRL-Proximal for the PQR model
Pre-calculate separation I = H ∪ L.
Parameter: α > 0, β > 0, λ1 > 0, λ2 > 0
Initialize: z = n = 0
for t = 1 to T do

Receive feature vector xt.
Compute the PQR expansion x̃t by (12)
Let It = {i|x̃t,i �= 0}
for all i ∈ It do

wi =

{
0 if |zi| < λ1

− (zi−sgn(zi)λ1)

(
β+

√
ni

α +λ2)
if |zi| ≥ λ1

end
compute pt ={

w · x̃t for rating prediction;
sigmoid(w · x̃t) for binary classification.

for all i ∈ It do
gi = (pt − yt)xt,i

σi =
1
α (

√
ni + g2

i −
√
ni)

zi ← zi + gi − σiwi

ni ← ni + g2
i

end

end

expand it into a new vector, denoted by x̃. It can be defined
by

x̃i = xi if i ∈ I
x̃d+ki+j = xixj if i, j ∈ H
x̃d+k2+i = xixj if i ∈ H, j ∈ L (12)

Actually we have the following definition.
Definition 3. Given a feature vector x and a separation
I = H ∪ L, the vector x̃ defined in (12) is called the PQR
expansion of x.

Therefore, the PQR model on a dataset is essentially
equivalent to the linear model with respect the associated
PQR expansions of this dataset. We list the implementa-
tion detail of online rating and online binary classification
in Algorithm 2 by following the FTRL-Proximal algorithm
in (McMahan et al. 2013).

More Explanation on PQR Like vanilla FM, the idea be-
hind the PQR model is matrix factorization. In fact, the PQR
matrix with respect to I = H ∪ L, can be considered as a
decomposition in the following form

A(H,L) = PTMP (13)

where P is (k+1)× d matrix and M is a (k+1)× (k+1)
matrix. M is symmetric and its diagonals are zeros. Namely,
Mi,j = Mj,i and Mi,i = 0. So it has 1

2k(k + 1) param-
eters which represents the feature-interaction learning pa-
rameters. The matrix P is a projection matrix which maps
the original feature vector into a lower dimensional space.
Specifically, Px is a permutation of

[xi1 , xi2 , . . . , xik , xL]
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where il ∈ H with l = 1, 2, . . . , k and xL =
∑

j∈L xj .
The key idea is that the projection matrix P is determined
by the separation I = H ∪ L, so we don’t need to learn it.
That is also the reason why we name the proposed model as
projective quadratic regression model.

3 Related Work

Vanilla FM The vanilla Factorization Machine (Rendle
2010) defines the interaction matrix A = V V T where V is a
d×m matrix with m� d and optimized on thin matrix V . It
considers both the first and the second order information of
features and learns the feature interactions automatically. It
yields state-of-the-art performance in various learning tasks
and its space complexity and computation cost are accept-
able. However, it is a non-convex formulation and cannot fit
into the online convex optimization setting. Moreover, the
global optimal solution is not guaranteed by gradient based
optimization algorithms. The bad local minima and saddle
points may affect the performance and it is difficult to study
how to select a good initial point theoretically.

CFM The Convex FM (CFM) introduced by Yamada et
al. (Yamada et al. 2017) is a convex variant of the widely
used Factorization Machines. It employs a linear + quadratic
model and regularizes the linear term with the l2-norm and
the quadratic term with the nuclear norm. It outperforms the
vanilla FM on some applications. However, it is impractical
in high-dimensional datasets due to high computation cost.

CCFM The Compact Convexified FM (CCFM) model in-
vented by X. Lin et al. (Lin et al. 2018) is another convex
model. By rewriting the bias term b, the first-order feature
weight vector w and the second-order feature interaction
matrix A into a single matrix C and restricting the feasible
set by intersecting a nuclear ball, this formulation fits OCO
setting. However, the computation cost is very high since at
each iteration, a singular value decomposition operation is
needed, which is unbearable in a real application.

DiFacto The Difacto introduced by M. Li et al. (Li et al.
2016) is a variant of Factorization Machines. It is not a con-
vex model but it also use the information of frequency of fea-
ture occurrence. In DiFacto, the features are allocated em-
bedding vectors with different ranks based on the occurrence
frequency. Namely, higher frequency features corresponds
to embedding vectors with larger ranks. The pairwise inter-
action between features with different ranks is obtained by
simply truncating the embedding with high rank to a lower
rank. Such truncations usually lead to worse performance.
In fact, DiFacto reduces the computational burden of FM by
sacrificing the performance.

4 Experiments

In this section, we evaluate the performance of the proposed
PQR model on two popular machine learning tasks: online
rating prediction and online binary classification.

Table 2: Statistics of datasets
Datasets #Feature #Instances Label

ML100K 100,000 100,000 Numerical
ML1M 100,000 1,000,209 Numerical
ML10M 200,000 10,000,054 Numerical

Avazu 1,000,000 40,528,967 Binary
Criteo 1,000,000 51,882,752 Binary
DD2012 54,686,452 149,009,105 Binary

4.1 Experimental Setup

We compare the empirical performance of PQR with state-
of-the-art variants of FM in the online learning setting.
We construct the baselines by applying online learning ap-
proaches to the existing formulations of FM: vanilla FM
(Rendle 2010), CFM (Yamada et al. 2017), and DiFacto (Li
et al. 2016). We also compare with LR model (linear regres-
sion of online rating prediction and logistic regression for
online binary classification) since it is still popular in the
high-dimensional sparse datasets. We skip CFM for high-
dimensional datasets due to its high computation cost. For
optimization method, We apply the state-of-the-art FTRL-
Proximal algorithm (McMahan et al. 2013) with �1+�2 reg-
ularization for LR and PQR. Specifically, the implementa-
tion of PQR-FTRL can be seen in Algorithm 2. For vanilla
FM, we just applied the online gradient descent with �1 reg-
ularization. To summarize, the compared models are:

The vanilla FM and DiFacto are non-convex models so
that we need to randomly initialize the learning parame-
ters to escape local minimum. And results are different for
each trial run. Therefore, we repeat the same experiment for
20 times. Finally, the average and standard deviation of 20
scores (RMSE, AUC or LogLoss) are reported. On the other
hand, LR, CFM and PQR are convex models. So we can ini-
tialize the learning parameters as zeros (like in Algorithm-1
and Algorithm-2). As long as the input data (train/test) are
the same, the output scores are the same and thus there is no
need for repetition. Moreover, for PQR model, we also test
different orders (k values) for each dataset.

Datasets For the online rating prediction task, we use
the typical MovieLens datasets, including MovieLens-100K
(ML100K), MovieLens-1M (ML1M) and MovieLens-10M
(ML10M); For the online binary classification task, we
select high-dimensional sparse datasets including Avazu,
Criteo3, and KDD20124. These three high-dimensional
datasets are preprocessed and can be downloaded from the
LIBSVM website5. The statistics of the datasets are summa-
rized in Table 2. All these datasets are randomly separated
into train(80%), validation(10%) and test(10%) sets. In our
experiments, the training instances are fed one by one to the
model sequentially.

3http://labs.criteo.com/2014/02/kaggle-display-advertising-
challenge-dataset/

4https://www.kaggle.com/c/kddcup2012-track1/data
5https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 3: RMSE on MovieLens datasets
RMSE LR FM CFM DiFacto PQR (k=500) PQR (k=1000) PQR (k=2000)

ML100K 1.0429 1.0316 ± 1.2e-3 1.0326 1.0312 ± 9.0e-4 1.0225 1.0215 1.0215
ML1M 1.0487 1.0434 ± 5.0e-4 1.0403 1.0411 ± 9.0e-4 1.0321 1.0250 1.0190
ML10M 0.9651 0.9605 ± 1.7e-3 0.9616 0.9572 ± 1.1e-3 0.9547 0.9541 0.9536

Table 4: AUC, LogLoss, Training Time, and Model Size of high-dimensional datasets
Avazu LR FM DiFacto PQR (k=2000) PQR (k=4000) PQR (k=8000)

AUC 0.7562 0.7752 ± 1.8e-4 0.7743 ± 1.1e-4 0.7757 0.7777 0.7785
LogLoss 0.3939 0.3840 ± 1.1e-4 0.3840 ± 1.2e-4 0.3830 0.3818 0.3812
Training Time 1× 58.5× 58.0× 3.3× 3.6× 3.8×
Model Size 16.37K 1.17M 0.29M 0.68M 1.32M 1.97M

Criteo LR FM DiFacto PQR (k=200) PQR (k=500) PQR (k=1000)

AUC 0.7151 0.7218 ± 1.6e-4 0.7216 ± 1.6e-4 0.7207 0.7220 0.7221
LogLoss 0.5116 0.5068 ± 2.0e-4 0.5070 ± 8.0e-5 0.5076 0.5067 0.5066
Training Time 1× 20.1× 20.6× 17.1× 18.3× 19.2×
Model Size 1.09K 17K 14.6K 18.30K 77.68K 98.61K

KDD2012 LR FM DiFacto PQR (k=20) PQR (k=50) PQR (k=100)

AUC 0.7944 0.7968 ± 1.9e-4 0.7955 ± 3.0e-4 0.8013 0.8015 0.8016
LogLoss 0.1541 0.1535 ± 5.1e-5 0.1534 ± 6.5e-5 0.1524 0.1524 0.1523
Training Time 1× 10.4× 11.8× 3.1× 3.1× 3.2×
Model Size 9.11M 91.6M 72.2M 9.70M 9.71M 9.71M

Evaluation Metrics To evaluate the performances on both
tasks properly, we select different metrics respectively: the
Root Mean Square Error (RMSE) for the rating prediction
tasks; and the AUC (Area Under Curve) and LogLoss for the
binary classification tasks. For the later case, we also com-
pare the computation time and model size (the number of
nonzero parameters) to demonstrate the efficiency of com-
pared algorithms.

4.2 Online Rating Prediction

We use Movie Lens datasets for this task. For ML100K and
ML1M, we use gender, age, occupation, and zipcode as the
user feature and the movie genre as the item feature. We
perform the standard discretization, use one-hot representa-
tion for each feature, and then concatenate them together.
For ML10M, since there is no demographic information of
users, we just use the user ids as the user feature instead.

The rank of FM is selected from the set of
{2, 4, 8, 16, 32, 64, 128, 256, 512}. The coefficient of
regularization term and the learning rate are tuned in a range
[0.0001, 10]. We list the RMSE of all compared algorithms
in Table 3. From our observation, PQR achieves higher
prediction accuracy than all the baselines, which illustrates
the advantage of PQR.

4.3 Online Binary Classification

In many real applications, feature vectors are usually ex-
tremely high-dimensional hence sparse representation is
used instead, i.e., only nonzero key-value pairs are stored.

We demonstrate the performance of PQR as well as other
approaches for this case using high-dimensional sparse
datasets: Avazu, Criteo, and KDD2012. Due to the high-
dimensionality, CFM is impractical. So we compare PQR
with LR, vanilla FM and DiFacto in two aspects: accuracy
(measured by AUC and LogLoss) and efficiency (measured
by training time and model size).

The rank for vanilla FM and DiFacto is selected from
the set of {4, 8, 16, 32, 64}. The coefficient of regulariza-
tion term and the learning rate are selected in a range of
[0.0001, 10]. We list the results in Table 4. In most cases,
PQR outperforms the baseline algorithms in both accuracy
and efficiency. The accuracy demonstrates that PQR has bet-
ter expressiveness than linear model and low-rank FM mod-
els. The efficiency illustrates the theoretical computation
cost of PQR model. Finally, for FM, there is no theory about
how to choose a proper rank. However, the order of PQR has
a clear meaning which is good for parameter tuning.

5 Conclusion and Future Work

In this paper, we propose a projective quadratic regression
(PQR) model under the online learning settings. It meets
the requirements in online convex optimization framework
and the global optimal solution can be achieved due to its
convexity. In addition, we show that the computation cost
of PQR can be low if we choose a suitable order. Finally,
we demonstrate its effectiveness by comparing with state-
of-the-art approaches. For future work, a more scientific ap-
proach to select the order for PQR is an attractive direction.
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