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Abstract

We propose to align distributional data from the perspective
of Wasserstein means. We raise the problem of regulariz-
ing Wasserstein means and propose several terms tailored to
tackle different problems. Our formulation is based on the
variational transportation to distribute a sparse discrete mea-
sure into the target domain. The resulting sparse representa-
tion well captures the desired property of the domain while
reducing the mapping cost. We demonstrate the scalability
and robustness of our method with examples in domain adap-
tation, point set registration, and skeleton layout.

Introduction

Aligning distributional data is fundamental to many prob-
lems in machine learning. From the early work on histogram
manipulation, e.g. (Stark 2000), to the recent work on gen-
erative modeling, e.g. (Beecks and others 2011), researchers
have proposed various alignment techniques that benefit nu-
merous fields including domain adaptation, e.g. (Sun and
others 2016), and shape registration, e.g. (Ma and others
2016). A universal approach to aligning distributional data
is through optimizing an objective function that measures
the loss of the map between them. Regarding one distribu-
tion as the fixed target and the other the source, the align-
ment process in general follows an iterative manner where
we alternatively update their correspondence and transform
the source. When the source has much fewer samples or in a
lower dimension, the process is essentially finding a sparse
representation (Bengio and others 2013).

The optimal transportation (OT) loss, or the Wasserstein
distance, has proved itself to be superiors in many as-
pects over several other distances (Gibbs and others 2002;
Arjovsky and others 2017), benefiting various learning al-
gorithms. By regarding the Wasserstein distance as a metric,
researchers have been able to compute a sparse mean (Ho
and others 2017) of a distribution, which is a special case
of the Wasserstein barycenter problem (Agueh and others
2011) when there is only one target distribution. While OT
algorithms find the correspondence between the distribu-
tions, updating the mean can simply follow the rule that each
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source sample is mapped to the weighted mean of its corre-
sponding target sample(s) (Ye and others 2017).

In this paper, we raise the problem of regularizing the
Wasserstein means. In addition to finding a mean that yields
the minimum transportation cost, in many cases we also
want to insert certain properties so that it satisfies other cri-
teria. A common technique is adding regularization terms
to the objective function. While most of the existing work,
e.g. (Cuturi 2013; Courty and others 2017b), focus on reg-
ularizing the optimal transportation itself, we address the
mean update rule and show the benefit from regularizing it.
We introduce a new framework to compute OT-based sparse
representation with regularization. We base our method on
variational transportation (Mi and others 2018) which pro-
duces a map between the source and the target distribu-
tions in a many-to-one fashion. Different from directly map-
ping the source into the weighted average of its corre-
spondence (Ye and others 2017; Courty and others 2017b;
Mi and others 2018), we propose to regularize the mapping
to cope with specific problems – domain adaptation, point
set registration, and skeleton layout. The resulting mean, or
centroid, can well represent the key property of the distribu-
tion while maintaining a small reconstruction error. Code is
available at https://github.com/icemiliang/pyvot

Related Work

Optimal Transportation

The optimal transportation (OT) problem was raised intro-
duced by Monge (Monge 1781) in the 18th century, which
sought a mass-preserving transportation map between distri-
butional data with the minimum cost. It resurfaced in 1940s
when Kantorovich (Kantorovich 1942) introduced a relaxed
version where mass can be split and provided the classic
linear programming solution. A breakthrough for the mass-
preserving, or non-mass splitting, OT happened in the early
1990s when Brenier (Brenier 1991) proved its existence un-
der quadratic Euclidean cost. In more recent years, fast al-
gorithms for computing, or approximating, OT have been
proposed in both lines of research – non-mass-preserving,
e.g. (Rabin and others 2011; Cuturi 2013; Solomon and oth-
ers 2015) and mass-preserving, e.g. (Mérigot 2011; Lévy
2015; Kolouri and others 2016; Chen and others 2019).
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We follow Monge’s mass-preserving formulation. Specif-
ically, we adopt (Mi and others 2018) with improvements to
compute the OT because it gives us a clear path of each sam-
ple, not a spread-out map. Thus, we can directly regularize
the support instead of the mapping.

Wasserstein Barycenters and Means

The Wasserstein distance is the minimum cost induced
by OT. In most cases, the cost itself may not be as de-
sired as the map, but it satisfies all metric axioms (Villani
2003) and thus often serves as the loss for matching dis-
tributions, e.g. (Ling and Okada 2007; Arjovsky and oth-
ers 2017). Moreover, given multiple distributions, one can
find their weighted average with respect to the Wasser-
stein metric. This problem was studied in (McCann 1997;
Ambrosio and others 2008) for averaging two distributions
and generalized to multiple distributions in (Agueh and oth-
ers 2011), which coins the Wasserstein barycenter term.

A special case of the barycenter problem is when there
is only one distribution and we want to find its sparse dis-
crete barycenter. Because computationally it is equivalent to
the k-means problem, (Ho and others 2017) defines it as the
Wasserstein means problem. Before that, Cuturi and Doucet
had discussed it in (Cuturi and others 2014) along with the
connection of their algorithm to Lloyd’s algorithm in that
case. (Mi and others 2018) proposes an OT-based clustering
method which is very close to the Wasserstein means prob-
lem. (Kolouri and others 2018) also made a contribution by
discussing the sliced Wasserstein Means problem.

Our work focuses on regularizing the Wasserstein means.
We obtain the mean by mapping the sparse points into
the target domain according to the OT correspondence. We
insert regularization into the mapping process so that the
sparse points not only have a small OT loss but they also
have certain properties induced by the regularization terms.

Our work should not be confused with other work on
regularizing OT. For example, (Cuturi 2013) introduces
entropy-regularized OT where the entropy term controls the
sparsity of the map and it was later used in (Cuturi and others
2014) to compute Wasserstein barycenters. (Courty and oth-
ers 2017b) also leveraged class labels to regularize OT for
domain adaptation. (Ferradans and others 2014) proposed
Sobolev norm-based regularized OT and further regularized
barycenter and yet the regularization is still added to the OT,
not the barycenter. These works only regularize OT and then
directly update the support simply to the average of its cor-
respondence. In this paper, we regularize the update.

Preliminaries

We begin with some basics on optimal transportation (OT).
Suppose M is a compact metric space, P(M) is the space of
all Borel probability measures on M and μ, ν ∈ P(M) are
two such measures. A measure in the product space, π(·, ·) ∈
P(M×M), serves as a mapping between any two measures
on M , i.e. π : M → M . We define the cost function of the
mapping as the geodesic distance c(·, ·) : M ×M → R

+.

Optimal Transportation

For a mapping π(μ, ν) to be legitimate, the push-forward
measure of one measure has to be the other one, i.e. π#μ =
ν. Thus, for any measurable subsets B,B′ ⊂ M we have
π(B ×M) = μ(B) and π(M × B′) = ν(B′). We denote
the space of all legitimate product measures by Π(μ, ν) =
{π ∈ P(M ×M) | π(·,M) = μ, π(M, ·) = ν}.

Optimal transportation seeks a solution π ∈ Π(μ, ν) that
produces the minimum total cost:

Wp(μ, ν)
def
=

(
inf

π∈Π(μ,ν)

∫
M×M

(c(x, y))pdπ(x, y)

) 1
p

, (1)

where p indicates the finite moment of the cost function. The
minimum cost is the p-Wasserstein distance. In this paper,
we only consider the 2-Wasserstein distance, W2.

Monge’s formulation restricts OT to preserve measures,
that is, mass cannot be split during the mapping. Letting T
denote such a mapping, T : x → y, we have dπ(x, y) ≡
dμ(x)δ(y − T (x)). Therefore, we formally define T as

Topt = argmin
T

∫
M

c(x, T (x))
p
dμ(x). (2)

In this paper, we follow (2). The details of the optimal trans-
portation problem and the properties of the Wasserstein dis-
tance can be found in (Villani 2003; Gibbs and others 2002).
With the abuse of notation, we use π(μ, ν) to denote the
Monge’s OT map between μ and ν and since the map is ap-
plied to their supports x and y we also use π : x → y and
y = π(x) to denote the map.

Variational Optimal Transportation

Suppose μ is continuous and ν is a set of Dirac measures
in M = R

n, supported on Ωμ = {x ∈ M | μ(x) > 0}
and Ων = {yj ∈ M | νj > 0}, j = 1, ..., k, and their total
measure equal: vol(Ω) =

∫
Ω
dμ(x) =

∑k
j=1 νj . (Gu and

others 2013) proposed a variational solution to this semi-
discrete OT on R

n. It starts from a vector h = (h1, ..., hk)
T

and a piece-wise linear function: θh(x) = max{〈x, yj〉 +
hj}, j = 1, ..., k. Alexandrov proved in (Alexandrov 2005)
that there exists a unique h that satisfies the following

vol(x ∈ Ω | ∇θh(x) = yj) = νj . (3)

Furthermore, Brenier proved in (Brenier 1991) that
∇θh : x → y is the Monge’s OT-Map if the transportation
cost is the quadratic Euclidean distance ‖x−∇θh(x)‖22 .

Suppose Sj(h) = {x ∈M | ∇θh(x) = yj} is the projec-
tion of θh on Ω. Variational OT (VOT) solves

E(h)
def
=

∫
Ω

∇θhdμ−
k∑

j=1

νjhj

≡
∫ h

0

( k∑
j=1

∫
Ω∩Sj(h)

dμ

)
dh−

k∑
j=1

νjhj ,

(4)

and thus converts the OT problem into searching in a vec-
tor space H = {h ∈ R

k |
∫
Ω∩Sj(h)

dμ > 0 for all j}.
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Proved in (Gu and others 2013), E (4) is convex in H when∑k
j=1 hj = 0. The gradient of (4) is (3). Thus, minimizing

(4) when its gradient approaches 0 will give us the desired
h, and the map ∇θh.

Wasserstein Barycenters

Given a collection of measures and weights {μi, λi}Ni=1,
there exists such a measure ν that the weighted average of
the Wasserstein distances between ν and all μi’s reaches the
minimum. As exposed in (Agueh and others 2011), Agueh
and Carlier defined such a problem as finding a barycenter in
the measure space with respect to the Wasserstein distance:

ν = argmin
ν∈P2(M)

N∑
i=1

λiW
2
2 (ν, μi).

Wasserstein barycenters of discrete measures exist for
mass splitting OT but may not for non-mass splitting or
measure-preserving OT. Yet, proved in (Anderes and oth-
ers 2016), when the weights are uniform and all measures
have finite number of supports, there still exists a barycenter
ν that preserves the measure and whose number of supports
|Ων | has a tight upper bound |Ων | ≤

∑N
i=1 |Ωμi

| − N + 1,
and the OT from every μi to ν preserves the measure.

Wasserstein Means via Variational OT

A special case of the Wasserstein barycenters problem is
when N = 1. In that case, we are computing a barycenter
of a single probability measure. We call it the Wasserstein
mean (WM). Beyond a special case, the barycenters and the
means have the following connection.
Proposition 1. Given a compact metric space M , a trans-
portation cost c(·, ·) : M × M → R

+, and a collection
of Borel probability measures μi ∈ P(M), with weights
λi, i = 1, ..., N , the Wasserstein mean νm of their aver-
age measure induces a lower bound of the average Wasser-
stein distance from the barycenter νb to them, provided that
|Ωνb
| ≤ |Ωνm | ≤ k for some finite k.

Proof. Since W 2
2 (νb, ·) is convex for its metric property, ac-

cording to Jensen’s inequality, we have

W 2
2 (νb,

N∑
i=1

λiμi) ≤
N∑
i=1

λiW
2
2 (νb, μi).

Algorithm 1: Wasserstein Means
Input : μ(x) ∈ P(M) and Dirac measures {νj , yj}
t = 0.
repeat

ν(t+1) ← Update weight according to (7).
π(t+1) ← Compute OT with fixed y(t), ν(t).
y(t+1) ← Update support according to (6).
t← t+ 1.

until convergence.
return π, y, ν.

Then, according to Wasserstein mean’s definition,

W 2
2 (νm,

N∑
i=1

λiμi) ≤W 2
2 (νb,

N∑
i=1

λiμi), ∀νb.

The result shows. The equal sign holds when N = 1.

We should point out that if {μi} are discrete measures,
then for the barycenter to exist we need to add the con-
dition from (Anderes and others 2016) that |Ωνb

| ≤∑N
i=1 |Ωμi | − N + 1, which also bounds |Ωνm | through

|Ωνm
| ≤

∑N
i=1 |Ωμi

|.
Now, approaching Wasserstein means is essentially

through optimizing the following objective function:

min f(π, y, ν)
def
= min

π,yj ,νj

k∑
j=1

∑
yj=π(x)

μ(x)‖yj − x‖22,

s.t. νj =
∑

yj=π(x)

μ(x).

(5)

Compared to OT, solving WM w.r.t. (5) introduces 2 addi-
tional parameters – measure ν and its support y. When y
and ν are fixed, (5) becomes a classic optimal transporta-
tion problem and we adopt variational optimal transporta-
tion (VOT) (Mi and others 2018) to solve it. Thus, (5) is
minimizing the lower bound of the OT cost.

Then, it boils down to solving for y and ν. Certainly (5) is
differentiable at all y ∈ R

n×k and is convex. It’s optimum
w.r.t. y can be achieved at

ỹj =

∫
Ωμ∩Sj

xdμ(x)∫
Ωμ∩Sj

dμ(x)
. (6)

It is essentially to update the mean to the centroid of cor-
responding measures, adopted in for example (Cuturi and
others 2014; Ye and others 2017; Courty and others 2017b).
The slight difference in our method is that VOT is non-mass
splitting and thus the centroid in our case has a clear position
without the need for weighting.

As discussed in (Cuturi and others 2014), (5) is not dif-
ferentiable w.r.t. ν. However, we can still get its optimum
through the following observation.
Observation 1. The critical point of the function ν →
f(π, ν) is where ν induces π being the gradient map of the
unweighted Voronoi diagram formed by ν’s support y. In
that case, every empirical sample μ(x) at x is mapped to its
nearest yj , which coincides with Lloyd’s algorithm.

Proof. Suppose ν induces the OT map π from every x to
its nearest yj . Then, the map π′ : x → yj′ that satisfies any
other ν′ =

∫
Ω∩Sj′

dμ(x) will yield an equal or larger cost∫
Ω
‖yj − xi‖22dμ(xi) ≤

∫
Ω
‖yj′ − xi‖22dμ(xi).

Thus, we can write the update rule for ν as

ν̃(yj) =

∫
Ω∩Sj

dμ(x),

s.t. Sj = {x ∈M | ‖x− yj‖2 ≤ ‖x− yi‖2, i = j}.
(7)
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Figure 1: Comparison of time over number of centroids.

Updating the three parameters π, y, and ν can follow the
block coordinate descent method. Since at each iteration we
have closed-form solutions in the y and ν directions, there is
no need to do a line search there. We wrap up our algorithm
for computing the Wasserstein means in Alg. 1

As discussed in (Cuturi and others 2014), when N = 1
and p = 2, computing the Wasserstein barycenter (in this
case the Wasserstein mean) is equivalent to Lloyd’s k-means
algorithm. The difference also occurs when we have a con-
straint on the weight νj(y). Ng (Ng 2000) considered a uni-
form weight for all Sj . Our algorithm can adapt to any con-
straint on νj ≥ 0. In this case, our algorithm is equivalent
to (Cuturi and others 2014) where the update of the support
is equivalent to re-centering it by our (6).

Complexity In practice, we use the total mass of the dis-
crete measures inside each S. Then, we vectorize the com-
putation with PyTorch because parameters in VOT, h (4),
can be optimized individually and thus parallelly. Given N
empirical samples and K centroids, our implementation of
OT runs O(KN) on CPU and theoretically O(N) on GPU.
Figure 1 shows timing over K ← [20 : 1000]. N = 10, 000.
The boxes along the plots come from 10 runs of 300 iter-
ations for each K. The dimension of the data is 3. y axis
is in seconds per iteration. The plot shows the increased K
add few burden to RWM. The complexity added by regular-
ization is as follows. The complexity in 5.1 is O(K); 5.3 is
O(K3) mainly from solving SVD, but in practice we choose
a small or a constant number K ′ << K for SVD; 5.4 is
O(K) for computing curvature. Thus, the total computa-
tional complexity of RWM is O(N) + O(K3), depending
on the regularization term. We also compute the pair-wise
distances between empirical samples and centroids before-
hand as in (Cuturi 2013), making the memory consumption
on the level of O(KN).

Regularized Wasserstein Means

In many problems of machine learning, the solution that
comes purely from the perspective of the mapping cost may
not serve the best to represent the connection between ori-
gins and their images, let alone overfitting. Regularization
is a common technique to introduce desired properties in
the solution. In the previous section, we talked about the

Wasserstein means problem and its optimizers: OT π(ν, μ),
support y, and the measure ν(y). In this section, we de-
tail our strategies to regularize y along with several regu-
larization terms that we propose to penalize the Wasserstein
means cost. For simplicity, we fix the given ν(y) in the fol-
lowing arguments and only consider π and y in the regular-
ized Wasserstein means (RWM) problem.

We start with a general loss function:
L(π, y) = Lot(π, y) + λLreg(y),

Lot(π, y) =

∫
Ω

‖y − x‖22dμ(x), where y = π(x).
(8)

We call the first term the OT loss or data loss. Our goal here
is to explore Lreg(y) and the use of it. Optimizing (8) can
also follow the block coordinate descent method. First, we
fix the mean and compute the OT. Unlike in Alg. 1 where
we directly update the mean to the average of their corre-
spondences, next, we regularize the mean to satisfy certain
properties through local minimization on (8).

Minimizing the OT loss Lot(π, y) w.r.t. y can be simpli-
fied to minimizing the quadratic loss for each support, i.e.
Lỹ =

∑
j ‖yj − ỹj‖22, since they are equivalent:∫

Sj

‖yj − x‖22dμ(x) = (y2j − 2yj

∫
Sj

xdμ(x) + C1)

= ‖yj −
∫
Sj

xdμ(x)‖22 + C2 = ‖yj − ỹj‖22 + C2.

(9)

C1, C2 are some constants. ỹj is from (6) and Sj is the set
in which x is mapped to yj . It is defined by VOT as Sj =
{x ∈ M |〈yj , x〉 − hj ≥ 〈yi, x〉 − hi}, ∀i = j, see Sec. .
Thus, we re-write (8) as

L(π, y) =
∑
j

‖yj − ỹj‖22 + λLreg(y) (10)

Note, that Lreg undermines the metric properties of the
Wasserstein distance and yet the distance is not our concern
but the data term of the loss we designed for a broad range of
applications. We provide the general algorithm to compute
regularized Wasserstein means in Alg. 2.

Citing the convergence proof from (Grippo and others
2000), as long as we add a convex regularization term, be-
cause π : x → y is compact and convex, our 2-block coor-
dinate descent-based algorithm indeed will converge. In the

Algorithm 2: Regularized Wasserstein Means
Input : μ(x) ∈ P(M), {νj , yj}
t = 0.
repeat

π(t+1) ← Compute OT π(μ, ν) with fixed y(t).
ỹ ← Compute new centroid according to (6).
repeat

y(t+1) ← Update centroid by optimizing (10).
until y(t+1) converges.
t← t+ 1.

until π and y converge.
return π, y.
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Figure 2: Regularizing the WM by the intra-class triplets can
adapt it to domains that suffer unknown rotations.

rest of this section, we discuss in detail several regulariza-
tion terms based on class labels, geometric transformation,
and length and curvature, all of which are convex.

Triplets Empowered by Class Labels

We begin with a fair assumption that samples of the same
class reside closer to each other and samples that belong to
different classes are relatively far away from each other. This
behavior can be expressed by signed distances between sam-
ples. Given that, we propose to regularize the mean update
process by adding a triplet loss, promoting intra-class con-
nection and discouraging inter-class connections.

The triplet loss was proposed in (Schroff and others
2015), inspired by (Weinberger and others 2009). It targets
the metric learning problem which is finding an embedding
space where samples of the same desired property reside
close to each other and vise versa. In triplets, samples are
characterized into three types – anchor, positive, and nega-
tive, denoted as ya, yp, and yn. The motivation is that the
anchor is closer by a margin of α to a positive than it is to a
negative:

Lreg(y) =
K∑
i

[‖yaj − ypj ‖22 − ‖yaj − ynj ‖22 + α]+.

The overall RWM loss w.r.t. y (10) becomes

L(y) =
∑
j

‖yj − ỹj‖22 + λLtriplet(y). (11)

Fig. 2 shows an example of aligning Gaussian mixtures
by (11). Suppose a mixture has three components with dif-
ferent parameters, each belonging to a different class shown
in three colors. We rotate the mixture by a certain degree to
emulate an unknown shift and apply our method to recover
the shift.

We sample the source domain 50 times and the target do-
main 5,000 times at 22.5o and 45o. Fig. 2 1st column shows
the setups. The 2nd column shows the result from computing
the WM without regularization as in (Mi and others 2018).
The 3rd column shows our result. Our method can well drive
source samples into the correct target domain. The lighter
colors on the target samples in the 2nd column indicate the
predicted class by using the OT correspondence. Since our

Figure 3: RWM adapting shifted two moons: 1st row per-
formance over iteration under 45o; 2nd and 3rd rows perfor-
mances of RWM and OTDA under different degrees.

OT preserves the measure during the mapping, we can de-
terministically label each unknown sample by querying its
own centroid’s class. Note, that this is equivalent to the 1NN
classification algorithm based on the power Euclidean dis-
tance (Mi and others 2018). Only when the weight of every
centroid equals each other will the power distance coincide
with the Euclidean distance. In the last column, we show
the result from (Courty and others 2017a). It learns an RBF
SVM classifier on the target samples.

Geometric Transformations

While OT recovers a transformation between two domains
that induces the lowest cost, it does not consider the structure
within the domains. Pre-assuming a type of the transforma-
tion and then estimating its parameters is one of the popular
approaches to solving domain alignment-related problems,
for example in (Gopalan and others 2011; Courty and others
2017b). In this way, the structure of the domain can be pre-
served to some extent. Let us follow this trend and assume
that two domains can be matched by a geometric transfor-
mation with modifications, that is, any transformation be-
tween domains is a combination of a parametric geometric
transformation and an arbitrary transformation. This leads to
our following strategy that we, on the one hand, regularize
the mean to be roughly a geometric transformation in or-
der to preserve the structure of the source domain during the
mapping but on the other hand also allow OT to adjust the
mapping so that it can recover irregular transformations.

We follow Alg. 2. First, compute OT to obtain the target
mean positions ỹ = π(x) and then use the paired means
{y, ỹ} to determine the parameters of a geometric transfor-
mation T subject to ỹ = T y through a least squares esti-
mate. Suppose yTj = T y is the estimate purely based on the
affine transformation, then, we have the RWM loss

L(π, y) =
∑
j

‖yj − ỹj‖22 + λ
∑
j

‖yj − yTj ‖22. (12)

Candidates of the geometric transformations include but not
limited to perspective, affine, and rigid transformations.
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We demonstrate (12) with two moons in Fig. 3. The
known domain contains 200 samples in blue and red. The
unknown domain is the known domain after a rotation, sam-
pled 10, 000 times in grey. We assume the prior is a rigid
transformation. The top row shows the result on the 45o case
after several iterations. In the end, RWM almost recovers the
transformation with a small error. Top right shows accuracy
over iterations under different degrees. The 2nd row shows
the result under different degrees of rotation. We weight in
OTDA-GL’s result (Courty and others 2017b) in the 3rd row
showing RWM’s superiority over OTDA under large trans-
formations and its inferiority under small transformations.
We also notice that RWM maps the samples into the domain
which OTDA fails to.

Topology Represented by Length and Curvature

The nature of many-to-one mapping in the WM problem
enables itself to be suitable for skeleton layout. Consider
a 3D thin, elongated point cloud. Our goal is to find a 3D
curve consisting of sparse points to represent the shape of
the cloud. The problem with directly using WM for skele-
ton layout is that the support is unstructured. Therefore, we
propose to pre-define the topology of the curve and add the
length and curvature to regularize its geometry, both intrin-
sically (length) and extrinsically (curvature).

We give an order of the support so that they can form a
piece-wise linear curve. For each three adjacent supports,
yj−1, yj , yj+1, we fit a quadratic spline curve γ(t) of 100
points. Its length is approximated by summarizing the length
segment

∫ length

0
ds =

∫ 1

0
‖γ′(t)‖dt, and its curvature at the

middle point yi can be approximated by the total curvature∫ length

0
K2(t)ds, K(t) = ‖γ′(t)×γ′′(t)‖

‖γ′(t)‖3 as in (Ulen and oth-
ers 2015). Thus, the regularization on the length and curva-
ture can express itself as follows:

λLreg = λ1

∑
1≤i<k

g(γ′(yi)) + λ2

∑
1<i<k

l(γ′′(yi)). (13)

where g(·) and l(·) are some functions computed out of the
length and curvature based on y, which are both convex
making (13) convex. We could go further and include torsion
into the term but since we do not pursue a perfectly smooth
curve but rather the reasonable embedding of the supports in
the interior of the point cloud, we have passed torsion.

In case the shape have branches, we can easily extend (13)
considering the skeleton as a whole when computing the OT
and regularizing each branch separately. Suppose, now, the
skeleton Γ = {γj} is a set of 1-D curves. Finally, we propose
the following loss for skeleton layout:

L(π, y) =
∑
j

‖yj − ỹj‖22

+
∑
γ∈Γ

(
λ1

∑
1≤i<k

g(γ′(yi)) + λ2

∑
1<i<k

l(γ′′(yi))
)
.

(14)

Applications
We demonstrate the use of RWM in domain adaptation
(class label), point set registration (geometric transforma-
tion), and skeleton layout (topology).

Figure 4: t-SNE plots of Office samples after OTDA and
RWM.

Domain Adaptation

We evaluate our method on the office-31 dataset (Saenko
and others 2010). Office-31 includes two subsets – Amazon
and Webcam. We adapt from Webcam to Amazon (W→A).
The Amazon set contains 2,848 images from 31 categories.
Each category has a different number of samples from 36 to
100. The Webcam set archives 826 images from the same 31
categories, each having between 11 to 43 samples.

We use the Decaf-fc6 and Decaf-fc7 features provided
along with the dataset. Each sample now is encoded into
a vector of 4,096 dimensions. The setup is similar to
OTDA (Courty and others 2017b). We randomly select 20
samples per class from Amazon and 10 samples per class
from Webcam, because the ‘ruler’ category of Webcam only
has 11 samples and we want each class to have an equal
number of samples. Then, we normalize the weight of the
sample so that the total weight from Amazon and from We-
bcam are both one. Each sample is assumed to have an equal
weight: Amazon sample 1/620 and Webcam sample 1/310.

We compare RWM with OTDA and also include 1NN
and the original WM as baselines. The experiments are re-
peated 10 times and Tab. 1 summarizes the averaged results.
RWM outperforms other methods by a large margin. We also
show the resulting t-SNE embeddings in Fig. 4. From left to
right are the original embeddings, embeddings after OTDA,
and embeddings after RWM. Blue dots represent Amazon
samples and red dots Webcam samples. Numbers indicate
classes. RWM successfully cluster samples from the same
class into distinguishable clusters while OTDA on the other
hand very well integrates the source domain into the target
domain (but with larger errors). Zoom in the pictures to see
the samples of 1, ‘bike’, and 11, ‘keyboard’. The regulariza-
tion weight of OTDA Laplacian is 0.3. It is from a search
in {1, 0.3, 0.1, 0.03, 0.01}. The weight of RWM is 1 from a
search in {3, 1, 0.3, 0.1, 0.03, 0.01}

Table 1: Classification Accuracy (%) on Office-31 W→ A
Feature 1NN WM OTDA RWM

Decaf-fc6 30.2±1.3 32.7±2.3 33.9±2.1 36.4±2.7
Decaf-fc7 31.3±1.9 34.6±2.2 35.8±1.5 43.2±2.6
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Figure 5: Alignment of translationally and rotationally
shifted bunnies after RWM and ICP. t indicates the number
of iterations.

Point Set Registration

Registering point sets is key to many downstream applica-
tions such as surface reconstruction and stereo matching.
Point set registration algorithms aim to assign correspon-
dences between two sets of points and to recover the trans-
formation between them (Myronenko and Song 2010). Fig-
ure 5 left shows a Stanford Bunny in a grey point set and its
shifted version in a colored point set after a random noisy
translation and a rotation. We apply (12) to recovering the
transformation. With this example, we also test our algo-
rithm under the extreme condition when we have the same
number of empirical samples and centroids. Our algorithm
RWM still produces a one-to-one map between the two point
sets. The transformation then perfectly aligns them while
the traditional iterative closest point (ICP) algorithm fails
to recover the transformation. The reason is that ICP assigns
the correspondence based on nearest neighbors while RWM
uses OT which considers the point set as a whole when
computing the correspondence. Note, that by pre-defining
the regularization as a rigid transformation and adjusting its
weight, we can perform both rigid and non-rigid registration.
In the above example, the regularization weight is λ = 10.
Our alignment technique might be further incorporated into
e.g. (Yang and others 2016) for globally optimal alignment.

Skeleton Layout

. Suppose we have a point cloud μ ∈ P(R3) and a graph
G = (V,E) representing the topology of the shape. Then,
the problem is finding particular embeddings of the nodes
y(ν) : ν → R

3 that can relate the graph to the geometry of
the point cloud.

Now, consider the human shape point cloud in Fig. 6
top left. We initial a rough embedding of a graph by fix-
ing its ends V0 ⊂ V to certain known positions yν∈V0

which are head, hands, and feet in this example, and set
the rest of nodes evenly distribute along their branches. Our
goal is to embed the nodes ν ∈ V \V0 in this R

3 space by
applying (14). Because the weight of each centroid deter-
mines its boundaries with other centroids, it has to be ad-
justed to the local density of the cloud so that all the cen-
troids could roughly evenly lay on the skeleton. Thus, we
relax the restriction on weight and reinstate (7). We update

Figure 6: Skeleton layout. RWM embeds a pre-defined graph
which relates to the shape of the cloud. Numbers indicating
MSE showing RWM balances between MSE and topology.

the weight by momentum gradient descent, ν(yj)(t+1) ←
λν(yj)

(t) + (1− λ)
∫
Ω∩Sj

dμ(x) to prevent it from quickly
trapped into a local minimum like k-means.

Top right of Fig. 6 shows our result. The skeleton suc-
cessfully captures the shape of the point cloud. Colors of the
skeleton nodes based on their position in the graph are trans-
ferred to the surface according to their OT correspondences.
We compare the result from Lloyd’s k-means algorithm and
with RW in the 2nd and 3rd columns. Equal weight of reg-
ularization is added to Lloyd’s algorithm to make it a fair
comparison. We also test our method in an extreme initial
condition. As shown in (b), our algorithm eventually recov-
ers a coherent, correct shape, but without the regulariza-
tion we could end up with “ill-posed” embeddings. The fig-
ure also writes the mean square errors (MSE). Our method
achieves small MSEs while maintaining the topology. In the
bottom left, we show result from Stanford Armadillo. In the
bottom right, we show the result from (Solomon and oth-
ers 2015) as the ground truth. It regards the problem as a
Wasserstein propagation problem and adopted Wasserstein
barycenter techniques to relate the samples of the cloud to
the graph, which is much heavier. The average time of 5 tri-
als by (Solomon and others 2015) was 1,200 seconds while
ours took 15 seconds. CPU: Intel i5-7640x 4.0 GHz.

Conclusion

We have talked about the Wasserstein means problem and
our method to regularize it. The results have shown that our
method can well adapt to different problems by adopting dif-
ferent regularization terms. This work opens up a new per-
spective to look at the Wasserstein means problem, or the
k-means problem, as well as regularizing them.
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We expect further use of regularized optimal trans-
portation techniques on aligning distributions in high-
dimensional spaces. Future work in our line of research
could also include regularizing the barycenters.
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